首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
In a previous study we overexpressed the thapsigargin (tg)-insensitive Pmr1 Ca(2+) pump of the Golgi apparatus of Caenorhabditis elegans in COS-1 cells and studied the properties of the Ca(2+) store into which it was integrated. Here we assessed the properties of an endogenous tg-insensitive nonmitochondrial Ca(2+) store in A7r5 and 16HBE14o- cells, which express a mammalian homologue of Pmr1. The tg-insensitive Ca(2+) store was considerably less leaky for Ca(2+) than the sarco(endo)plasmic-reticulum Ca(2+)-ATPase (SERCA)-containing Ca(2+) store. Moreover like for the worm Pmr1 Ca(2+) pump expressed in COS-1 cells, Ca(2+) accumulation into the endogenous tg-insensitive store showed a 2 orders of magnitude lower sensitivity to cyclopiazonic acid than the SERCA-mediated transport. 2,5-Di-(tert-butyl)-1,4-benzohydroquinone was only a very weak inhibitor of the tg-insensitive Ca(2+) uptake in A7r5 and 16HBE14o- cells and in COS-1 cells overexpressing the worm Pmr1. Inositol 1,4,5-trisphosphate released 11% of the Ca(2+) accumulated in permeabilized A7r5 cells pretreated with tg with an EC(50) that was 5 times higher than for the SERCA-containing Ca(2+) store but failed to release Ca(2+) in 16HBE14o- cells. In the presence of tg, 15% of intact A7r5 cells responded to 10 microm arginine-vasopressin with a small rise in cytosolic Ca(2+) concentration after a long latency. In conclusion, A7r5 and 16HBE14o- cells express a Pmr1-containing Ca(2+) store with properties that differ substantially from the SERCA-containing Ca(2+) store.  相似文献   

2.
The discovery and biochemical characterization of the secretory pathway Ca(2+)-ATPase, PMR1, in Saccharomyces cerevisiae, has paved the way for identification of PMR1 homologues in many species including rat, Caenorhabditis elegans, and Homo sapiens. In yeast, PMR1 has been shown to function as a high affinity Ca(2+)/Mn(2+) pump and has been localized to the Golgi compartment where it is important for protein sorting, processing, and glycosylation. However, little is known about PMR1 homologues in higher organisms. Loss of one functional allele of the human gene, hSPCA1, has been linked to Hailey-Hailey disease, characterized by skin ulceration and improper keratinocyte adhesion. We demonstrate that expression of hSPCA1 in yeast fully complements pmr1 phenotypes of hypersensitivity to Ca(2+) chelators and Mn(2+) toxicity. Similar to PMR1, epitope-tagged hSPCA1 also resides in the Golgi when expressed in yeast or in chinese hamster ovary cells. (45)Ca(2+) transport by hSPCA1 into isolated yeast Golgi vesicles shows an apparent Ca(2+) affinity of 0.26 microm, is inhibitable by Mn(2+), but is thapsigargin-insensitive. In contrast, heterologous expression of vertebrate sarcoplasmic reticulum and plasma membrane Ca(2+)-ATPases in yeast complement the Ca(2+)- but not Mn(2+)-related phenotypes of the pmr1-null strain, suggesting that high affinity Mn(2+) transport is a unique feature of the secretory pathway Ca(2+)-ATPases.  相似文献   

3.
The role of dense core secretory vesicles in the control of cytosolic-free Ca(2+) concentrations ([Ca(2+)](c)) in neuronal and neuroendocrine cells is enigmatic. By constructing a vesicle-associated membrane protein 2-synaptobrevin.aequorin chimera, we show that in clonal pancreatic islet beta-cells: (a) increases in [Ca(2+)](c) cause a prompt increase in intravesicular-free Ca(2+) concentration ([Ca(2+)]SV), which is mediated by a P-type Ca(2+)-ATPase distinct from the sarco(endo) plasmic reticulum Ca(2+)-ATPase, but which may be related to the PMR1/ATP2C1 family of Ca(2+) pumps; (b) steady state Ca(2+) concentrations are 3-5-fold lower in secretory vesicles than in the endoplasmic reticulum (ER) or Golgi apparatus, suggesting the existence of tightly bound and more rapidly exchanging pools of Ca(2+); (c) inositol (1,4,5) trisphosphate has no impact on [Ca(2+)](SV) in intact or permeabilized cells; and (d) ryanodine receptor (RyR) activation with caffeine or 4-chloro-3-ethylphenol in intact cells, or cyclic ADPribose in permeabilized cells, causes a dramatic fall in [Ca(2+)](SV). Thus, secretory vesicles represent a dynamic Ca(2+) store in neuroendocrine cells, whose characteristics are in part distinct from the ER/Golgi apparatus. The presence of RyRs on secretory vesicles suggests that local Ca(2+)-induced Ca(2+) release from vesicles docked at the plasma membrane could participate in triggering exocytosis.  相似文献   

