首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The processes involved during the passage of a suspended particle through a small cylindrical orifice across which exists an electric field are investigated experimentally for an approximate prolate spheroid in the form of two tangent, rigid spheres (ragweed pollen particles) and for fresh, human red blood cells. Oscillograms of current pulses produced by both types of particles are presented and discussed in terms of particle shape and orientation and the effects of the hydrodynamic field. It is concluded that all the particles enter the orifice with their major axes aligned parallel to the orifice axis (electric field), but that during their passage some are rotated by the hydrodynamic field. Cells with their equatorial plane perpendicular to a radius of the orifice change their orientation with respect to the electric field as they are rotated, the others do not; only in the former case is there any deformation. It is shown that the bimodal or skewed size distributions can be explained on this basis, and that size (shape factor × volume) is actually a normally distributed variable (P > 95%). The average size of samples from 10 healthy adults was found to be 102.7 μ3 with a coefficient of variation of 1.8%. For a volume of 87 μ3, this corresponds to a shape factor of 1.18, an axial ratio (assuming a perfect oblate spheroid) of 0.26, and an equivalent major axis of 8.6 μ. The effect of high electric fields on red cell size distributions is mentioned.  相似文献   

2.
The transport of mass, momentum, and energy in fluid flows is ultimately determined by spatiotemporal distributions of the fluid velocity field.1 Consequently, a prerequisite for understanding, predicting, and controlling fluid flows is the capability to measure the velocity field with adequate spatial and temporal resolution.2 For velocity measurements in optically opaque fluids or through optically opaque geometries, echo particle image velocimetry (EPIV) is an attractive diagnostic technique to generate "instantaneous" two-dimensional fields of velocity.3,4,5,6 In this paper, the operating protocol for an EPIV system built by integrating a commercial medical ultrasound machine7 with a PC running commercial particle image velocimetry (PIV) software8 is described, and validation measurements in Hagen-Poiseuille (i.e., laminar pipe) flow are reported.For the EPIV measurements, a phased array probe connected to the medical ultrasound machine is used to generate a two-dimensional ultrasound image by pulsing the piezoelectric probe elements at different times. Each probe element transmits an ultrasound pulse into the fluid, and tracer particles in the fluid (either naturally occurring or seeded) reflect ultrasound echoes back to the probe where they are recorded. The amplitude of the reflected ultrasound waves and their time delay relative to transmission are used to create what is known as B-mode (brightness mode) two-dimensional ultrasound images. Specifically, the time delay is used to determine the position of the scatterer in the fluid and the amplitude is used to assign intensity to the scatterer. The time required to obtain a single B-mode image, t, is determined by the time it take to pulse all the elements of the phased array probe. For acquiring multiple B-mode images, the frame rate of the system in frames per second (fps) = 1/δt. (See 9 for a review of ultrasound imaging.)For a typical EPIV experiment, the frame rate is between 20-60 fps, depending on flow conditions, and 100-1000 B-mode images of the spatial distribution of the tracer particles in the flow are acquired. Once acquired, the B-mode ultrasound images are transmitted via an ethernet connection to the PC running the PIV commercial software. Using the PIV software, tracer particle displacement fields, D(x,y)[pixels], (where x and y denote horizontal and vertical spatial position in the ultrasound image, respectively) are acquired by applying cross correlation algorithms to successive ultrasound B-mode images.10 The velocity fields, u(x,y)[m/s], are determined from the displacements fields, knowing the time step between image pairs, ΔT[s], and the image magnification, M[meter/pixel], i.e., u(x,y) = MD(x,y)/ΔT. The time step between images ΔT = 1/fps + D(x,y)/B, where B[pixels/s] is the time it takes for the ultrasound probe to sweep across the image width. In the present study, M = 77[μm/pixel], fps = 49.5[1/s], and B = 25,047[pixels/s]. Once acquired, the velocity fields can be analyzed to compute flow quantities of interest.  相似文献   

