首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Through mutational analysis in Drosopjila we have identified the gene multiple asters (mast), which encodes a new 165 kDa protein. mast mutant neuroblasts are highly polyploid and show severe mitotic abnormalities including the formation of mono- and multi-polar spindles organized by an irregular number of microtubule-organizing centres of abnormal size and shape. The mast gene product is evolutionarily conserved since homologues were identified from yeast to man, revealing a novel protein family. Antibodies against Mast and analysis of tissue culture cells expressing an enhanced green fluorescent protein-Mast fusion protein show that during mitosis, this protein localizes to centrosomes, the mitotic spindle, centromeres and spindle midzone. Microtubule-binding assays indicate that Mast is a microtubule-associated protein displaying strong affinity for polymerized microtubules. The defects observed in the mutant alleles and the intracellular localization of the protein suggest that Mast plays an essential role in centrosome separation and organization of the bipolar mitotic spindle.  相似文献   

2.
Polo-like kinase functions are essential for the establishment of a normal bipolar mitotic spindle, although precisely how Plk1 regulates the spindle is uncertain. In this study, we report that the small GTP/GDP-binding protein Ran is associated with Plk1. Plk1 is capable of phosphorylating co-immunoprecipitated Ran in vitro on serine-135 and Ran is phosphorylated in vivo at the same site during mitosis when Plk1 is normally activated. Cell cultures over-expressing a Ran S135D mutant have significantly higher numbers of abnormal mitotic cells than those over-expressing either wild-type or S135A Ran. The abnormalities in S135D mutant cells are similar to cells over-expressing Plk1. Our data suggests that Ran is a physiological substrate of Plk1 and that Plk1 regulates the spindle organization partially through its phosphorylation on Ran.  相似文献   

3.
The cilia protein IFT88 is required for spindle orientation in mitosis   总被引:1,自引:0,他引:1  
Cilia dysfunction has long been associated with cyst formation and ciliopathies. More recently, misoriented cell division has been observed in cystic kidneys, but the molecular mechanism leading to this abnormality remains unclear. Proteins of the intraflagellar transport (IFT) machinery are linked to cystogenesis and are required for cilia formation in non-cycling cells. Several IFT proteins also localize to spindle poles in mitosis, indicating uncharacterized functions for these proteins in dividing cells. Here, we show that IFT88 depletion induces mitotic defects in human cultured cells, in kidney cells from the IFT88 mouse mutant Tg737(orpk) and in zebrafish embryos. In mitosis, IFT88 is part of a dynein1-driven complex that transports peripheral microtubule clusters containing microtubule-nucleating proteins to spindle poles to ensure proper formation of astral microtubule arrays and thus proper spindle orientation. This work identifies a mitotic mechanism for a cilia protein in the orientation of cell division and has important implications for the etiology of ciliopathies.  相似文献   

4.
Aneuploid colon cancer cells have a robust spindle checkpoint   总被引:7,自引:0,他引:7       下载免费PDF全文
Colon cancer cells frequently display minisatellite instability (MIN) or chromosome instability (CIN). While MIN is caused by mismatch repair defects, the lesions responsible for CIN are unknown. The observation that CIN cells fail to undergo mitotic arrest following spindle damage suggested that mutations in spindle checkpoint genes may account for CIN. However, here we show that CIN cells do undergo mitotic arrest in response to spindle damage. Although the maximum mitotic index achieved by CIN lines is diminished relative to MIN lines, CIN cells clearly have a robust spindle checkpoint. Consistently, mutations in spindle checkpoint genes are rare in human tumours. In contrast, the adenomatous polyposis coli (APC) gene is frequently mutated in CIN cells. Significantly, we show here that expression of an APC mutant in MIN cells reduces the mitotic index following spindle damage to a level observed in CIN cells, suggesting that APC dysfunction may contribute to CIN.  相似文献   

