首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
CP-96,345, a quinuclidine, is a potent inhibitor of substance P for the NK1 receptor of bovine brain, but has reduced potency for the corresponding receptor of the rat and mouse, and none for NK2 or NK3 receptors. A related quinuclidine showed similar but lower potency than CP-96,345 for NK1. CP-96,345 was more potent than the spantide I of 1984, D-Arg1,Pro2,Lys3,Pro4,Gln5,Gln6,D-Trp7,Phe8,D-Trp9, Leu10,Leu11,NH2. Our continued designs for antagonists of substance P led to spantide II in 1990 which is: D-NicLys1,Pro2,3-Pal3,Pro4,D-Cl2Phe5,Asn6,D-Trp7 ,Phe8,D-Trp9,Leu10,Nle11-NH2. The pA2 values of spantide II and CP-96,345 for guinea pig taenia coli were 7.6 and 6.8, respectively. The pIC50 values for blockade of tachykinin-mediated neurotransmission in the rabbit iris sphincter were 6.1 and 5.4, respectively. Spantide II was nearly 10 times more potent than CP-96,345 in these two assays.  相似文献   

2.
STKR is an insect G protein-coupled receptor, cloned from the stable fly Stomoxys calcitrans. It displays sequence similarity to vertebrate tachykinin [or neurokinin (NK)] receptors. Functional expression of the cloned STKR cDNA was obtained in cultured Drosophila melanogaster Schneider 2 (S2) cells. Insect tachykinin-like peptides or "insectatachykinins," such as Locusta tachykinin (Lom-TK) III, produced dose-dependent calcium responses in stably transfected S2-STKR cells. Vertebrate tachykinins (or neurokinins) did not evoke any effect at concentrations up to 10(-5) M, but an antagonist of mammalian neurokinin receptors, spantide II, inhibited the Lom-TK III-induced calcium response. Further analysis showed that the agonist-induced intracellular release of calcium ions was not affected by pretreatment of the cells with pertussis toxin. The calcium rise was blocked by the phospholipase C inhibitor U73122. In addition, Lom-TK III was shown to have a stimulatory effect on the accumulation of both inositol 1,4,5-trisphosphate and cyclic AMP. These are the same second messengers that are induced in mammalian neurokinin-dependent signaling processes.  相似文献   

3.
The bioluminescent Ca2+-sensitive reporter protein, aequorin, was employed to develop an insect cell-based functional assay system for monitoring receptor-mediated changes of intracellular Ca2 +-concentrations. Drosophila Schneider 2 (S2) cells were genetically engineered to stably express both apoaequorin and the insect tachykinin-related peptide receptor, STKR. Lom-TK III, an STKR agonist, was shown to elicit concentration-dependent bioluminescent responses in these S2-STKR-Aeq cells. The EC50 value for the calcium effect detected by means of aequorin appeared to be nearly identical to the one that was measured by means of Fura-2, a fluorescent Ca2 +-indicator. In addition, this aequorin-based method was also utilised to study receptor antagonists. Experimental analysis of the effects exerted by spantide I, II and III, three potent substance P antagonists, on Lom-TK III-stimulated S2-STKR-Aeq cells showed that these compounds antagonise STKR-mediated responses in a concentration-dependent manner. The rank order of inhibitory potencies was spantide III > spantide II > spantide I. Revised version received: 12 September 2001 Electronic Publication  相似文献   