4.
Mutations in the ubiquitously expressed secretory-pathway Ca(2+)-ATPase (SPCA1) Ca(2+) pump result in Hailey-Hailey disease, which almost exclusively affects the epidermal part of the skin. We have studied Ca(2+) signaling in human keratinocytes by measuring the free Ca(2+) concentration in the cytoplasm and in the lumen of both the Golgi apparatus and the endoplasmic reticulum. These signals were compared with those recorded in SPCA1-overexpressing and control COS-1 cells. Both the sarco(endo)plasmic-reticulum Ca(2+)-ATPase (SERCA) and SPCA1 can mediate Ca(2+) uptake into the Golgi stacks. Our results indicate that keratinocytes mainly used the SPCA1 Ca(2+) pump to load the Golgi complex with Ca(2+) whereas the SERCA Ca(2+) pump was mainly used in control COS-1 cells. Cytosolic Ca(2+) signals in keratinocytes induced by extracellular ATP or capacitative Ca(2+) entry were characterized by an unusually long latency reflecting extra Ca(2+) buffering by an SPCA1-containing Ca(2+) store, similarly as in SPCA1-overexpressing COS-1 cells. Removal of extracellular Ca(2+) elicited spontaneous cytosolic Ca(2+) transients in keratinocytes, similarly as in SPCA1-overexpressing COS-1 cells. With respect to Ca(2+) signaling keratinocytes and SPCA1-overexpressing COS-1 cells therefore behaved similarly but differed from control COS-1 cells. The relatively large contribution of the SPCA1 pumps for loading the Golgi stores with Ca(2+) in keratinocytes may, at least partially, explain why mutations in the SPCA1 gene preferentially affect the skin in Hailey-Hailey patients.  相似文献   

5.
Accumulation of Ca(2+) into the Golgi apparatus is mediated by sarco(endo)plasmic reticulum Ca(2+)-ATPases (SERCAs) and by secretory pathway Ca(2+)-ATPases (SPCAs). Mammals and birds express in addition to the housekeeping SPCA1 (human gene name ATP2C1, cytogenetic position 3q22.1) a homologous SPCA2 isoform (human gene name ATP2C2, cytogenetic position 16q24.1). We show here that both genes present an identical exon/intron layout. We confirmed that hSPCA2 has the ability to transport Ca(2+), demonstrated its Mn(2+)-transporting activity, showed its Ca(2+)- and Mn(2+)-dependent phosphoprotein intermediate formation, and documented the insensitivity of these functional activities to thapsigargin inhibition. The mRNA encoding hSPCA2 showed a limited tissue expression pattern mainly confined to the gastrointestinal and respiratory tract, prostate, thyroid, salivary, and mammary glands. Immunocytochemical localization in human colon sections presented a typical apical juxtanuclear Golgi-like staining. The expression in COS-1 cells allowed the direct demonstration of (45)Ca(2+) (K(0.5) = 0.27 microm) or (54)Mn(2+) transport into an A23187-releasable compartment.  相似文献   

6.
Cho JH  Ko KM  Singaravelu G  Ahnn J 《FEBS letters》2005,579(3):778-782
The Caenorhabditis elegans PMR1, a P-type Ca2+/Mn2+ ATPase, is expressed in hypodermal seam cells, intestinal cells and spermatheca; localized in Golgi complex. Knock down of pmr-1 as well as overexpression of truncated Caenorhabditis elegans PMR1, which mimics dominant mutations observed in human Hailey-Hailey disease, renders the worm highly sensitive to EGTA and Mn2+. Interestingly, pmr-1 knock down not only causes animals to become resistant to oxidative stress but also suppresses high reactive oxygen species sensitivity of smf-3 RNA-mediated interference and daf-16 worms. These findings suggest that C. elegans PMR1 has important roles in Ca2+ and Mn2+ homeostasis and oxidative stress response.  相似文献   