5.
The interaction of astral microtubules with cortical actin networks is essential for the correct orientation of the mitotic spindle; however, little is known about how the cortical actin organization is regulated during mitosis. LIM kinase-1 (LIMK1) regulates actin dynamics by phosphorylating and inactivating cofilin, an actin-depolymerizing protein. LIMK1 activity increases during mitosis. Here we show that mitotic LIMK1 activation is critical for accurate spindle orientation in mammalian cells. Knockdown of LIMK1 suppressed a mitosis-specific increase in cofilin phosphorylation and caused unusual cofilin localization in the cell cortex in metaphase, instability of cortical actin organization and astral microtubules, irregular rotation and misorientation of the spindle, and a delay in anaphase onset. Similar results were obtained by treating the cells with a LIMK1 in hibitor peptide or latrunculin A or by overexpressing a non-phosphorylatable cofilin(S3A) mutant. Furthermore, localization of LGN (a protein containing the repetitive Leu-Gly-Asn tripeptide motifs), an important regulator of spindle orientation, in the crescent-shaped cortical regions was perturbed in LIMK1 knockdown cells. Our results suggest that LIMK1-mediated cofilin phosphorylation is required for accurate spindle orientation by stabilizing cortical actin networks during mitosis.  相似文献   

6.
Integrin-linked kinase (ILK) is a serine-threonine kinase and scaffold protein with well defined roles in focal adhesions in integrin-mediated cell adhesion, spreading, migration, and signaling. Using mass spectrometry-based proteomic approaches, we identify centrosomal and mitotic spindle proteins as interactors of ILK. alpha- and beta-tubulin, ch-TOG (XMAP215), and RUVBL1 associate with ILK and colocalize with it to mitotic centrosomes. Inhibition of ILK activity or expression induces profound apoptosis-independent defects in the organization of the mitotic spindle and DNA segregation. ILK fails to localize to the centrosomes of abnormal spindles in RUVBL1-depleted cells. Additionally, depletion of ILK expression or inhibition of its activity inhibits Aurora A-TACC3/ch-TOG interactions, which are essential for spindle pole organization and mitosis. These data demonstrate a critical and unexpected function for ILK in the organization of centrosomal protein complexes during mitotic spindle assembly and DNA segregation.  相似文献   

7.
NuMA (Nuclear protein that associates with the Mitotic Apparatus) is a 235-kD intranuclear protein that accumulates at the pericentrosomal region of the mitotic spindle in vertebrate cells. To determine if NuMA plays an active role in organizing the microtubules at the polar region of the mitotic spindle, we have developed a cell free system for the assembly of mitotic asters derived from synchronized cultured cells. Mitotic asters assembled in this extract are composed of microtubules arranged in a radial array that contain NuMA concentrated at the central core. The organization of microtubules into asters in this cell free system is dependent on NuMA because immunodepletion of NuMA from the extract results in randomly dispersed microtubules instead of organized mitotic asters, and addition of the purified recombinant NuMA protein to the NuMA-depleted extract fully reconstitutes the organization of the microtubules into mitotic asters. Furthermore, we show that NuMA is phosphorylated upon mitotic aster assembly and that NuMA is only required in the late stages of aster assembly in this cell free system consistent with the temporal accumulation of NuMA at the polar ends of the mitotic spindle in vivo. These results, in combination with the phenotype observed in vivo after the prevention of NuMA from targeting onto the mitotic spindle by antibody microinjection, suggest that NuMA plays a functional role in the organization of the microtubules of the mitotic spindle.  相似文献   

8.
Embryos have been successfully used for the general study of the cell cycle. Although there are significant differences between the early embryonic and the somatic cell cycle in vertebrates, the existence of specialised factors that play a role during the early cell cycles has remained elusive. We analysed a lethal recessive maternal-effect mutant, futile cycle (fue), isolated in a maternal-effect screen for nuclear division defects in the zebrafish (Danio rerio). The pronuclei fail to congress in zygotes derived from homozygous fue mothers. In addition, a defect in the formation of chromosomal microtubules prevents mitotic spindle assembly and thus chromosome segregation in fue zygotes. However, centrosomal functions do not appear to be affected in fue embryos, suggesting this mutant blocks a subset of microtubule functions. Cleavage occurs normally for several divisions resulting in many anucleate cells, thus showing that nuclear- and cell division can be uncoupled genetically. Therefore, we propose that in mitotic spindle assembly chromosome-dependent microtubule nucleation is essential for the coupling of nuclear and cell division.  相似文献   