4.
STKR is a G protein-coupled receptor that was cloned from the stable fly, Stomoxys calcitrans. Multiple sequence comparisons show that the amino acid sequence of this insect receptor displays several features that are typical for tachykinin (or neurokinin, NK) receptors. Insect tachykinin-related peptides, also referred to as "insectatachykinins," produce dose-dependent calcium responses in Drosophila melanogaster Schneider 2 cells, which are stably transfected with this receptor (S2-STKR). These responses do not depend on the presence of extracellular Ca(2+)-ions. A rapid agonist-induced increase of inositol 1,4,5-trisphosphate (IP(3)) is observed. This indicates that the agonist-induced cytosolic Ca(2+)-rise is caused by a release of Ca(2+) ions from intracellular calcium stores. The pharmacology of STKR is analyzed by studying the effects of the most important antagonists for mammalian NK-receptors on STKR-expressing insect cells. The results show that spantide II, a potent substance P antagonist, is a real antagonist of insectatachykinins on STKR. We have also tested the activity of a variety of natural insectatachykinin analogs by microscopic image analysis of calcium responses in S2-STKR cells. At a concentration of 1 microM, almost all natural analogs produce a significant calcium rise in stable S2-STKR cells. Interestingly, Stc-TK, an insectatachykinin that was recently discovered in the stable fly (S. calcitrans), also proved to be an STKR-agonist. Stc-TK, a potential physiological ligand for STKR, contains an Ala-residue (or A) instead of a highly conserved Gly-residue (or G). Arch.  相似文献   

5.
1. Aldolase isoenzymes from guinea-pig cerebral cortex were partially purified and separated by ammonium sulphate fractionation and chromatography on DEAE-cellulose. 2. Each purified isoenzyme was shown to be virtually uncontaminated with other forms by starch-gel electrophoresis. The quantitative distribution of the isoenzymes was: I, 6.2%; II, 5.2%; III, 15.3%; IV, 25.7%; V, 33.3%. 3. The pH optima for the five separated isoenzymes were similar; all were in the range pH7.5-8.0. Values for pK(a) (6.31-6.55) and pK(b) (9.45-9.59) were calculated from the data and suggested the involvement of histidine and lysine residues. 4. The stabilities of the isoenzymes were shown to be I=II>III>IV>V at pH4.4 in order of decreasing stability and are discussed in terms of subunit structure. 5. The substrate activity ratios (fructose 1,6-diphosphate/fructose 1-phosphate) were measured and all were in the range 12-44.  相似文献   

6.
AIMS: To determine whether the novel non-AT1, non-AT2 binding site for angiotensins recently discovered in rodent brains occurs in the human brain. MAIN METHODS: Radioligand binding assays of (125)I-sarcosine(1), isoleucine(8) angiotensin II binding were carried out in homogenates of the rostral pole of the temporal cortex of human brains containing 0.3 mM parachloromercuribenzoate (PCMB), 10 microM losartan to saturate AT1 receptors, 10 microM PD123319 to saturate AT2 receptors, with or without 10 microM angiotensin II to define specific binding. Competition binding assays employed a variety of angiotensin peptides, specific angiotensin receptor antagonists, several neuropeptides and an endopeptidase inhibitor to determine pharmacological specificity for this binding site. KEY FINDINGS: The novel non-AT1, non-AT2 binding site was present in similar amounts in female and male brains: Bmax 1.77+/-0.16 and 1.52+/-0.17 fmol/mg initial wet weight in female and male brains, respectively. The K(D) values, 1.79+/-0.09 nM for females, and 1.53+/-0.06 nM for males were also similar. The binding site shows pharmacological specificity similar to that in rodent brains: sarcosine(1), isoleucine(8) angiotensin II>angiotensin III>angiotensin II>angiotensin I'angiotensin IV>angiotensin 1-7. Shorter angiotensin fragments and non-angiotensin peptides showed low affinity for this binding site. SIGNIFICANCE: The presence in human brain of this novel non-AT1, non-AT2 binding site supports the concept that this binding site is an important component of the brain angiotensin system. The functional significance of this binding site, either as a novel angiotensin receptor or a highly specific angiotensinase remains to be determined.  相似文献   

