首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fibroblast growth factor (FGF) belongs to a family of polypeptides with diverse biological functions. In the present study we have assessed the role of FGF signaling in the development of nervous system and mesodermal tissues in chick embryo. Treatment of in vitro cultured embryos with exogenous, human recombinant FGF led to abnormalities in neural induction and development, notochord formation and somitogenesis as studied by gross morphology and histology. Overall growth and development was also adversely affected as seen from the measurement of body axis length. Further, treatment of embryos with FGF resulted in differential modulation of expression of two genes important in normal development as studied by whole mount in situ hybridization using DIG-labeled riboprobes. The expression of Brachyury, which is necessary for mesoderm formation, was down-regulated in FGF-treated embryos. The expression of noggin, the product which participates in the patterning of the chick neural tube was, on the other hand, up-regulated within 2 h. We also studied development of neural and mesodermal tissues in conditions where FGF signaling was defective. This was achieved by culturing the embryos in the presence of suramin. In the presence of low doses of suramin (100-150 nmole/culture), abnormalities were detected mainly in the mesodermal structures while at higher doses (200-400 nmole/culture), the nervous system too was found to be abnormal in a large proportion of embryos. Treatment of chick embryos with suramin (200 nmole/culture) also modulated the expression of Brachyuryand noggin within a 2 h period. The results showthat FGF signaling plays an important role in the molecular events leading to the development of nervous system and mesodermal tissues in the chick embryo.  相似文献   

2.
3.
Fibroblast growth factor 8 (FGF8) is a key molecular signal that is necessary for early embryonic development of the central nervous system, quickly disappearing past this point. It is known to be one of the primary morphogenetic signals required for cell fate and survival processes in structures such as the cerebellum, telencephalic and isthmic organizers, while its absence causes severe abnormalities in the nervous system and the embryo usually dies in early stages of development. In this work, we have observed a new possible therapeutic role for this factor in demyelinating disorders, such as leukodystrophy or multiple sclerosis. In vitro, oligodendrocyte progenitor cells were cultured with differentiating medium and in the presence of FGF8. Differentiation and proliferation studies were performed by immunocytochemistry and PCR. Also, migration studies were performed in matrigel cultures, where oligodendrocyte progenitor cells were placed at a certain distance of a FGF8-soaked heparin bead. The results showed that both migration and proliferation was induced by FGF8. Furthermore, a similar effect was observed in an in vivo demyelinating mouse model, where oligodendrocyte progenitor cells were observed migrating towards the FGF8-soaked heparin beads where they were grafted. In conclusion, the results shown here demonstrate that FGF8 is a novel factor to induce oligodendrocyte progenitor cell activation, migration and proliferation in vitro, which can be extrapolated in vivo in demyelinated animal models.  相似文献   

4.
Coordination between functionally related adjacent tissues is essential during development. For example, formation of trunk neural crest cells (NCCs) is highly influenced by the adjacent mesoderm, but the molecular mechanism involved is not well understood. As part of this mechanism, fibroblast growth factor (FGF) and retinoic acid (RA) mesodermal gradients control the onset of neurogenesis in the extending neural tube. In this paper, using gain- and loss-of-function experiments, we show that caudal FGF signaling prevents premature specification of NCCs and, consequently, premature epithelial-mesenchymal transition (EMT) to allow cell emigration. In contrast, rostrally generated RA promotes EMT of NCCs at somitic levels. Furthermore, we show that FGF and RA signaling control EMT in part through the modulation of elements of the bone morphogenetic protein and Wnt signaling pathways. These data establish a clear role for opposition of FGF and RA signaling in control of the timing of NCC EMT and emigration and, consequently, coordination of the development of the central and peripheral nervous system during vertebrate trunk elongation.  相似文献   