9.
Ran GTPase is involved in several aspects of nuclear structure and function, including nucleocytoplasmic transport and nuclear envelope formation. Experiments using Xenopus egg extracts have shown that generation of Ran-GTP by the guanine nucleotide exchange factor RCC1 also plays roles in mitotic spindle assembly. Here, we have examined the localization and function of RCC1 in mitotic human cells. We show that RCC1, either the endogenous protein or that expressed as a fusion with green fluorescent protein (GFP), is localized predominantly to chromosomes in mitotic cells. This localization requires an N-terminal lysine-rich region that also contains a nuclear localization signal and is enhanced by interaction with Ran. Either mislocalization of GFP-RCC1 by removal of the N-terminal region or the expression of dominant Ran mutants that perturb the GTP/GDP cycle causes defects in mitotic spindle morphology, including misalignment of chromosomes and abnormal numbers of spindle poles. These results indicate that the generation of Ran-GTP in the vicinity of chromosomes by RCC1 is important for the fidelity of mitotic spindle assembly in human cells. Defects in this system may result in abnormal chromosome segregation and genomic instability, which are characteristic of many cancer cells.  相似文献   

10.
Fish lineage-specific gene, sinup [Siaz-interacting nuclear protein], modulates neural plate formation in embryogenesis and shares homology with human TPX2 protein, a member of the vertebrate mitogen-activating protein family. In spite of the presence of the TPX2 domain in Sinup, its cellular function has been unknown. As an initial approach to this question, we expressed Sinup by injecting sinup-EGFP mRNAs into zebrafish embryos at the one- to two-cell stage. First of all, Sinup-EGFP was associated with centrosomes and mitotic spindles. In particular, Sinup was localized to the spindle poles and midbody microtubules during the period between anaphase and cytokinesis. Second, various deleted mutants of Sinup-EGFP failed to be associated with the centrosomes and mitotic spindles. Third, a Sinup mutant, where the 144th Serine residue was converted to alanine, not only disturbed the mitotic spindle organization, such as multipolar spindles, fragmented spindle poles, and flattened spindles, but also arrested the cell cycle at metaphase and cell movement. Finally, Sinup is phosphorylated by Aurora A and the 144th Serine mutant of Sinup is partially phosphorylated by Aurora A kinase. We thus propose that Sinup is an essential element for the integrity of centrosomes and mitotic spindle fibers as well as for the normal process of cell cycle and cellular movement in vertebrate embryos.  相似文献   

11.
Chromosome segregation requires coordinated separation of sister chromatids following biorientation of all chromosomes on the mitotic spindle. Chromatid separation at the metaphase-to-anaphase transition is accomplished by cleavage of the cohesin complex that holds chromatids together. Here we show using live-cell imaging that extending the metaphase bioriented state using five independent perturbations (expression of non-degradable Cyclin B, expression of a Spindly point mutant that prevents spindle checkpoint silencing, depletion of the anaphase inducer Cdc20, treatment with a proteasome inhibitor, or treatment with an inhibitor of the mitotic kinesin CENP-E) leads to eventual scattering of chromosomes on the spindle. This scattering phenotype is characterized by uncoordinated loss of cohesion between some, but not all sister chromatids and subsequent spindle defects that include centriole separation. Cells with scattered chromosomes persist long-term in a mitotic state and eventually die or exit. Partial cohesion loss-associated scattering is observed in both transformed cells and in karyotypically normal human cells, albeit at lower penetrance. Suppressing microtubule dynamics reduces scattering, suggesting that cohesion at centromeres is unable to resist dynamic microtubule-dependent pulling forces on the kinetochores. Consistent with this view, strengthening cohesion by inhibiting the two pathways responsible for its removal significantly inhibits scattering. These results establish that chromosome scattering due to uncoordinated partial loss of chromatid cohesion is a common outcome following extended arrest with bioriented chromosomes in human cells. These findings have important implications for analysis of mitotic phenotypes in human cells and for development of anti-mitotic chemotherapeutic approaches in the treatment of cancer.  相似文献   

12.
Forced expression of the chimeric human fibroblast tropomyosin 5/3 (hTM5/3) in CHO cell was previously shown to affect cytokinesis [Warren et al., 1995: J. Cell Biol. 129:697-708]. To further investigate the phenotypic consequences of misexpression, we have compared mitotic spindle organization and dynamic 2D and 3D shape changes during mitosis in normal cells and in a hTM5/3 misexpressing (mutant) cell line. Immunofluorescence microscopy of wild type and mutant cells stained with monoclonal anti-tubulin antibody revealed that the overall structures of mitotic spindles were not significantly different. However, the axis of the mitotic spindle in mutant cells was more frequently misaligned with the long axis of the cell than that of wild type cells. To assess behavioral differences during mitosis, wild type and mutant cells were reconstructed in 2D and 3D and motion analyzed with the computer-assisted 2D and 3D Dynamic Image Analysis Systems (2D-DIAS, 3D-DIAS). Mutant cells abnormally formed large numbers of blebs during the later stages of mitosis and took longer to proceed from the start of anaphase to the start of cytokinesis. Furthermore, each mutant cell undergoing mitosis exhibited greater shape complexity than wild type cells, and in every case lifted one of the two evolving daughter cells off the substratum and abnormally twisted. These results demonstrate that misexpression of hTM5/3 in CHO cells leads to morphological instability during mitosis. Misexpression of hTM5/3 interferes with normal tropomyosin function, suggesting in turn that tropomyosin plays a role through its interaction with actin microfilaments in the regulation of the contractile ring, in the localized suppression of blebbing, in the maintenance of polarity and spatial symmetry during cytokinesis, and in cell spreading after cytokinesis is complete.  相似文献   