7.
The aim of this study was to analyze the function and expression of tachykinins, tachykinin receptors, and neprilysin (NEP) in the mouse uterus. A previous study showed that the uterotonic effects of substance P (SP), neurokinin A (NKA), and neurokinin B (NKB) in estrogen-treated mice were mainly mediated by the tachykinin NK1 receptor. In the present work, further contractility studies were undertaken to determine the nature of the receptors mediating responses to tachykinins in uteri of late pregnant mice. Endpoint and real-time quantitative RT-PCR were used to analyze the expression of the genes that encode the tachykinins SP/NKA, NKB, and hemokinin-1 (HK-1) (Tac1, Tac2, and Tac4); and the genes that encode tachykinin NK1 (Tacr1), NK2 (Tacr2), and NK3 (Tacr3) receptors in uteri from pregnant and nonpregnant mice. The data show that the mRNAs of tachykinins (particularly NKB and HK-1), tachykinin receptors, and NEP are locally expressed in the mouse uterus, and their expression changes during the estrous cycle and during pregnancy. The tachykinin NK1 receptor is the predominant tachykinin receptor in the nonpregnant and early pregnant mouse and may mediate tachykinin-induced uterine contractions in the nonpregnant mouse. The tachykinin NK2 receptor is predominant in the late pregnant mouse and is the main receptor mediating uterotonic responses to tachykinins at late pregnancy. The tachykinin NK3 receptor is expressed in considerable amounts only in uteri from nonpregnant diestrous animals, and its physiological significance remains to be clarified.  相似文献   

8.
Natural killer (NK) cell responses in primates are regulated in part through interactions between two highly polymorphic molecules, the killer-cell immunoglobulin-like receptors (KIRs) on NK cells and their major histocompatibility complex (MHC) class I ligands on target cells. We previously reported that the binding of a common MHC class I molecule in the rhesus macaque, Mamu-A1*002, to the inhibitory receptor Mamu-KIR3DL05 is stabilized by certain simian immunodeficiency virus (SIV) peptides, but not by others. Here we investigated the functional implications of these interactions by testing SIV peptides bound by Mamu-A1*002 for the ability to modulate Mamu-KIR3DL05+ NK cell responses. Twenty-eight of 75 SIV peptides bound by Mamu-A1*002 suppressed the cytolytic activity of primary Mamu-KIR3DL05+ NK cells, including three immunodominant CD8+ T cell epitopes previously shown to stabilize Mamu-A1*002 tetramer binding to Mamu-KIR3DL05. Substitutions at C-terminal positions changed inhibitory peptides into disinhibitory peptides, and vice versa, without altering binding to Mamu-A1*002. The functional effects of these peptide variants on NK cell responses also corresponded to their effects on Mamu-A1*002 tetramer binding to Mamu-KIR3DL05. In assays with mixtures of inhibitory and disinhibitory peptides, low concentrations of inhibitory peptides dominated to suppress NK cell responses. Consistent with the inhibition of Mamu-KIR3DL05+ NK cells by viral epitopes presented by Mamu-A1*002, SIV replication was significantly higher in Mamu-A1*002+ CD4+ lymphocytes co-cultured with Mamu-KIR3DL05+ NK cells than with Mamu-KIR3DL05- NK cells. These results demonstrate that viral peptides can differentially affect NK cell responses by modulating MHC class I interactions with inhibitory KIRs, and provide a mechanism by which immunodeficiency viruses may evade NK cell responses.  相似文献   

9.

Background

A major group of murine inhibitory receptors on Natural Killer (NK) cells belong to the Ly49 receptor family and recognize MHC class I molecules. Infected or transformed target cells frequently downmodulate MHC class I molecules and can thus avoid CD8+ T cell attack, but may at the same time develop NK cell sensitivity, due to failure to express inhibitory ligands for Ly49 receptors. The extent of MHC class I downregulation needed on normal cells to trigger NK cell effector functions is not known.

