首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
We have examined the expression of a maize nucleartuf gene(tufA) coding for the chloroplast translation elongation factor EF-Tu. Southern analysis revealed that the maize chloroplast EF-Tu was encoded by at least two distinct genes in the nuclear genome. In order to know the effect of light on the expression of thetufA gene during maize chloroplast biogenesis, we have analyzed the steady-state level of thetufA mRNAs by Northern analysis. The steady-state level of thetufA mRNAs was similar in both continuous light- and dark-grown seedlings. The level of thetufA mRNAs also maintained at relatively same level during light-induced greening of etiolated seedlings and all examined developmental stages. These results indicate that the gene expression of the maize chloroplast EF-Tu is rarely light-regulated at it’s mRNA level during chloroplast biogenesis.  相似文献   

5.
6.
7.
8.
9.
10.
In higher plant chloroplasts the accumulation of plastid-encoded mRNAs during leaf maturation is regulated via gene-specific mRNA stabilization. The half-lives of chloroplast RNAs are specifically affected by magnesium ions. psbA mRNA (D1 protein of photosystem II), rbcL mRNA (large subunit of ribulose-1,5-bisphosphate carboxylase), 16 S rRNA, and tRNA(His) gain stability at specific magnesium concentrations in an in vitro degradation system from spinach chloroplasts. Each RNA exhibits a typical magnesium concentration-dependent stabilization profile. It shows a cooperative response of the stability-regulated psbA mRNA and a saturation curve for the other RNAs. The concentration of free Mg(2+) rises during chloroplast development within a range sufficient to mediate gene-specific mRNA stabilization in vivo as observed in vitro. We suggest that magnesium ions are a trans-acting factor mediating differential mRNA stability.  相似文献   

11.
12.
13.
14.
Microalgae have the potential to be a valuable biotechnological platform for the production of recombinant proteins. However, because of the complex regulatory network that tightly controls chloroplast gene expression, heterologous protein accumulation in a wild-type, photosynthetic-competent algal chloroplast remains low. High levels of heterologous protein accumulation have been achieved using the psbA promoter/5' untranslated region (UTR), but only in a psbA-deficient genetic background, because of psbA/D1-dependent auto-attenuation. Here, we examine the effect of fusing the strong 16S rRNA promoter to the 5' UTR of the psbA and atpA genes on transgene expression in the chloroplast of Chlamydomonas reinhardtii. We show that fusion of the 16S promoter had little impact on protein accumulation from the psbA 5' UTR in a psbA-deficient genetic background. Furthermore, the 16S/psbA promoter/UTR fusion was silenced in the presence of wild-type levels of D1 protein, confirming that the psbA 5' UTR is the primary target for D1-dependent auto-repression. However, fusion of the 16S promoter to the atpA 5' UTR significantly boosts mRNA levels and supports high levels of heterologous protein accumulation in photosynthetic-competent cells. The 16S/atpA promoter/UTR drove LUXCT protein accumulation to levels close to that of psbA in a psbA- background, and drove expression of a human therapeutic protein to levels only twofold lower than the psbA 5' UTR. The 16S/atpA promoter/UTR combination should have utility for heterologous protein production when expression from a photosynthetic-competent microalgal strain is required.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号