13.
We have recently cloned a cDNA for a full-length form of MgcRacGAP. Here we show using anti-MgcRacGAP antibodies that, unlike other known GAPs for Rho family, MgcRacGAP localized to the nucleus in interphase, accumulated to the mitotic spindle in metaphase, and was condensed in the midbody during cytokinesis. Overexpression of an N-terminal deletion mutant resulted in the production of multinucleated cells in HeLa cells. This mutant lost the ability to localize in the mitotic spindle and midbody. MgcRacGAP was also found to bind alpha-, beta-, and gamma-tubulins through its N-terminal myosin-like domain. These results indicate that MgcRacGAP dynamically moves during cell cycle progression probably through binding to tubulins and plays critical roles in cytokinesis. Furthermore, using a GAP-inactive mutant, we have shown that the GAP activity of MgcRacGAP is required for cytokinesis, suggesting that inactivation of the Rho family of GTPases may be required for normal progression of cytokinesis.  相似文献   

14.
The preprophase band and mitotic spindle of dividing protodermal cells of wild-type Zea mays leaves include few actin filaments. Surprisingly, abundant actin filaments were observed in the above arrays, in dividing protodermal cells in the leaves of the brick1 mutant. The same abundance was observed in the spindle of Taxol-treated brick1 mitotic protodermal cells. Apart from the above difference, the relevant arrays displayed normal microtubule organization in both wild type and mutant cells, as far as can be discerned by immunofluorescence microscopy. Accordingly, the abundance of actin filaments in the preprophase band and spindle of brick1 mitotic cells seems not to influence the structure of the above arrays and might be a non-functional “side-effect” of defective F-actin organization in this mutant.  相似文献   

15.
Krishnan R  Pangilinan F  Lee C  Spencer F 《Genetics》2000,156(2):489-500
The spindle assembly checkpoint-mediated mitotic arrest depends on proteins that signal the presence of one or more unattached kinetochores and prevents the onset of anaphase in the presence of kinetochore or spindle damage. In the presence of either damage, bub2 cells initiate a preanaphase delay but do not maintain it. Inappropriate sister chromatid separation in nocodazole-treated bub2 cells is prevented when mitotic exit is blocked using a conditional tem1(c) mutant, indicating that the preanaphase failure in bub2 cells is a consequence of events downstream of TEM1 in the mitotic exit pathway. Using a conditional bub2(tsd) mutant, we demonstrate that the continuous presence of Bub2 protein is required for maintaining spindle damage-induced arrest. BUB2 is not required to maintain a DNA damage checkpoint arrest, revealing a specificity for spindle assembly checkpoint function. In a yeast two-hybrid assay and in vitro, Bub2 protein interacts with the septin protein Cdc3, which is essential for cytokinesis. These data support the view that the spindle assembly checkpoint encompasses regulation of distinct mitotic steps, including a MAD2-directed block to anaphase initiation and a BUB2-directed block to TEM1-dependent exit.  相似文献   

16.
Primary human fibroblasts arrest growth in response to the inhibition of mitosis by mitotic spindle-depolymerizing drugs. We show that the mechanism of mitotic arrest is transient and implicates a decrease in the expression of cdc2/cdc28 kinase subunit Homo sapiens 1 (CKsHs1) and a delay in the metabolism of cyclin B. Primary human fibroblasts infected with a retroviral vector that drives the expression of a mutant p53 protein failed to downregulate CKsHs1 expression, degraded cyclin B despite the absence of chromosomal segregation, and underwent DNA endoreduplication. In addition, ectopic expression of CKsHs1 interfered with the control of cyclin B metabolism by the mitotic spindle cell cycle checkpoint and resulted in a higher tendency to undergo DNA endoreduplication. These results demonstrate that an altered regulation of CKsHs1 and cyclin B in cells that carry mutant p53 undermines the mitotic spindle cell cycle checkpoint and facilitates the development of aneuploidy. These data may contribute to the understanding of the origin of heteroploidy in mutant p53 cells.  相似文献   