Methodology/Principal Findings

In this study, we show that cells expressing MHC class I to levels well below half of the host level are tolerated in an in vivo assay in mice. Hemizygous expression (expression from only one allele) of MHC class I was sufficient to induce Ly49 receptor downmodulation on NK cells to a similar degree as homozygous expression, despite a strongly reduced cell surface level of MHC class I. Co-expression of weaker MHC class I ligands in the host did not have any further effect on the degree of Ly49 downmodulation. Furthermore, a single MHC class I allele could downmodulate up to three Ly49 receptors on individual NK cells. Only when NK cells simultaneously expressed several Ly49 receptors and hemizygous MHC class I levels, a putative threshold for Ly49 downmodulation was reached.

Conclusion

Collectively, our findings suggest that in interactions between NK cells and normal untransformed cells, MHC class I molecules are in most cases expressed in excess compared to what is functionally needed to ensure self tolerance and to induce maximal Ly49 downmodulation. We speculate that the reason for this is to maintain a safety margin for otherwise normal, autologous cells over a range of MHC class I expression levels, in order to ensure robustness in NK cell tolerance.  相似文献   

10.
Agitation of villi evokes reflexes that affect the motility of the guinea-pig small intestine. NK1 receptor endocytosis was used to investigate the possible involvement of tachykinins acting on neuronal NK1 receptors in these reflexes. Segments of guinea-pig ileum were incubated at 37°C in Krebs physiological saline containing 3×10–6 M nicardipine, with or without agitation of the villi by gas bubbles. Gut segments were fixed after 0–75 min and processed for immunohistochemistry to reveal the NK1 receptors, following which cells were imaged by confocal microscopy. Initially, receptors were located on the surface and in the cytoplasm of myenteric neurons. In gut incubated without movement of the villi, NK1 receptors returned to the cell surface. After 45 and 60 min, NK1 receptors were detected almost exclusively at the cell surface of 83% and 97% (respectively) of nerve cells that were immunoreactive for NK1 receptors and only 12%–13% of the NK1 receptor fluorescence was located in the cytoplasm. Following the return of receptor to the cell surface, agitation of the villi caused a new wave of endocytosis of the NK1 receptors in 70%–80% of the NK1 receptor-immunoreactive neurons. The percentage of the NK1 receptor fluorescence that was in the cytoplasm increased more than 2-fold to 27±2% after 15 min villous agitation. Action potential blockade by tetrodotoxin (3×10–7 M) prevented the internalisation of the NK1 receptor in response to villous agitation. The degree of internalisation caused by bubbling was similar to that caused by 2×10–9 M substance P. These results indicate that, when enteric reflex circuits are activated by villous movement, tachykinins are released and cause endocytosis of the NK1 receptor in a subpopulation of myenteric neurons.  相似文献   

11.

Background

Acute cutaneous neurogenic inflammation initiated by activation of transient receptor potential vanilloid-1 (TRPV1) receptors following intradermal injection of capsaicin is mediated mainly by dorsal root reflexes (DRRs). Inflammatory neuropeptides are suggested to be released from primary afferent nociceptors participating in inflammation. However, no direct evidence demonstrates that the release of inflammatory substances is due to the triggering of DRRs and how activation of TRPV1 receptors initiates neurogenic inflammation via triggering DRRs.

Results

Here we used pharmacological manipulations to analyze the roles of TRPV1 and neuropeptidergic receptors in the DRR-mediated neurogenic inflammation induced by intradermal injection of capsaicin. The degree of cutaneous inflammation in the hindpaw that followed capsaicin injection was assessed by measurements of local blood flow (vasodilation) and paw-thickness (edema) of the foot skin in anesthetized rats. Local injection of capsaicin, calcitonin gene-related peptide (CGRP) or substance P (SP) resulted in cutaneous vasodilation and edema. Removal of DRRs by either spinal dorsal rhizotomy or intrathecal administration of the GABAA receptor antagonist, bicuculline, reduced dramatically the capsaicin-induced vasodilation and edema. In contrast, CGRP- or SP-induced inflammation was not significantly affected after DRR removal. Dose-response analysis of the antagonistic effect of the TRPV1 receptor antagonist, capsazepine administered peripherally, shows that the capsaicin-evoked inflammation was inhibited in a dose-dependent manner, and nearly completely abolished by capsazepine at doses between 30–150 μg. In contrast, pretreatment of the periphery with different doses of CGRP8–37 (a CGRP receptor antagonist) or spantide I (a neurokinin 1 receptor antagonist) only reduced the inflammation. If both CGRP and NK1 receptors were blocked by co-administration of CGRP8–37 and spantide I, a stronger reduction in the capsaicin-initiated inflammation was produced.