3.
Vacuolar proton-translocating ATPase (V-ATPase) is a central regulator of cellular pH homeostasis, and inactivation of all V-ATPase function has been shown to prevent infectivity in Candida albicans. V-ATPase subunit a of the Vo domain (Voa) is present as two fungal isoforms: Stv1p (Golgi) and Vph1p (vacuole). To delineate the individual contribution of Stv1p and Vph1p to C. albicans physiology, we created stv1Δ/Δ and vph1Δ/Δ mutants and compared them to the corresponding reintegrant strains (stv1Δ/ΔR and vph1Δ/ΔR). V-ATPase activity, vacuolar physiology, and in vitro virulence-related phenotypes were unaffected in the stv1Δ/Δ mutant. The vph1Δ/Δ mutant exhibited defective V1Vo assembly and a 90% reduction in concanamycin A-sensitive ATPase activity and proton transport in purified vacuolar membranes, suggesting that the Vph1p isoform is essential for vacuolar V-ATPase activity in C. albicans. The vph1Δ/Δ cells also had abnormal endocytosis and vacuolar morphology and an alkalinized vacuolar lumen (pHvph1Δ/Δ = 6.8 versus pHvph1Δ/ΔR = 5.8) in both yeast cells and hyphae. Secreted protease and lipase activities were significantly reduced, and M199-induced filamentation was impaired in the vph1Δ/Δ mutant. However, the vph1Δ/Δ cells remained competent for filamentation induced by Spider media and YPD, 10% FCS, and biofilm formation and macrophage killing were unaffected in vitro. These studies suggest that different virulence mechanisms differentially rely on acidified vacuoles and that the loss of both vacuolar (Vph1p) and non-vacuolar (Stv1p) V-ATPase activity is necessary to affect in vitro virulence-related phenotypes. As a determinant of C. albicans pathogenesis, vacuolar pH alone may prove less critical than originally assumed.  相似文献   

4.
Permeability of the Ehrlich Ascites Tumor Cell to Water   总被引:2,自引:1,他引:1       下载免费PDF全文
The osmotic permeability coefficient for water has been measured for the Ehrlich mouse ascites tumor cell. Measurements were made of the rate of cell shrinkage in hyperosmotic solutions of NaCI, a functionally impermeable solute. During the first 9 months of weekly serial transplantation the mean was 6.4 µ33/atm. ± 0.8 (S.E.). By the end of the 2nd year the permeability coefficient was much lower and averaged 1.6 ± 0.09. There were no significant differences in the volume of the tumor cells which could explain the discrepancy on the basis of a change in the volume to surface area ratio. Studies of the effect of temperature were done and Eyring's theory of absolute reaction rates was applied to the data. The apparent energy of activation was 9.6 kcal./mol and ΔS‡ was 39.1 entropy units. The thermodynamic data are twice as high as data reported by Wang for self-diffusion and viscous properties of water. Two alternate explanations have been advanced based on the pore hypothesis of membrane permeability. One explains the thermodynamic data from a change in the A'/Δx available for water movement; the other assumes A'/Δx constant and bases the results on the interaction of water dipoles with each other and the membrane.  相似文献   

5.
Mutants created by deleting the ddrA, ddrB, ddrC, ddrD, and pprA loci of Deinococcus radiodurans R1alone and in all possible combinations of pairs revealed that the encoded gene products contribute to this species’ resistance to UV light and/or mitomycin C. Deleting pprA from an otherwise wild type cell sensitizes the resulting strain to UV irradiation, reducing viability by as much as eight fold relative to R1. If this deletion is introduced into a ΔddrA or ΔddrD background, the resulting strains become profoundly sensitive to the lethal effects of UV light. At a fluence of 1000 Jm-2, the ΔddrA ΔpprA and ΔddrD ΔpprA strains are 100- and 1000-fold more sensitive to UV relative to the strain that has only lost pprA. Deletion of ddrA results in a 100 fold increase in strain sensitivity to mitomycin C, but in backgrounds that combine a deletion of ddrA with deletions of either ddrC or ddrD, mitomycin resistance is restored to wild type levels. Inactivation of ddrB also increases D. radiodurans sensitivity to mitomycin, but unlike the ddrA mutant deleting ddrC or ddrD from a ΔddrB background further increases that sensitivity. Despite the effect that loss of these gene products has on DNA damage resistance, none appear to directly affect either excision repair or homologous recombination suggesting that they participate in novel processes that facilitate tolerance to UV light and interstrand crosslinks in this species.  相似文献   