5.
Although stem cells from mice deficient of FGF2 have been reported to display enhanced capacity for adipogenesis, the literature using in vitro cell culture system has so far reported conflicting results on the role of FGF2 in adipogenesis. We here demonstrate that FGF2, depending on concentration, can function as either a positive or negative factor of in vitro adipogenesis by regulating activation of the ERK signaling pathway. FGF2 at concentrations lower than 2 ng/ml enhanced in vitro adipogenesis of human adipose-derived stem cells (hASCs). However, FGF2 at concentrations higher than 10 ng/ml was able to suppress adipogenesis by maintaining sustained phosphorylation of ERK and function as a dominant negative adipogenic factor toward BMP ligands. Expression levels of FGF2 in the fat tissues from high fat diet induced obese C57BL/6 mice were lower than those from normal chow diet mice, indicating that expression levels of FGF2 in the fat tissues might be in reverse correlation with the size of fat tissues. Our observation of concentration dependent biphasic effect as well as dominant negative effect of FGF2 on adipogenesis provides a mechanistic basis to understand roles of FGF2 in adipogenesis and development of fat tissues.  相似文献   

6.
Fibroblast growth factor (FGF) has been proposed to be involved in the specification and patterning of the developing vertebrate nervous system. There is conflicting evidence, however, concerning the requirement for FGF signaling in these processes. To provide insight into the signaling mechanisms that are important for neural induction and anterior-posterior neural patterning, we have employed the dominant negative Ras mutant, N17Ras, in addition to a truncated FGF receptor (XFD). Both N17Ras and XFD, when expressed in Xenopus laevis animal cap ectoderm, inhibit the ability of FGF to generate neural pattern. They also block induction of posterior neural tissue by XBF2 and XMeis3. However, neither XFD nor N17Ras inhibits noggin, neurogenin, or XBF2 induction of anterior neural markers. MAP kinase activation has been proposed to be necessary for neural induction, yet N17Ras inhibits the phosphorylation of MAP kinase that usually follows explantation of explants. In whole embryos, Ras-mediated FGF signaling is critical for the formation of posterior neural tissues but is dispensable for neural induction.  相似文献   

7.
Early patterning of the vertebrate midbrain and cerebellum is regulated by a mid/hindbrain organizer that produces three fibroblast growth factors (FGF8, FGF17 and FGF18). The mechanism by which each FGF contributes to patterning the midbrain, and induces a cerebellum in rhombomere 1 (r1) is not clear. We and others have found that FGF8b can transform the midbrain into a cerebellum fate, whereas FGF8a can promote midbrain development. In this study we used a chick electroporation assay and in vitro mouse brain explant experiments to compare the activity of FGF17b and FGF18 to FGF8a and FGF8b. First, FGF8b is the only protein that can induce the r1 gene Gbx2 and strongly activate the pathway inhibitors Spry1/2, as well as repress the midbrain gene Otx2. Consistent with previous studies that indicated high level FGF signaling is required to induce these gene expression changes, electroporation of activated FGFRs produce similar gene expression changes to FGF8b. Second, FGF8b extends the organizer along the junction between the induced Gbx2 domain and the remaining Otx2 region in the midbrain, correlating with cerebellum development. By contrast, FGF17b and FGF18 mimic FGF8a by causing expansion of the midbrain and upregulating midbrain gene expression. This result is consistent with Fgf17 and Fgf18 being expressed in the midbrain and not just in r1 as Fgf8 is. Third, analysis of gene expression in mouse brain explants with beads soaked in FGF8b or FGF17b showed that the distinct activities of FGF17b and FGF8b are not due to differences in the amount of FGF17b protein produced in vivo. Finally, brain explants were used to define a positive feedback loop involving FGF8b mediated upregulation of Fgf18, and two negative feedback loops that include repression of Fgfr2/3 and direct induction of Spry1/2. As Fgf17 and Fgf18 are co-expressed with Fgf8 in many tissues, our studies have broad implications for how these FGFs differentially control development.  相似文献   