Conclusion

Our data suggest that 1) the generation of DRRs is critical for driving the release of neuropeptides antidromically from primary afferent nociceptors; 2) activation of TRPV1 receptors in primary afferent nociceptors following intradermal capsaicin injection initiates this process; 3) the released CGRP and SP participate in neurogenic inflammation.  相似文献   

12.
Tachykinins are a family of bioactive peptides that interact with three subtypes of receptors: NK1, NK2 and NK3. Substance P has greater affinity for NK1, and neurokinin A (NKA) for NK2 receptor subtype. Although only NK1 receptor has been characterized in the anterior pituitary gland, some evidence suggests the existence of NK2 receptors in this gland. Therefore, we investigated the presence of NK2 receptors in the anterior pituitary gland of male rats by radioligand binding studies using labeled SR48968, a non peptidic specific antagonist. [3H]SR48968 specific binding to cultured anterior pituitary cells was time-dependent and saturable, but with a lower affinity than previously reported values for cells expressing NK2 receptors. Unlabeled NKA inhibited only partially [(3)H]SR48968 specific binding to whole anterior pituitary cells. Since SR48968 is a non polar molecule, we performed experiments to discriminate surface from intracellular binding sites. SR48968 exhibited both surface and intracellular specific binding. Analysis of the surface-bound ligand indicated that [3H]SR48968 binds to one class of receptor with high affinity. Neurokinin A completely displaced [3H]SR48968 surface specific binding fitting to a two-site/two-state model with high and low affinity. Additionally, immunocytochemical studies showed that the NK2 receptor is expressed at least in a subset of lactotropes. These results demonstrate the presence of NK2 receptors in the anterior pituitary gland and suggest that NKA actions in this gland are mediated, at least in part, by the NK2 receptor subtype.  相似文献   

13.
Neuropeptide tachykinins (substance P, neurokinin A, and neurokinin B) are present in peripheral terminals of sensory nerve fibers within the respiratory tract and cause airway contractile responses and hyperresponsiveness in humans and most mammalian species. Three subtypes of neurokinin receptors (NK1R, NK2R, and NK3R) classically couple to Gq protein-mediated inositol 1,4,5-trisphosphate (IP3) synthesis and liberation of intracellular Ca2+, which initiates contraction, but their expression and calcium signaling mechanisms are incompletely understood in airway smooth muscle. All three subtypes were identified in native and cultured human airway smooth muscle (HASM) and were subsequently overexpressed in HASM cells using a human immunodeficiency virus-1-based lentivirus transduction system. Specific NKR agonists {NK1R, [Sar9,Met(O2)11]-substance P; NK2R, [beta-Ala8]-neurokinin A(4-10); NK3R, senktide} stimulated inositol phosphate synthesis and increased intracellular Ca2+ concentration ([Ca2+]i) in native HASM cells and in HASM cells transfected with each NKR subtype. These effects were blocked by NKR-selective antagonists (NK1R, L-732138; NK2R, GR-159897; NK3R, SB-222200). The initial transient and sustained phases of increased [Ca2+]i were predominantly inhibited by the IP3 receptor antagonist 2-aminoethoxydiphenyl borate (2-APB) or the store-operated Ca2+ channel antagonist SKF-96365, respectively. These results show that all three subtypes of NKRs are expressed in native HASM cells and that IP3 levels are the primary mediators of NKR-stimulated initial [Ca2+]i increases, whereas store-operated Ca2+ channels mediate the sustained phase of the [Ca2+]i increase.  相似文献   