6.
The torque of bacterial flagellar motors is generated by interactions between the rotor and the stator and is coupled to the influx of H+ or Na+ through the stator. A chimeric protein, PotB, in which the N-terminal region of Vibrio alginolyticus PomB was fused to the C-terminal region of Escherichia coli MotB, can function with PomA as a Na+-driven stator in E. coli. Here, we constructed a deletion variant of PotB (with a deletion of residues 41 to 91 [Δ41–91], called PotBΔL), which lacks the periplasmic linker region including the segment that works as a “plug” to inhibit premature ion influx. This variant did not confer motile ability, but we isolated a Na+-driven, spontaneous suppressor mutant, which has a point mutation (R109P) in the MotB/PomB-specific α-helix that connects the transmembrane and peptidoglycan binding domains of PotBΔL in the region of MotB. Overproduction of the PomA/PotBΔL(R109P) stator inhibited the growth of E. coli cells, suggesting that this stator has high Na+-conducting activity. Mutational analyses of Arg109 and nearby residues suggest that the structural alteration in this α-helix optimizes PotBΔL conformation and restores the proper arrangement of transmembrane helices to form a functional channel pore. We speculate that this α-helix plays a key role in assembly-coupled stator activation.  相似文献   

7.
Candida albicans is usually a harmless human commensal. Because inflammatory responses are not normally induced by colonization, antimicrobial peptides are likely integral to first-line host defense against invasive candidiasis. Thus, C. albicans must have mechanisms to tolerate or circumvent molecular effectors of innate immunity and thereby colonize human tissues. Prior studies demonstrated that an antimicrobial peptide-resistant strain of C. albicans, 36082R, is hypervirulent in animal models versus its susceptible counterpart (36082S). The current study aimed to identify a genetic basis for antimicrobial peptide resistance in C. albicans. Screening of a C. albicans genomic library identified SSD1 as capable of conferring peptide resistance to a susceptible surrogate, Saccharomyces cerevisiae. Sequencing confirmed that the predicted translation products of 36082S and 36082R SSD1 genes were identical. However, Northern analyses corroborated that SSD1 is expressed at higher levels in 36082R than in 36082S. In isogenic backgrounds, ssd1Δ/ssd1Δ null mutants were significantly more susceptible to antimicrobial peptides than parental strains but had equivalent susceptibilities to nonpeptide stressors. Moreover, SSD1 complementation of ssd1Δ/ssd1Δ mutants restored parental antimicrobial peptide resistance phenotypes, and overexpression of SSD1 conferred enhanced peptide resistance. Consistent with these in vitro findings, ssd1 null mutants were significantly less virulent in a murine model of disseminated candidiasis than were their parental or complemented strains. Collectively, these results indicate that SSD1 is integral to C. albicans resistance to host defense peptides, a phenotype that appears to enhance the virulence of this organism in vivo.  相似文献   