7.
Zhang XG  Coté GG  Crain RC 《Planta》2002,215(2):312-318
Mesophyll cells of Zinnia elegans L., cultured in the presence of phytohormones, will transdifferentiate and undergo programmed cell death to become tracheary elements, thick-walled cells of the xylem. This system is a model system for study of plant cell development and differentiation. We report that a high concentration of extracellular Ca(2+) is necessary during the first 6 h of culturing for tracheary elements to form. Extracellular Ca(2+) is still required at later times, but at a much lower concentration. When cells transdifferentiate in adequate Ca(2+), microsomal phospholipase C activity increases and levels of inositol 1,4,5-trisphosphate rise at about hour 4 of culturing. The production of inositol 1,4,5-trisphosphate appears to be important for tracheary element formation, since inhibitors of phospholipase C inhibit both inositol 1,4,5-trisphosphate production and tracheary element formation. Pertussis toxin, an inhibitor of GTP-binding proteins, inhibits transdifferentiation and eliminates inositol 1,4,5-trisphosphate production. Tracheary element formation was not completely abolished by inhibitors that eliminated inositol 1,4,5-trisphosphate production, suggesting the involvement of other pathways in regulating transdifferentiation.  相似文献   

8.
Transient transfection of Chinese hamster ovary or baby hamster kidney cells expressing the Group I metabotropic glutamate receptor mGlu1alpha with green fluorescent protein-tagged pleckstrin homology domain of phospholipase Cdelta1 allows real-time detection of inositol 1,4,5-trisphosphate. Loading with Fura-2 enables simultaneous measurement of intracellular Ca(2+) within the same cell. Using this technique we have studied the extracellular calcium sensing property of the mGlu1alpha receptor. Quisqualate, in extracellular medium containing 1.3 mm Ca(2+), increased inositol 1,4,5-trisphosphate in all cells. This followed a typical peak and plateau pattern and was paralleled by concurrent increases in intracellular Ca(2+) concentration. Under nominally Ca(2+)-free conditions similar initial peaks in inositol 1,4,5-trisphosphate and Ca(2+) concentration occurred with little change in either agonist potency or efficacy. However, sustained inositol 1,4,5-trisphosphate production was substantially reduced and the plateau in Ca(2+) concentration absent. Depletion of intracellular Ca(2+) stores using thapsigargin abolished quisqualate-induced increases in intracellular Ca(2+) and markedly reduced inositol 1,4,5-trisphosphate production. These data suggest that the mGlu1alpha receptor is not a calcium-sensing receptor because the initial response to agonist is not sensitive to extracellular Ca(2+) concentration. However, prolonged activation of phospholipase C requires extracellular Ca(2+), while the initial burst of activity is highly dependent on Ca(2+) mobilization from intracellular stores.  相似文献   

9.
SPCA1 pumps and Hailey-Hailey disease   总被引:1,自引:0,他引:1  
Both the endoplasmic reticulum and the Golgi apparatus are agonist-sensitive intracellular Ca2+ stores. The Golgi apparatus has Ca2+-release channels and a Ca2+-uptake mechanism consisting of sarco(endo)plasmic-reticulum Ca2+-ATPases (SERCA) and secretory-pathway Ca2+-ATPases (SPCA). SPCA1 has been shown to transport both Ca2+ and Mn2+ in the Golgi lumen and therefore plays an important role in the cytosolic and intra-Golgi Ca2+ and Mn2+ homeostasis. Human genetic studies have provided new information on the physiological role of SPCA1. Loss of one functional copy of the SPCA1 (ATP2C1) gene causes Hailey-Hailey disease, a skin disorder arising in the adult age with recurrent vesicles and erosions in the flexural areas. Here, we review recent experimental evidence showing that the Golgi apparatus plays a much more important role in intracellular ion homeostasis than previously anticipated.  相似文献   

10.
Xu K  Tavernarakis N  Driscoll M 《Neuron》2001,31(6):957-971
In C. elegans, a hyperactivated MEC-4(d) ion channel induces necrotic-like neuronal death that is distinct from apoptosis. We report that null mutations in calreticulin suppress both mec-4(d)-induced cell death and the necrotic cell death induced by expression of a constitutively activated Galpha(S) subunit. RNAi-mediated knockdown of calnexin, mutations in the ER Ca(2+) release channels unc-68 (ryanodine receptor) or itr-1 (inositol 1,4,5 triphosphate receptor), and pharmacological manipulations that block ER Ca(2+) release also suppress death. Conversely, thapsigargin-induced ER Ca(2+) release can restore mec-4(d)-induced cell death when calreticulin is absent. We conclude that high [Ca(2+)](i) is a requirement for necrosis in C. elegans and suggest that an essential step in the death mechanism is release of ER-based Ca(2+) stores. ER-driven Ca(2+) release has previously been implicated in mammalian necrosis, suggesting necrotic death mechanisms may be conserved.  相似文献   