14.
G protein-coupled receptors are thought to mediate agonist-evoked signal transduction by interconverting between discrete conformational states endowed with different pharmacological and functional properties. In order to address the question of multiple receptor states, we monitored rapid kinetics of fluorescent neurokinin A (NKA) binding to tachykinin NK2 receptors, in parallel with intracellular calcium, using rapid mixing equipment connected to real time fluorescence detection. Cyclic AMP accumulation responses were also monitored. The naturally truncated version of neurokinin A (NKA-(4-10)) binds to the receptor with a single rapid phase and evokes only calcium responses. In contrast, full-length NKA binding exhibits both a rapid phase that correlates with calcium responses and a slow phase that correlates with cAMP accumulation. Furthermore, activators (phorbol esters and forskolin) and inhibitors (Ro 31-8220 and H89) of protein kinase C or A, respectively, exhibit differential effects on NKA binding and associated responses; activated protein kinase C facilitates a switch between calcium and cAMP responses, whereas activation of protein kinase A diminishes cAMP responses. NK2 receptors thus adopt multiple activatable, active, and desensitized conformations with low, intermediate, or high affinities and with distinct signaling specificities.  相似文献   

15.
A functional fluorescent neurokinin NK2 receptor was constructed by joining enhanced green fluorescent protein to the amino-terminal end of the rat NK2 receptor and was expressed in human embryonic kidney cells. On cell suspensions, the binding of fluorescent Bodipy-labeled neurokinin A results in a saturatable and reversible decrease of NK2 receptor fluorescence via fluorescence resonance energy transfer. This can be quantified for nM to microM agonist concentrations and monitored in parallel with intracellular calcium responses. On single cells, receptor site occupancy and local agonist concentration can be determined in real time from the decrease in receptor fluorescence. Simultaneous measurement of intracellular calcium responses and agonist binding reveals that partial receptor site occupancy is sufficient to desensitize cellular response to a second agonist application to the same membrane area. Subsequent stimulation of a distal membrane area leads to a second response to agonist, provided that it had not been exposed to agonist during the first application. Together with persistent translocation of fluorescent protein kinase C to the membrane area exposed to agonist, the present data support that not only homologous desensitization but also heterologous desensitization of NK2 receptors is compartmentalized to discrete membrane domains.  相似文献   

16.
Immunoreactivity for NK1 receptors is confined to specific nerve cell bodies in the guinea-pig ileum, including inhibitory motor neurons and secretomotor neurons. In the present work, endocytosis of NK1 receptors in these enteric neurons was studied following addition of substance P (SP) to isolated ileum. NK1 receptors were localised with antibodies against the C-terminus of this receptor. Some preparations were incubated with SP tagged with the fluorescent label, Cy3.18, so that the fate of SP bound to receptors could be followed. Preparations were analysed by confocal microcopy. In tissue that was incubated at 4° C in the absence of SP, most NK1 receptor immunoreactivity (IR) was confined to surface membranes of nerve cells. At 37° C in the presence of 10−7 M SP (plus 3×10−7M tetrodotoxin to prevent indirect activation via other neurons) the neuronal NK1 receptor was rapidly internalised. After 5 min, NK1 receptor IR was partially internalised, at 20 min NK1 receptor IR was throughout the cytoplasm and in perinuclear aggregates and at 30 min it was again at the cell surface. SP-induced NK1 receptor endocytosis was inhibited by the specific NK1 receptor antagonist, SR140333. Cy3-SP was colocalised with NK1 receptor IR and was internalised with the NK1 receptor. These results show that enteric neurons exhibit authentic NK1 receptors that are rapidly internalised when exposed to their preferred ligand.  相似文献   