8.
A neuroimaging technique based on the saturation-recovery (SR)-T1 MRI method was applied for simultaneously imaging blood oxygenation level dependence (BOLD) contrast and cerebral blood flow change (ΔCBF), which is determined by CBF-sensitive T1 relaxation rate change (ΔR1 CBF). This technique was validated by quantitatively examining the relationships among ΔR1 CBF, ΔCBF, BOLD and relative CBF change (rCBF), which was simultaneously measured by laser Doppler flowmetry under global ischemia and hypercapnia conditions, respectively, in the rat brain. It was found that during ischemia, BOLD decreased 23.1±2.8% in the cortical area; ΔR1 CBF decreased 0.020±0.004s-1 corresponding to a ΔCBF decrease of 1.07±0.24 ml/g/min and 89.5±1.8% CBF reduction (n=5), resulting in a baseline CBF value (=1.18 ml/g/min) consistent with the literature reports. The CBF change quantification based on temperature corrected ΔR1 CBF had a better accuracy than apparent R1 change (ΔR1 app); nevertheless, ΔR1 app without temperature correction still provides a good approximation for quantifying CBF change since perfusion dominates the evolution of the longitudinal relaxation rate (R1 app). In contrast to the excellent consistency between ΔCBF and rCBF measured during and after ischemia, the BOLD change during the post-ischemia period was temporally disassociated with ΔCBF, indicating distinct CBF and BOLD responses. Similar results were also observed for the hypercapnia study. The overall results demonstrate that the SR-T1 MRI method is effective for noninvasive and quantitative imaging of both ΔCBF and BOLD associated with physiological and/or pathological changes.  相似文献   

9.
Design of bio-mimetic particles with enhanced vascular interaction   总被引:1,自引:0,他引:1  
The majority of particle-based delivery systems for the ‘smart’ administration of therapeutic and imaging agents have a spherical shape, are made by polymeric or lipid materials, have a size in the order of few hundreds of nanometers and a negligibly small relative density to aqueous solutions. In the microcirculation and deep airways of the lungs, where the creeping flow assumption holds, such small spheres move by following the flow stream lines and are not affected by external volume force fields. A delivery system should be designed to drift across the stream lines and interact repeatedly with the vessel walls, so that vascular interaction could be enhanced. The numerical approach presented in [Gavze, E., Shapiro, M., 1997. Particles in a shear flow near a solid wall: effect of nonsphericity on forces and velocities. International Journal of Multiphase Flow 23, 155–182.] is, here, proposed as a tool to analyze the dynamics of arbitrarily shaped particles in a creeping flow, and has been extended to include the contribution of external force fields. As an example, ellipsoidal particles with aspect ratio 0.5 are considered. In the absence of external volume forces, a net lateral drift (margination) of the particles has been observed for Stokes number larger than unity (St>1); whereas, for smaller St, the particles oscillate with no net lateral motion. Under these conditions, margination is governed solely by particle inertia (geometry and particle-to-fluid density ratio). In the presence of volume forces, even for fairly small St, margination is observed but in a direction dictated by the external force field. It is concluded that a fine balance between size, shape and density can lead to EVI particles (particles with enhanced vascular interaction) that are able to sense endothelial cells for biological and biophysical abnormalities, mimicking circulating platelets and leukocytes.  相似文献   

10.
The transport equation describing the flow of solute across a membrane has been modified on the basis of theoretical studies calculating the drag of a sphere moving in a viscous liquid undergoing Poiseuille flow inside a cylinder. It is shown that different frictional resistance terms should be introduced to calculate the contributions of diffusion and convection. New sieving equations are derived to calculate r and Apx (respectively, the pore radius and the total area of the pores per unit of path length). These equations provide a better agreement than the older formulas between the calculated and the experimental glomerular sieving coefficients for [125I]polyvinylpyrrolidone (PVP) fractions with a mean equivalent radius between 19 and 37 Å. From r and Apx, the mean effective glomerular filtration pressure has been calculated, applying Poiseuille's law. A value of 15.4 mm Hg has been derived from the mean sieving curve obtained from 23 experiments performed on normal anesthetized dogs.  相似文献   

11.

Background

The immune parameters of HIV/AIDS vaccine candidates that might be relevant in protection against HIV-1 infection are still undefined. The highly attenuated poxvirus strain MVA is one of the most promising vectors to be use as HIV-1 vaccine. We have previously described a recombinant MVA expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (referred as MVA-B), that induced HIV-1-specific immune responses in different animal models and gene signatures in human dendritic cells (DCs) with immunoregulatory function.

