首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
2.
Phosphate transport in plants   总被引:19,自引:5,他引:14  
Smith  Frank W.  Mudge  Stephen R.  Rae  Anne L.  Glassop  Donna 《Plant and Soil》2003,248(1-2):71-83
Transport of inorganic phosphate (Pi) through plant membranes is mediated by a number of families of transporter proteins. Studies on the topology, function, regulation and sites of expression of the genes that encode the members of these transporter families are enabling roles to be ascribed to each of them. The Pht1 family, of which there are nine members in the Arabidopsis genome, includes proteins involved in the uptake of Pi from the soil solution and the redistribution of Pi within the plant. Members of this family are H2PO4 /H+ symporters. Most of the genes of the Pht1 family that are expressed in roots are up-regulated in P-stressed plants. Two members of the Pht1 family have been isolated from the cluster roots of white lupin. These same genes are expressed in non-cluster roots. The evidence available to date suggests that there are no major differences between the types of transport systems that cluster roots and non-cluster roots use to acquire Pi. Differences in uptake rates between cluster and non-cluster roots can be ascribed to more high-affinity Pi transporters in the plasma membranes of cluster roots, rather than any difference in the characteristics of the transporters. The efficient acquisition of Pi by cluster roots arises primarily from their capacity to increase the availability of soil Pi immediately adjacent to the rootlets by excretion of carboxylates, protons and phosphatases within the cluster. This paper reviews Pi transport processes, concentrating on those mediated by the Pht1 family of transporters, and attempts to relate those processes involved in Pi acquisition to likely Pi transport processes in cluster roots.  相似文献   

3.
Bacillus thuringiensis, a soil bacterium, produces crystalline proteins which are toxic to the Insect larvae, The toxicity Is brought about by the protein fragments released due to the action of mid-gut proteases and their binding to the receptors on the epithelial membrane, which In turn loses Its selective permeability. The genes (cry) coding for these Insecticidal crystal proteins have been cloned, characterized and mobilized Into a number of crop plants. Such transgenic plants were shown to be resistant to insects. However, the expression of these bacterial genes in higher plants has been limited because of differential codon usage. Various strategies for maximizing the expression of these genes in transgenic plants have been described. In addition, alternative approaches have been suggested for circumventing the development of resistance in insects to the crystal proteins.  相似文献   

4.
Comparative analyses of membrane transport genes revealed many differences in the features of transport homeostasis in eight diverse organisms, ranging from bacteria to animals and plants. In bacteria, membrane-transport systems depend mainly on single genes encoding proteins involved in an ATP-dependent pump and secondary transport proteins that use H+ as a co-transport molecule. Animals are especially divergent in their channel genes, and plants have larger numbers of P-type ATPase and secondary active transporters than do other organisms. The secondary transporter genes have diverged evolutionarily in both animals and plants for different co-transporter molecules. Animals use Na+ ions for the formation of concentration gradients across plasma membranes, dependent on secondary active transporters and on membrane voltages that in turn are dependent on ion transport regulation systems. Plants use H+ ions pooled in vacuoles and the apoplast to transport various substances; these proton gradients are also dependent on secondary active transporters. We also compared the numbers of membrane transporter genes in Arabidopsis and rice. Although many transporter genes are similar in these plants, Arabidopsis has a more diverse array of genes for multi-efflux transport and for response to stress signals, and rice has more secondary transporter genes for carbohydrate and nutrient transport. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
We obtained 32K full-length cDNA sequence data from the rice full-length cDNA project and performed a homology search against NCBI GenBank data. We have also searched homologs of Arabidopsis and other plants' genes with the databases. Comparative analysis of calcium ion transport proteins revealed that the genes specific for muscle and nerve calcium signal transduction systems (VDCC, IP3 receptor, ryanodine receptor) are very different in animals and plants. In contrast, Ca elements with basic functions in cell responses (CNGC, iGlu receptor, Ca(2+)ATPase, Ca2+/Na(+)-K+ ion exchanger) are basically conserved between plants and animals. We also performed comparative analyses of calcium ion binding and/or controlling signal transduction proteins. Many genes specific for muscle and nerve tissue do not exist in plants. However, calcium ion signal transduction genes of basic functions of cell homeostasis and responses were well conserved; plants have developed a calcium ion interacting system that is more direct than in animals. Many species of plants have specifically modified calcium ion binding proteins (CPK, CRK), Ca2+/phospholipid-binding domains, and calcium storage proteins.  相似文献   