17.
Integrin Linked kinase (ILK) is a member of a multiprotein complex at focal adhesions which interacts with actin. Here, it functions as a kinase and adapter protein to regulate diverse cellular processes. Gene knockout studies have demonstrated critical roles for ILK in embryonic development and in organ and tissue homeostasis. However, ILK is overexpressed in many human cancers and experimental overexpression in non-transformed cells results in the acquisition of several oncogenic phenotypes.Proteomic based approaches to identify ILK binding partners have now identified tubulins and many centrosomal and mitotic spindle associated proteins as ILK interactors in addition to the expected focal adhesion, actin interacting, proteins. Further analysis has shown that ILK co-localizes with several of these proteins to the centrosome and inhibition or depletion of ILK causes mitotic spindle defects by disrupting Aurora A kinase/TACC3/ch-TOG interactions. Here we discuss the finding that ILK is a member of a tubulin-based multiprotein complex at the centrosome, whether this may interact with the focal adhesion pool of ILK, and identify potential mechanisms by which ILK regulates the organization of the mitotic spindle. We also discuss the implications of ILK’s mitotic role for cancer progression and highlight the potential use of ILK inhibitors as novel anti-mitotic chemotherapeutics.  相似文献   

18.
Microtubule nucleation is the best known function of centrosomes. Centrosomal microtubule nucleation is mediated primarily by gamma tubulin ring complexes (gamma TuRCs). However, little is known about the molecules that anchor these complexes to centrosomes. In this study, we show that the centrosomal coiled-coil protein pericentrin anchors gamma TuRCs at spindle poles through an interaction with gamma tubulin complex proteins 2 and 3 (GCP2/3). Pericentrin silencing by small interfering RNAs in somatic cells disrupted gamma tubulin localization and spindle organization in mitosis but had no effect on gamma tubulin localization or microtubule organization in interphase cells. Similarly, overexpression of the GCP2/3 binding domain of pericentrin disrupted the endogenous pericentrin-gamma TuRC interaction and perturbed astral microtubules and spindle bipolarity. When added to Xenopus mitotic extracts, this domain uncoupled gamma TuRCs from centrosomes, inhibited microtubule aster assembly, and induced rapid disassembly of preassembled asters. All phenotypes were significantly reduced in a pericentrin mutant with diminished GCP2/3 binding and were specific for mitotic centrosomal asters as we observed little effect on interphase asters or on asters assembled by the Ran-mediated centrosome-independent pathway. Additionally, pericentrin silencing or overexpression induced G2/antephase arrest followed by apoptosis in many but not all cell types. We conclude that pericentrin anchoring of gamma tubulin complexes at centrosomes in mitotic cells is required for proper spindle organization and that loss of this anchoring mechanism elicits a checkpoint response that prevents mitotic entry and triggers apoptotic cell death.  相似文献   

19.
SIL is an immediate-early gene that is essential for embryonic development and is implicated in T-cell leukemia-associated translocations. We now show that the Sil protein is hyperphosphorylated during mitosis or in cells blocked at prometaphase by microtubule inhibitors. Cell cycle-dependent phosphorylation of Sil is required for its interaction with Pin1, a regulator of mitosis. Point mutation of the seven (S/T)P sites between amino acids 567 and 760 reduces mitotic phosphorylation of Sil, Pin1 binding, and spindle checkpoint duration. When a phosphorylation site mutant Sil is stably expressed, the duration of the spindle checkpoint is shortened in cells challenged with taxol or nocodazole, and the cells revert to a G2-like state. This event is associated with the downregulation of the kinase activity of the Cdc2/cyclin B1 complex and the dephosphorylation of the threonine 161 on the Cdc2 subunit. Sil downregulation by plasmid-mediated RNA interference limited the ability of cells to activate the spindle checkpoint and correlated with a reduction of Cdc2/cyclin B1 activity and phosphorylation on T161 on the Cdc2 subunit. These data suggest that a critical region of Sil is required to mediate the presentation of Cdc2 activity during spindle checkpoint arrest.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号