Methodology/Principal Findings

In an effort to characterize in more detail the immunogenic profile of MVA-B and to improve its immunogenicity we have generated a new vector lacking two genes (A41L and B16R), known to counteract host immune responses by blocking the action of CC-chemokines and of interleukin 1β, respectively (referred as MVA-B ΔA41L/ΔB16R). A DNA prime/MVA boost immunization protocol was used to compare the adaptive and memory HIV-1 specific immune responses induced in mice by the parental MVA-B and by the double deletion mutant MVA-B ΔA41L/ΔB16R. Flow cytometry analysis revealed that both vectors triggered HIV-1-specific CD4+ and CD8+ T cells, with the CD8+ T-cell compartment responsible for >91.9% of the total HIV-1 responses in both immunization groups. However, MVA-B ΔA41L/ΔB16R enhanced the magnitude and polyfunctionality of the HIV-1-specific CD4+ and CD8+ T-cell immune responses. HIV-1-specific CD4+ T-cell responses were polyfunctional and preferentially Env-specific in both immunization groups. Significantly, while MVA-B induced preferentially Env-specific CD8+ T-cell responses, MVA-B ΔA41L/ΔB16R induced more GPN-specific CD8+ T-cell responses, with an enhanced polyfunctional pattern. Both vectors were capable of producing similar levels of antibodies against Env.

Conclusions/Significance

These findings revealed that MVA-B and MVA-B ΔA41L/ΔB16R induced in mice robust, polyfunctional and durable T-cell responses to HIV-1 antigens, but the double deletion mutant showed enhanced magnitude and quality of HIV-1 adaptive and memory responses. Our observations are relevant in the immune evaluation of MVA-B and on improvements of MVA vectors as HIV-1 vaccines.  相似文献   

12.
To study the flow of shaped particles in porous media, elution of spherical and rod-like micro-organisms was performed through beds of spherical glass beads. A 0.04 cm/s constant flow rate was used with 5 microm yeast suspensions, 1 microm latex micro-spheres and rod-like bacilli Lactobacillus bulgaricus 6 microm long and 0.5 microm in diameter. Yeast cells' diameter is close to the bacilli length and micro-spheres have the same diameter as bacilli. All particle types have similar density. To make the different packing beds, 1.125 mm coarse beads and 0.1115 mm fine beads were used. Experiments were carried out using a column loaded with the binary packing (volume fraction of coarse particles in the mixture 0.7) or a monosize packing with the same amount of coarse or fine particles as used in the binary packing. Analysis of experimental results was based on two models: pure exclusion effect and hydrodynamic separation model [hydrodynamic chromatography (HDC)]. Results for spheres show that the classic HDC model fits to the experimental data whenever the ratio of particle size to the pathway bend scale is high ( approximately 1/100, micro-spheres). However, if this ratio increases and becomes approximately 1/20, the HDC model needs to be corrected due to the effect of channel wall curvature on exclusion. This led to a modified HDC equation of the form R=B/(1+2lambda-2.8lambda(2)), where R is the retention, lambda is the aspect ratio and constant B>or=1. Bacillus separation follows an exclusion mechanism, since pore topology is important in the separation of shaped particles when the aspect ratio approaches lambda=0.1. In the case of a binary packing bed, rod-like particles display a different behaviour than the one exhibited by the spherical particles of the same scale as bacilli, either in length or in diameter. This may be explained by the interaction between rod-like bacilli and the bed's pore topology. A generalised exclusion model for particles was proposed to be R=A/(1-lambda)(z), where A is the coefficient proportional to the tortuosity and the parameter z=1, 2 or 3 depends mainly on pore shape. Controlled pore topology opens interesting applications for bio-separation (in porous micro-fluidic devices, deep bed filtration) and might be especially important for macromolecules and micro-organisms separation with different shapes.  相似文献   

13.

Background

Generation of new reagents that can be used to screen or monitor HIV-1-specific responses constituted an interesting field in the development of HIV vaccines to improve their efficacy.