6.
7.
8.
Saccharomyces cerevisiae accomplishes high rates of hexose transport. The kinetics of hexose transport are complex. The capacity and kinetic complexity of hexose transport in yeast are reflected in the large number of sugar transporter genes in the genome. Twenty hexose transporter genes exist in S. cerevisiae. Some of these have been found by genetic means; many have been discovered by the comprehensive sequencing of the yeast genome. This review codifies the nomenclature of the hexose transporter genes and describes the sequence homology and structural similarity of the proteins they encode. Information about the expression and function of the transporters is presented. Access to the sequences of the genes and proteins at three sequence databases is provided via the World Wide Web. Received: 24 June 1996 / Accepted: 29 July 1996  相似文献   

9.
The molecular breeding of plants that have been genetically engineered for improved disease resistance and stress tolerance has been undertaken with the goal of improving food production. More recently, it has been realized that transgenic plants can serve as bioreactors for the production of proteins or compounds with industrial or clinical uses. Several different recombinant enzymes and antibodies have been produced in this manner. To maximize the potential of industrial plants as a production system for proteins, efficient expression systems utilizing promoters that optimize transgene expression, 5′-untranslated region elements for efficient translation, and appropriate post-translational modifications and localization must be developed. This review summarizes successful examples of the production of recombinant enzymes, antibodies, and vaccines using signal peptides that direct vesicular localization in transgenic plants. We further discuss the modulation of recombinant protein localization to the endoplasmic reticulum, vacuolar system, or extracellular compartments by varying the signal peptide.  相似文献   

10.
该研究以芜菁(Brassica rapa var.rapa)为材料,克隆得到重金属ATP酶(HMA)家族1对同源基因BrrHMA2.1(GenBank登录号:MG_283237)和BrrHMA2.2(GenBank登录号:MG_283238),并对其蛋白质序列特征和基因表达模式进行分析。结果表明:(1)BrrHMA2.1和BrrHMA2.2基因的全长开放阅读框分别为2 619和2 724bp,分别编码872和907个氨基酸;序列结构分析显示,BrrHMA2.1和BrrHMA2.2蛋白含有6个跨膜区和HMA蛋白家族保守结构域;系统进化树结果显示,BrrHMA2.1和BrrHMA2.2蛋白与拟南芥HMA家族成员AtHMA2进化关系最近。(2)亚细胞定位结果表明,BrrHMA2.1和BrrHMA2.2蛋白都定位于细胞膜上。(3)qRT-PCR分析表明,芜菁生长初期BrrHMA2.1和BrrHMA2.2基因在叶中的表达量最高;随着生长时间的延长,叶中的表达量逐渐降低,而根中的表达量逐渐增加。(4)研究发现,BrrHMA2.1受Cd~(2+)、Zn~(2+)、Na~+、Mg~(2+)胁迫诱导表达,BrrHMA2.2受Cd~(2+)、Na~+、Cu~(2+)胁迫诱导表达,表明2个基因可能参与这些金属离子的转运过程。该研究结果为进一步研究植物HMA基因在重金属吸收和转运过程中的功能奠定了基础。  相似文献   

11.
铁转运机制与相关基因的研究进展   总被引:2,自引:1,他引:1  
铁素营养分子生物学方面的研究有了很大进展。人们利用各种特异突变株和差异筛选已克隆到部分与铁转运有关的基因。本文主要在分子生物学水平概括了酵母铁吸收转运机制和植物缺铁胁迫相关基因及其基因表达的研究进展。  相似文献   