11.
To identify new proteins involved in Mn2+ homeostasis, we isolated Mn(2+)-resistant mutants of Saccharomyces cerevisiae starting from a calcineurin-deficient, Mn2+ hypersensitive strain (delta cmp1 delta cmp2). The mutations were found to lie in the PMR1 gene, known to encode a "P-type" Ca(2+)-ATPase that transports Ca2+ and Mn2+ from the cytosol to the Golgi apparatus. A second gene, AHP1, was cloned as a suppressor of the Mn2+ tolerance of a delta cmp1 delta cmp2 pmr1 mutant. Ahp1p was recently described as a thioredoxin peroxidase type II, an antioxidant protein with alkyl hydroperoxide defense properties in yeast. AHP1 disruption in strain W303 decreased tolerance to Mn2+ and H2O2. We found that a GFP-Ahp1p fusion construct was in the cytosol when cells were grown in glucose, and in the mitochondria when cells were grown in oleate. Based on Mn2+ transport data, we concluded that Ahp1p is involved in cellular Mn2+ homeostasis in trafficking of Mn2+ from cytosol to mitochondria and from cytosol for export across the plasma membrane.  相似文献   

12.
P Pinton  T Pozzan    R Rizzuto 《The EMBO journal》1998,17(18):5298-5308
In the past few years, intracellular organelles, such as the endoplasmic reticulum, the nucleus and the mitochondria, have emerged as key determinants in the generation and transduction of Ca2+ signals of high spatio-temporal complexity. Little is known about the Golgi apparatus, despite the fact that Ca2+ within its lumen controls essential processes, such as protein processing and sorting. We report the direct monitoring of the [Ca2+] in the Golgi lumen ([Ca2+]Golgi) of living HeLa cells, using a specifically targeted Ca2+-sensitive photoprotein. With this probe, we show that, in resting cells, [Ca2+]Golgi is approximately 0.3 mM and that Ca2+ accumulation by the Golgi has properties distinct from those of the endoplasmic reticulum (as inferred by the sensitivity to specific inhibitors). Upon stimulation with histamine, an agonist coupled to the generation of inositol 1,4,5-trisphosphate (IP3), a large, rapid decrease in [Ca2+]Golgi is observed. The Golgi apparatus can thus be regarded as a bona fide IP3-sensitive intracellular Ca2+ store, a notion with major implications for the control of organelle function, as well as for the generation of local cytosolic Ca2+ signals.  相似文献   

13.
Ca(2+) elevations in Chinese hamster ovary cells stably expressing OX(1) receptors were measured using fluorescent Ca(2+) indicators fura-2 and fluo-3. Stimulation with orexin-A led to pronounced Ca(2+) elevations with an EC(50) around 1 nm. When the extracellular [Ca(2+)] was reduced to a submicromolar concentration, the EC(50) was increased 100-fold. Similarly, the inositol 1,4,5-trisphosphate production in the presence of 1 mm external Ca(2+) was about 2 orders of magnitude more sensitive to orexin-A stimulation than in low extracellular Ca(2+). The shift in the potency was not caused by depletion of intracellular Ca(2+) but by a requirement of extracellular Ca(2+) for production of inositol 1,4,5-trisphosphate. Fura-2 experiments with the "Mn(2+)-quench technique" indicated a direct activation of a cation influx pathway by OX(1) receptor independent of Ca(2+) release or pool depletion. Furthermore, depolarization of the cells to +60 mV, which almost nullifies the driving force for Ca(2+) entry, abolished the Ca(2+) response to low concentrations of orexin-A. The results thus suggest that OX(1) receptor activation leads to two responses, (i) a Ca(2+) influx and (ii) a direct stimulation of phospholipase C, and that these two responses converge at the level of phospholipase C where the former markedly enhances the potency of the latter.  相似文献   