Methods

We have evaluated the specific T cell response against different types of NL4-3 virions (including NL4-3 aldrithiol-2 treated, NL4-3/ΔRT and R5 envelopes: NL4-3/ΔRT/ΔEnv[AC10] and NL4-3/ΔRT/ΔEnv[Bal]) and against pools of overlapping peptides (15 mer) encompassing the HIV-1 Gag and Nef regions. Cryopreserved PBMC from a subset of 69 chronic asymptomatic HIV positive individuals have been employed using different techniques including IFN-γ ELISPOT assay, surface activation markers and intracellular cytokine staining (ICS) by flow cytometry.

Results

The differential response obtained against NL4-3 aldrithiol-2 treated and NL4-3/ΔRT virions (25% vs 55%, respectively) allow us to divide the population in three groups: “full-responders” (positive response against both viral particles), “partial-responders” (positive response only against NL4-3/ΔRT virions) and “non-responders” (negative responses). There was no difference between X4 and R5 envelopes. The magnitude of the total responses was higher against NL4-3/ΔRT and was positively correlated with gender and inverse correlated with viral load. On the contrary CD4+ T cell count was not associated with this response. In any case responses to the viruses tended to be lower in magnitude than those detected by the overlapping peptides tested. Finally we have found an increased frequency of HLA-B27 allele (23% vs 9%) and a significant reduction in some activation markers (CD69 and CD38) on T cells surface in responders vs non-responders individuals.

Conclusions

In summary these virions could be considered as alternative and useful reagents for screening HIV-1-specific T cell responses in HIV exposed uninfected people, HIV infected patients and to assess immunogenicity of new prototypes both in vitro and in vaccine trials, by a feasible, simply, effective and low cost assay.  相似文献   

14.
Purified F-ATP synthase dimers of yeast mitochondria display Ca2+-dependent channel activity with properties resembling those of the permeability transition pore (PTP) of mammals. After treatment with the Ca2+ ionophore ETH129, which allows electrophoretic Ca2+ uptake, isolated yeast mitochondria undergo inner membrane permeabilization due to PTP opening. Yeast mutant strains ΔTIM11 and ΔATP20 (lacking the e and g F-ATP synthase subunits, respectively, which are necessary for dimer formation) display a striking resistance to PTP opening. These results show that the yeast PTP originates from F-ATP synthase and indicate that dimerization is required for pore formation in situ.  相似文献   

15.
16.
Measurements of ΔI as a function of retinal area illuminated have been obtained at various levels of standard intensity I 1, using "white" light and light of three modal wave-lengths (λ465, 525, 680), for monocular stimulation and for simultaneous excitation of the two eyes ("binocular"), using several methods of varying (rectangular) area and retinal location, with control of exposure time. For data homogeneous with respect to method of presentation, log ΔIm = -Z log A + C, where ΔI = Ĩ 2I 1, A is area illuminated, and C is a terminal constant (= log ΔIm for A = 1 unit) depending on the units in which ΔI and A are expressed, and upon I 1. The equation is readily deduced on dimensional grounds, without reference to specific theories of the nature of ΔI or of retinal area in terms of its excitable units. Z is independent of the units of I and A. Experimentally it is found to be the same for monocular and binocular excitations, as is to be expected. Also as is expected it is not independent of λ, and it is markedly influenced by the scheme according to which A is varied; it depends directly upon the rate at which potentially excitable elements are added when A is made to increase. For simultaneous excitation of the two eyes (when of very nearly equivalent excitability), ΔĪB is less than for stimulation of either eye alone, at all levels of I 1, A, λ. The mean ratio (ΔĪL + ΔĪR)/2 to ΔIB was 1.38. For white light, doubling A on one retina reduces ΔIm in the ratio 1.21, or a little less than for binocular presentation under the same conditions. These facts are consistent with the view that the properties of ΔI are quantitatively determined by events central to the retina. The measure σI of organic variation in discrimination of intensities and ΔIm are found to be in simple proportion, independent of I 1, A, λ (and exposure time). Variability (σI) is not a function of the mode of presentation, save that it may be slightly higher when both retinas are excited, and its magnitude (for a given level of ΔIm) is independent of the law according to which the adjustable intensity I 2 is instrumentally controlled.  相似文献   