17.
Stable CHO cell clones which selectively express all three rat tachykinin receptors were established by transfection. The binding of radiolabled substance P and neurokinin A (substance K) to CHO clones expressing the NK1 and NK2 receptors, respectively, were saturatable and of high affinity (Kd = 0.17 nM (NK1); 3.4 nM (NK2)). Scatchard analysis of the binding data indicated for both receptors binding to a single population of binding sites, and competition binding studies showed that the binding specificities of the receptors corresponded to those of classical NK1 and NK2 receptors. In contrast, the binding of eledoisin to the NK3 receptor expressed in the transfected CHO cells was of low affinity (IC50 = 240 nM) compared to the high affinity of the receptor found when it was transiently expressed in COS-7 cells (IC50 = 8 nM). However, in both cases the receptor exhibited the specificity of a classical NK3 receptor. The established cell clones may provide an important tool for further analysis of the molecular mechanisms involved in binding, activation, and coupling of receptors for tachykinin peptides.  相似文献   

18.
The activity of a series of synthetic tachykinin-like peptide analogs was studied by means of microscopic calcium imaging on recombinant neurokinin receptor expressing cell lines. A C-terminal pentapeptide (FTGMRa) is sufficient for activation of the stomoxytachykinin receptor (STKR) expressed in Schneider 2 cells. Replacement of amino acid residues at the position of the conserved phenylalanine (F) or arginine (R) residues by alanine (A) results in inactive peptides (when tested at 1microM), whereas A-replacements at other positions do not abolish the biological activity of the resulting insectatachykinin-like analogs. Calcium imaging was also employed to compare the activity of C-terminally substituted tachykinin analogs on three different neurokinin receptors. The results indicate that the major pharmacological and evolutionary difference between tachykinin-related agonists for insect (STKR) and human (NK1 and NK2) receptors resides in the C-terminal amino acid residues (R versus M). A single C-terminal amino acid change can turn an STKR-agonist into an NK-agonist and vice versa.  相似文献   

19.
Using an in vitro microsuperfusion procedure, the NMDA-evoked release of [3H]ACh was studied after suppression of dopamine (DA) transmission (alpha-methyl-p-tyrosine) in striatal compartments of the rat. The effects of tachykinin neurokinin 1 (NK1) receptor antagonists and the ability of appropriate agonists to counteract the antagonist responses were investigated to determine whether tachykinin NK1 classic, septide-sensitive and/or new NK1-sensitive receptors mediate these regulations. The NK1 antagonists, SR140333, SSR240600, GR205171 but not GR82334 and RP67580 (0.1 and 1 microM) markedly reduced the NMDA (1 mm + D-serine 10 microM)-evoked release of [3H]ACh only in the matrix. These responses unchanged by coapplication with NMDA of NK2 or NK3 agonists, [Lys5,MeLeu9,Nle10]NKA(4-10) or senktide, respectively, were completely counteracted by the selective NK1 agonist, [Pro9]substance P but also by neurokinin A and neuropeptide K (1 nM each). According to the rank order of potency of agonists for counteracting the antagonist responses ([Pro9]substance P, 0.013 nM > neurokinin A, 0.15 nM > substance P(6-11) 7.7 nM = septide 8.7 nM), the new NK1-sensitive receptors mediate the facilitation by endogenous tachykinins of the NMDA-evoked release of ACh in the matrix, after suppression of DA transmission. Solely the NK1 antagonists having a high affinity for these receptors could be used as indirect anti-cholinergic agents.  相似文献   

20.
Natural killer (NK) cells are innate lymphocytes that participate in the early control of viruses and tumors. The function of NK cells is under tight regulation by two complementary inhibitory receptor families that bind to classical and non-classical HLA class I molecules: the CD94/NKG2A receptors and the killer cell immunoglobulin-like receptors (KIRs). In this mini-review, recent data on the structure of human NK cell receptor repertoires and its relation to functional responses and tolerance to self are discussed. We propose that no active selection is required to generate diverse NK cell repertoires characterized by a dominant expression of receptors with specificity for self-HLA class I. Instead, the primary consequence of interactions with HLA class I molecules is a functional tuning of randomly generated NK cell repertoires.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号