14.
Cytosolic Ca(2+) oscillations can be due to cycles of release and re-uptake of internally stored Ca(2+). To investigate the nature of these Ca(2+) stores, we expressed the Pmr1 Ca(2+) pump of Caenorhabditis elegans in COS-1 cells and pretreated the cells with thapsigargin to prevent Ca(2+) uptake by the sarco(endo)plasmic reticulum Ca(2+)-ATPase. Pmr1 co-localized with the Golgi-specific 58K protein and was targeted to a Ca(2+) store that was less leaky for Ca(2+) than the endoplasmic reticulum and whose inositol trisphosphate receptors were less sensitive to inositol trisphosphate and ATP than those in the endoplasmic reticulum. ATP-stimulated Pmr1-overexpressing cells responded after a latency to extracellular Ca(2+) with a regenerative Ca(2+) signal, which could be prevented by caffeine. They also produced very stable ilimaquinone-sensitive baseline Ca(2+) spikes, even in the presence of thapsigargin. Such responses never occurred in non-transfected cells or in cells that overexpressed the type-1 sarco(endo)plasmic reticulum Ca(2+)-ATPase. Abortive Ca(2+) spikes also occurred in histamine-stimulated untransfected HeLa cells pretreated with thapsigargin, and they too were inhibited by ilimaquinone. We conclude that the Pmr1-induced Ca(2+) store, which probably corresponds to the Golgi compartment, can play a crucial role in setting up baseline Ca(2+) spiking.  相似文献   

15.
16.
In the budding yeast Saccharomyces cerevisiae, mutations in the essential gene CDC1 cause defects in Golgi inheritance and actin polarization. However, the biochemical function of Cdc1p is unknown. Previous work showed that cdc1 mutants accumulate intracellular Ca(2+) and display enhanced sensitivity to the extracellular Mn(2+) concentration, suggesting that Cdc1p might regulate divalent cation homeostasis. By contrast, our data indicate that Cdc1p is a Mn(2+)-dependent protein that can affect Ca(2+) levels. We identified a cdc1 allele that activates Ca(2+) signaling but does not show enhanced sensitivity to the Mn(2+) concentration. Furthermore, our studies show that Cdc1p is an endoplasmic reticulum-localized transmembrane protein with a putative phosphoesterase domain facing the lumen. cdc1 mutant cells accumulate an unidentified phospholipid, suggesting that Cdc1p may be a lipid phosphatase. Previous work showed that deletion of the plasma membrane Ca(2+) channel Cch1p partially suppressed the cdc1 growth phenotype, and we find that deletion of Cch1p also suppresses the Golgi inheritance and actin polarization phenotypes. The combined data fit a model in which the cdc1 mutant phenotypes result from accumulation of a phosphorylated lipid that activates Ca(2+) signaling.  相似文献   

17.
The localization of various Ca(2+) transport and signaling proteins in secretory cells is highly restricted, resulting in polarized agonist-stimulated Ca(2+) waves. In the present work, we examined the possible roles of the Sec6/8 complex or the exocyst in polarized Ca(2+) signaling in pancreatic acinar cells. Immunolocalization by confocal microscopy showed that the Sec6/8 complex is excluded from tight junctions and secretory granules in these cells. The Sec6/8 complex was found in at least two cellular compartments, part of the complex showed similar, but not identical, localization with the Golgi apparatus and part of the complex associated with Ca(2+) signaling proteins next to the plasma membrane at the apical pole. Accordingly, immunoprecipitation (IP) of Sec8 did not coimmunoprecipitate betaCOP, Golgi 58K protein, or mannosidase II, all Golgi-resident proteins. By contrast, IP of Sec8 coimmunoprecipitates Sec6, type 3 inositol 1,4,5-trisphosphate receptors (IP(3)R3), and the Gbetagamma subunit of G proteins from pancreatic acinar cell extracts. Furthermore, the anti-Sec8 antibodies coimmunoprecipitate actin, Sec6, the plasma membrane Ca(2+) pump, the G protein subunits Galphaq and Gbetagamma, the beta1 isoform of phospholipase C, and the ER resident IP(3)R1 from brain microsomal extracts. Antibodies against the various signaling and Ca(2+) transport proteins coimmunoprecipitate Sec8 and the other signaling proteins. Dissociation of actin filaments in the immunoprecipitate had no effect on the interaction between Sec6 and Sec8, but released the actin and dissociated the interaction between the Sec6/8 complex and Ca(2+) signaling proteins. Hence, the interaction between the Sec6/8 and Ca(2+) signaling complexes is likely mediated by the actin cytoskeleton. The anti-Sec6 and anti-Sec8 antibodies inhibited Ca(2+) signaling at a step upstream of Ca(2+) release by IP(3). Disruption of the actin cytoskeleton with latrunculin B in intact cells resulted in partial translocation of Sec6 and Sec8 from membranes to the cytosol and interfered with propagation of agonist-evoked Ca(2+) waves. Our results suggest that the Sec6/8 complex has multiple roles in secretory cells including governing the polarized expression of Ca(2+) signaling complexes and regulation of their activity.  相似文献   