17.
We have constructed a series of human immunodeficiency virus (HIV) gag mutants by progressive truncation of the gag coding sequence from the C terminus and have combined these mutants with an assembly-competent matrix domain deletion mutation (ΔMA). By using several methods, the particle-producing capabilities of each mutant were examined. Our analysis indicated that truncated Gag precursors lacking most of C-terminal gag gene products assembled and were released from 293T cells. Additionally, a mutant with a combined deletion of the MA (ΔMA) and p6 domains even produced particles at levels comparable to that of the wild-type (wt) virus. However, most mutants derived from combination of the ΔMA and the C-terminal truncation mutations did not release particles as well as the wt. Our smallest HIV gag gene product capable of virus-like particle formation was a 28-kDa protein which consists of a few MA amino acids and the CA-p2 domain. Sucrose density gradient fractionation analysis indicated that most mutants exhibited a wt retrovirus particle density. Exceptions to this rule were mutants with an intact MA domain but deleted downstream of the p2 domains. These C-terminal truncation mutants possessed particle densities of 1.13 to 1.15 g/ml, lower than that of the wt. The N-terminal portions of the CA domain, which have been shown to be dispensable for core assembly, became critical when most of the MA domain was deleted, suggesting a requirement for an intact CA domain to assemble and release particles.  相似文献   

18.
19.
The chemotherapeutic doxorubicin (DOX) induces DNA double-strand break (DSB) damage. In order to identify conserved genes that mediate DOX resistance, we screened the Saccharomyces cerevisiae diploid deletion collection and identified 376 deletion strains in which exposure to DOX was lethal or severely reduced growth fitness. This diploid screen identified 5-fold more DOX resistance genes than a comparable screen using the isogenic haploid derivative. Since DSB damage is repaired primarily by homologous recombination in yeast, and haploid cells lack an available DNA homolog in G1 and early S phase, this suggests that our diploid screen may have detected the loss of repair functions in G1 or early S phase prior to complete DNA replication. To test this, we compared the relative DOX sensitivity of 30 diploid deletion mutants identified under our screening conditions to their isogenic haploid counterpart, most of which (n = 26) were not detected in the haploid screen. For six mutants (bem1Δ, ctf4Δ, ctk1Δ, hfi1Δ,nup133Δ, tho2Δ) DOX-induced lethality was absent or greatly reduced in the haploid as compared to the isogenic diploid derivative. Moreover, unlike WT, all six diploid mutants displayed severe G1/S phase cell cycle progression defects when exposed to DOX and some were significantly enhanced (ctk1Δ and hfi1Δ) or deficient (tho2Δ) for recombination. Using these and other “THO2-like” hypo-recombinogenic, diploid-specific DOX sensitive mutants (mft1Δ, thp1Δ, thp2Δ) we utilized known genetic/proteomic interactions to construct an interactive functional genomic network which predicted additional DOX resistance genes not detected in the primary screen. Most (76%) of the DOX resistance genes detected in this diploid yeast screen are evolutionarily conserved suggesting the human orthologs are candidates for mediating DOX resistance by impacting on checkpoint and recombination functions in G1 and/or early S phases.  相似文献   

20.
A test of the air-seeding hypothesis using sphagnum hyalocysts   总被引:4,自引:0,他引:4       下载免费PDF全文
Lewis AM 《Plant physiology》1988,87(3):577-582
“Air-seeding” is a proposed mechanism for the initiation of water stress embolism in dead plant cells. During air-seeding, external air is drawn into the lumen of a dead plant cell through a pore or crack in the cell wall. The resulting bubble may expand to fill the lumen, thus embolizing the cell. The data presented confirm that Sphagnum hyalocysts can embolize by air-seeding when the pressure difference across the air-water meniscus is given by ΔP = 0.3/D (derived from the capillary equation), where ΔP is the pressure difference across the meniscus (megapascal), and D is the diameter (micrometer) of the pore through which the air bubble enters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号