8.
Fibroblast growth factor 21 (FGF21) as a metabolic stress hormone, is mainly secreted by the liver. In addition to its well‐defined roles in energy homeostasis, FGF21 has been shown to promote remyelination after injury in the central nervous system. In the current study, we sought to examine the potential roles of FGF21 in the peripheral nervous system (PNS) myelination. In the PNS myelin development, Fgf21 expression was reversely correlated with myelin gene expression. In cultured primary Schwann cells (SCs), the application of recombinant FGF21 greatly attenuates myelination‐associated gene expression, including Oct6, Krox20, Mbp, Mpz, and Pmp22. Accordingly, the injection of FGF21 into neonatal rats markedly mitigates the myelination in sciatic nerves. On the contrary, the infusion of the anti‐FGF21 antibody accelerates the myelination. Mechanistically, both extracellular signal‐regulated kinase (ERK) and p38 mitogen‐activated protein kinase (MAPK) were stimulated by FGF21 in SCs and sciatic nerves. Following experiments including pharmaceutical intervention and gene manipulation revealed that the p38 MAPK/c‐Jun axis, rather than ERK, is targeted by FGF21 for mediating its repression on myelination in SCs. Taken together, our data provide a new aspect of FGF21 by acting as a negative regulator for the myelin development process in the PNS via activation of p38 MAPK/c‐Jun.  相似文献   

9.
10.
11.
Liu WX  Jia B  Shi GQ  Ren JG  Liu K  Ma RL 《遗传》2011,33(9):982-988
根据牛的成纤维细胞内生长因子5(Fibroblast growth factor 5,FGF5)基因cDNA序列设计引物,PCR扩增得到绵羊FGF5基因cDNA的开放阅读框序列,并比较和其他6种高等哺乳动物的序列同源性;同时研究该基因在绵羊多种组织的表达情况,以及研究以细胞模型RNA干扰下的表达情况。结果表明,绵羊FGF5基因ORF全长为813 bp,编码270个氨基酸,分子量约为29.58 kDa,理论等电点10.59。绵羊FGF5基因cDNA序列与牛、人、小鼠、大鼠、犬和猫的对应序列同源性高度保守,预测氨基酸序列同源性同样具有高度保守性。RT-PCR分析表明FGF5在绵羊皮肤、小肠、肾脏、心脏、肝脏、脾脏、胰脏和肺中均有表达,皮肤中表达量最高。构建该基因的原核表达载体和RNAi载体,IPTG诱导在大肠杆菌中融合表达获得55 kDa的蛋白条带,设计的RNA干扰片段能显著抑制FGF5基因的表达。文章为进一步阐明绵羊FGF5的功能尤其是在羊毛生长发育中的作用提供了理论和实验基础。  相似文献   

12.
Ratzka A  Baron O  Grothe C 《PloS one》2011,6(8):e23564
Secreted proteins of the fibroblast growth factor (FGF) family play important roles during development of various organ systems. A detailed knowledge of their temporal and spatial expression profiles, especially of closely related FGF family members, are essential to further identification of specific functions in distinct tissues. In the central nervous system dopaminergic neurons of the substantia nigra and their axonal projections into the striatum progressively degenerate in Parkinson's disease. In contrast, FGF-2 deficient mice display increased numbers of dopaminergic neurons. In this study, we determined the expression profiles of all 22 FGF-ligands and 10 FGF-receptor isoforms, in order to clarify, if FGF-2 deficiency leads to compensatory up-regulation of other FGFs in the nigrostriatal system. Three tissues, ventral mesencephalon (VM), striatum (STR) and as reference tissue spinal cord (SC) of wild-type and FGF-2 deficient mice at four developmental stages E14.5, P0, P28, and adult were comparatively analyzed by quantitative RT-PCR. As no differences between the genotypes were observed, a compensatory up-regulation can be excluded. Moreover, this analysis revealed that the majority of FGF-ligands (18/22) and FGF-receptors (9/10) are expressed during normal development of the nigrostriatal system and identified dynamic changes for some family members. By comparing relative expression level changes to SC reference tissue, general alterations in all 3 tissues, such as increased expression of FGF-1, -2, -22, FgfR-2c, -3c and decreased expression of FGF-13 during postnatal development were identified. Further, specific changes affecting only one tissue, such as increased FGF-16 (STR) or decreased FGF-17 (VM) expression, or two tissues, such as decreased expression of FGF-8 (VM, STR) and FGF-15 (SC, VM) were found. Moreover, 3 developmentally down-regulated FGFs (FGF-8b, FGF-15, FGF-17a) were functionally characterized by plasmid-based over-expression in dissociated E11.5 VM cell cultures, however, such a continuous exposure had no influence on the yield of dopaminergic neurons in vitro.  相似文献   