18.
The Golgi apparatus behaves as a bona fide Ca(2+) store in animal cells and yeast (Saccharomyces cerevisiae); however, it is not known whether this organelle plays a similar role in plant cells. In this work, we investigated the presence of an active Ca(2+) accumulation mechanism in the plant cell Golgi apparatus. Toward this end, we measured Ca(2+) uptake in subcellular fractions isolated from the elongating zone of etiolated pea (Pisum sativum) epicotyls. Separation of organelles using sucrose gradients showed a strong correlation between the distribution of an ATP-dependent Ca(2+) uptake activity and the Golgi apparatus marker enzyme, xyloglucan-fucosyltransferase. The kinetic parameters obtained for this activity were: the rate of maximum Ca(2+) uptake of 2.5 nmol mg min(-1) and an apparent K(m) for Ca(2+) of 209 nM. The ATP-dependent Ca(2+) uptake was strongly inhibited by vanadate (inhibitor concentration causing 50% inhibition [I(50)] = 126 microM) and cyclopiazonic acid (I(50) = 0.36 nmol mg protein(-1)) and was not stimulated by calmodulin (1 microM). Addition of Cd(2+) and Cu(2+) at nanomolar concentration inhibited the Ca(2+) uptake, whereas Mn(2+), Fe(2+), and Co(2+) had no significant effect. Interestingly, the active calcium uptake was inhibited by thapsigargin (apparent I(50) = 88 nM), a well-known inhibitor of the endoplasmic reticulum and Golgi sarco-endoplasmic reticulum Ca(2+) ATPase from mammalian cells. A thapsigargin-sensitive Ca(2+) uptake activity was also detected in a cauliflower (Brassica oleracea) Golgi-enriched fraction, suggesting that other plants may also possess thapsigargin-sensitive Golgi Ca(2+) pumps. To our knowledge, this is the first report of a plant Ca(2+) pump activity that shows sensitivity to low concentrations of thapsigargin.  相似文献   

19.
The cell surface of Candida albicans is the immediate point of contact with the host. The outer layer of the cell wall is enriched in highly glycosylated mannoproteins that are implicated in many aspects of the host-fungus interaction. Glycosylation of cell wall proteins is initiated in the endoplasmic reticulum and then elaborated in the Golgi as the protein passes through the secretory pathway. Golgi-bound mannosyltransferases require Mn(2+) as an essential cofactor. In Saccharomyces cerevisiae, the P-type ATPase Pmr1p transports Ca(2+) and Mn(2+) ions into the Golgi. To determine the effect of a gross defect in glycosylation on host-fungus interactions of C. albicans, we disrupted the PMR1 homolog, CaPMR1. This mutation would simultaneously inhibit many Golgi-located, Mn(2+)-dependent mannosyltransferases. The Capmr1Delta null mutant was viable in vitro and had no growth defect even on media containing low Ca(2+)/Mn(2+) ion concentrations. However, cells grown in these media progressively lost viability upon entering stationary phase. Phosphomannan was almost completely absent, and O-mannan was severely truncated in the null mutant. A defect in N-linked outer chain glycosylation was also apparent, demonstrated by the underglycosylation of surface acid phosphatase. Consistent with the glycosylation defect, the null mutant had a weakened cell wall, exemplified by hypersensitivity to Calcofluor white, Congo red, and hygromycin B and constitutive activation of the cell integrity pathway. In a murine model of systemic infection, the null mutant was severely attenuated in virulence. These results demonstrate the importance of glycosylation for cell wall structure and virulence of C. albicans.  相似文献   

20.
It has been established that inositol 1,4,5-trisphosphate(IP3) is responsible for the mobilization of calcium(Ca2+) from intracellular locations in a wide variety of tissues, and that this response triggers the stimulation of several hormones and neurotransmitters. However, these phenomena have yet to be examined in the mammary epithelium. Ca2+ uptake from the medium into the endoplasmic reticulum(ER) and Golgi apparatus in vitro in both pregnant and lactating mouse mammary epithelial cells was studied and a strong Ca2+ release from these organelles into the medium with the use of IP3 was shown. The Ca2+ uptake and its release due to IP3 was also usually greater during pregnancy than lactation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号