12.
The ubiquitous cell membrane proteins called aquaporins are now firmly established as channel proteins that control the specific transport of water molecules across cell membranes in all living organisms. The aquaporins are thus likely to be of fundamental significance to all facets of plant growth and development affected by plant–water relations. A majority of plant aquaporins have been found to share essential structural features with the human aquaporin and exhibit water-transporting ability in various functional assays, and some have been shown experimentally to be of critical importance to plant survival. Furthermore, substantial evidence is now available from a number of plant species that shows differential gene expression of aquaporins in response to abiotic stresses such as salinity, drought, or cold and clearly establishes the aquaporins as major players in the response of plants to conditions that affect water availability. This review summarizes the function and regulation of these genes to develop a greater understanding of the response of plants to water insufficiency, and particularly, to identify tolerant genotypes of major crop species including wheat and rice and plants that are important in agroforestry. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Salinity tolerance can be attributed to three different mechanisms: Na+ exclusion from the shoot, Na+ tissue tolerance and osmotic tolerance. Although several key ion channels and transporters involved in these processes are known, the variation in expression profiles and the effects of these proteins on Na+ transport in different accessions of the same species are unknown. Here, expression profiles of the genes AtHKT1;1, AtSOS1, AtNHX1 and AtAVP1 are determined in four ecotypes of Arabidopsis thaliana. Not only are these genes differentially regulated between ecotypes, the expression levels of the genes can be linked to the concentration of Na+ in the plant. An inverse relationship was found between AtSOS1 expression in the root and total plant Na+ accumulation, supporting a role for AtSOS1 in Na+ efflux from the plant. Similarly, ecotypes with high expression levels of AtHKT1;1 in the root had lower shoot Na+ concentrations, due to the hypothesized role of AtHKT1;1 in retrieval of Na+ from the transpiration stream. The inverse relationship between shoot Na+ concentration and salinity tolerance typical of most cereal crop plants was not demonstrated, but a positive relationship was found between salt tolerance and levels of AtAVP1 expression, which may be related to tissue tolerance.  相似文献   

14.
How large numbers of genes were recruited simultaneously to build new organ structures is one of the greatest puzzles in evolutionary biology. Here, we present data suggesting that the vegetative and reproductive classes of actins and other cytoskeletal proteins arose concurrently with the macroevolutionary divergence of leaves and reproductive structures in the earliest land plants. That the cytoskeleton is essential for physically programming the development of organs and tissues is well established. Thus, we propose that this regulatory dichotomy represents an ancient landmark event in the global regulation of hundreds of higher-plant genes, an event that is linked to the macroevolution of plant vegetative and reproductive organs. The recent availability of sequence and expression data for large numbers of plant genes should make it possible to dissect this and other major macroevolutionary events.  相似文献   

15.
Accessory light-harvesting complexes (LHCFs) were isolated from the brown alga Laminaria saccharina. Complexes specifically associated with photosystem I or II are identical with each other with respect to molecular mass, isoelectric point and behavior on anion-exchange chromatography or non-denaturing isoelectric focusing. The purified complexes also have similar pigment composition and spectroscopic properties. It is concluded that LHC antennae associated with photosystem I or II cannot be distinguished biochemically. After screening of genomic and cDNA libraries produced from L. saccharina sporophytes, six lhcf genes were isolated. Sequence analysis of these lhcf genes showed a high level of homology between the encoded polypeptides. Comparisons with coding sequences of lhcf genes from Macrocystis pyrifera and expressed sequence tags from Laminaria digitata (two other Laminariales) indicated that these proteins are probably very similar in all brown algae. Another feature common to the lhcf genes characterized was the presence of an intron in the coding region corresponding to the plastid-targeting presequence. The sequence similarity extended to the 5' and 3' UTRs of several genes. In spite of the common origin of the chloroplasts, no light-regulating elements involved in the expression of the genes encoding the higher-plant light-harvesting proteins has been found in the UTRs.  相似文献   

16.
Summary The transport of solutes by bacteria has been studied for about thirty years. Early experiments on amino acid entry and galactoside accumulation provided concrete evidence that bacteria possessed specific transport systems and that these were subject to regulation. Since then a large number of transport systems have been discovered and studied extensively. Many of these use entirely different strategies for capturing or accumulating substrates. This diversity reflects variation in the availability of nutrients and ions in the different environments tolerated and inhabited by microorganisms. Examination of a few bacterial transport systems provides an opportunity to gain insight into a wide range of topics in the area of membrane transport. These include: the identification of carrier proteins and their arrangement in the membrane, the regulation of transport protein synthesis by environmental factors, and the localization of transport proteins to their extracytoplasmic destinations.It has been possible to construct a number of bacterial strains in which the gene (lacZ) which codes for the cytoplasmic enzyme -galactosidase is fused to genes which code for transport proteins. The following article is intended to illustrate how these gene fusions have been used to study the regulation and structure of transport proteins inEscherichia coli.  相似文献   

17.
18.
Higher plant responses to environmental nitrate   总被引:12,自引:0,他引:12  
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号