13.
Previous analyses of labelled clones of cells within the developing nervous system of the mouse have indicated that descendants are initially dispersed rostrocaudally followed by more local proliferation, which is consistent with the progressing node's contributing descendants from a resident population of progenitor cells as it advances caudally. Here we electroporated an expression vector encoding green fluorescent protein into the chicken embryo near Hensen's node to test and confirm the pattern inferred in the mouse. This provides a model in which a proliferative stem zone is maintained in the node by a localized signal; those cells that are displaced out of the stem zone go on to contribute to the growing axis. To test whether fibroblast growth factor (FGF) signalling could be involved in the maintenance of the stem zone, we co-electroporated a dominant-negative FGF receptor with a lineage marker, and found that it markedly alters the elongation of the spinal cord primordium. The results indicate that FGF receptor signalling promotes the continuous development of the posterior nervous system by maintaining presumptive neural progenitors in the region near Hensen's node. This offers a potential explanation for the mixed findings on FGF in the growth and patterning of the embryonic axis.  相似文献   

14.
FGF signaling is required during multiple stages of inner ear development in many different vertebrates, where it is involved in induction of the otic placode, in formation and morphogenesis of the otic vesicle as well as for cellular differentiation within the sensory epithelia. In this study we have looked to define the redundant and conserved roles of FGF3, FGF8 and FGF10 during the development of the murine and avian inner ear. In the mouse, hindbrain-derived FGF10 ectopically induces FGF8 and rescues otic vesicle formation in Fgf3 and Fgf10 homozygous double mutants. Conditional inactivation of Fgf8 after induction of the placode does not interfere with otic vesicle formation and morphogenesis but affects cellular differentiation in the inner ear. In contrast, inactivation of Fgf8 during induction of the placode in a homozygous Fgf3 null background leads to a reduced size otic vesicle or the complete absence of otic tissue. This latter phenotype is more severe than the one observed in mutants carrying null mutations for both Fgf3 and Fgf10 that develop microvesicles. However, FGF3 and FGF10 are redundantly required for morphogenesis of the otic vesicle and the formation of semicircular ducts. In the chicken embryo, misexpression of Fgf3 in the hindbrain induces ectopic otic vesicles in vivo. On the other hand, Fgf3 expression in the hindbrain or pharyngeal endoderm is required for formation of the otic vesicle from the otic placode. Together these results provide important insights into how the spatial and temporal expression of various FGFs controls different steps of inner ear formation during vertebrate development.  相似文献   

15.
Clones for a novel transmembrane receptor termed FGFRL1 were isolated from a subtracted, cartilage-specific cDNA library prepared from chicken sterna. Homologous sequences were identified in other vertebrates, including man, mouse, rat and fish, but not in invertebrates such as Caenorhabditis elegans and Drosophila. FGFRL1 was expressed preferentially in skeletal tissues as demonstrated by Northern blotting and in situ hybridization. Small amounts of the FGFRL1 mRNA were also detected in other tissues such as skeletal muscle and heart. The novel protein contained three extracellular Ig-like domains that were related to the members of the fibroblast growth factor (FGF) receptor family. However, it lacked the intracellular protein tyrosine kinase domain required for signal transduction by transphosphorylation. When expressed in cultured cells as a fusion protein with green fluorescent protein, FGFRL1 was specifically localized to the plasma membrane where it might interact with FGF ligands. Recombinant FGFRL1 protein was produced in a baculovirus system with intact disulfide bonds. Similar to FGF receptors, the expressed protein interacted specifically with heparin and with FGF2. When overexpressed in MG-63 osteosarcoma cells, the novel receptor had a negative effect on cell proliferation. Taken together our data are consistent with the view that FGFRL1 acts as a decoy receptor for FGF ligands.  相似文献   

16.
17.
In the developing spinal cord and telencephalon, ventral patterning involves the interplay of Hedgehog (Hh), Retinoic Acid (RA) and Fibroblast Growth Factor (FGF) signaling. In the eye, ventral specification involves Hh signaling, but the roles of RA and FGF signaling are less clear. By overexpression assays in Xenopus embryos, we found that both RA and FGF receptor (FGFR) signaling ventralize the eye, by expanding optic stalk and ventral retina, and repressing dorsal retina character. Co-overexpression experiments show that RA and FGFR can collaborate with Hh signaling and reinforce its ventralizing activity. In loss-of-function experiments, a strong eye dorsalization was observed after triple inhibition of Hh, RA and FGFR signaling, while weaker effects were obtained by inhibiting only one or two of these pathways. These results suggest that the ventral regionalization of the eye is specified by interactions of Hh, RA and FGFR signaling. We argue that similar mechanisms might control ventral neural patterning throughout the central nervous system.  相似文献   

18.
The remodeling of axonal circuits after injury requires the formation of new synaptic contacts to enable functional recovery. Which molecular signals initiate such axonal and synaptic reorganisation in the adult central nervous system is currently unknown. Here, we identify FGF22 as a key regulator of circuit remodeling in the injured spinal cord. We show that FGF22 is produced by spinal relay neurons, while its main receptors FGFR1 and FGFR2 are expressed by cortical projection neurons. FGF22 deficiency or the targeted deletion of FGFR1 and FGFR2 in the hindlimb motor cortex limits the formation of new synapses between corticospinal collaterals and relay neurons, delays their molecular maturation, and impedes functional recovery in a mouse model of spinal cord injury. These results establish FGF22 as a synaptogenic mediator in the adult nervous system and a crucial regulator of synapse formation and maturation during post‐injury remodeling in the spinal cord.  相似文献   

19.
FGF19 subfamily proteins (FGF19, FGF21, and FGF23) are unique members of fibroblast growth factors (FGFs) that regulate energy, bile acid, glucose, lipid, phosphate, and vitamin D homeostasis in an endocrine fashion. Their activities require the presence of alpha or betaKlotho, two related single-pass transmembrane proteins, as co-receptors in relevant target tissues. We previously showed that FGF19 can bind to both alpha and betaKlotho, whereas FGF21 and FGF23 can bind only to either betaKlotho or alphaKlotho, respectively in vitro. To determine the mechanism regulating the binding and specificity among FGF19 subfamily members to Klotho family proteins, chimeric proteins between FGF19 subfamily members or chimeric proteins between Klotho family members were constructed to probe the interaction between those two families. Our results showed that a chimera of FGF19 with the FGF21 C-terminal tail interacts only with betaKlotho and a chimera with the FGF23 C-terminal tail interacts only with alphaKlotho. FGF signaling assays also reflected the change of specificity we observed for the chimeras. These results identified the C-terminal tail of FGF19 as a region necessary for its recognition of Klotho family proteins. In addition, chimeras between alpha and betaKlotho were also generated to probe the regions in Klotho proteins that are important for signaling by this FGF subfamily. Both FGF23 and FGF21 require intact alpha or betaKlotho for signaling, respectively, whereas FGF19 can signal through a Klotho chimera consisting of the N terminus of alphaKlotho and the C terminus of betaKlotho. Our results provide the first glimpse of the regions that regulate the binding specificity between this unique family of FGFs and their co-receptors.  相似文献   

20.
Extracellular factors such as FGF and EGF control various aspects of morphogenesis, patterning and cellular proliferation in both invertebrates and vertebrates. In most systems, it is primarily the distribution of these factors that controls the differential behavior of the responding cells. Here we describe the role of Sprouty in eye development. Sprouty is an extracellular protein that has been shown to antagonize FGF signaling during tracheal branching in Drosophila. It is a novel type of protein with a highly conserved cysteine-rich region. In addition to the embryonic tracheal system, sprouty is also expressed in other tissues including the developing eye imaginal disc, embryonic chordotonal organ precursors and the midline glia. In each of these tissues, EGF receptor signaling is known to participate in the control of the correct number of neurons or glia. We show that, in all three tissues, the loss of sprouty results in supernumerary neurons or glia, respectively. Furthermore, overexpression of sprouty in wing veins and ovarian follicle cells, two other tissues where EGF signaling is required for patterning, results in phenotypes that resemble the loss-of-function phenotypes of Egf receptor. These results suggest that Sprouty acts as an antagonist of EGF as well as FGF signaling pathways. These receptor tyrosine kinase-mediated pathways may share not only intracellular signaling components but also extracellular factors that modulate the strength of the signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号