首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Five extracellular chitinases of Bacillus cereus 6E1 were detected by a novel in-gel chitinase assay using carboxymethyl-chitin-remazol brilliant violet 5R (CM-chitin-RBV) as a substrate. The major chitinase activity was associated with a 36-kDa (Chi36) gel band. Chi36 was purified by a one-step, native gel purification procedure derived from the new in-gel chitinase assay. The purified Chi36 has optimal activity at pH 5.8 and retains some enzymatic activity between pH 2.5-8. The temperature optimum for Chi36 was 35 degrees C, but the enzyme was active between 4-70 degrees C. Based on its ability to hydrolyze mainly p-nitrophenyl-(N-acetyl-beta-D-glucosaminide)(2), Chi36 is characterized as a chitobiosidase, a type of exochitinase. The N-terminal amino acid sequence of mature Chi36 was determined (25 amino acids). Alanine is the first N-terminal amino acid residue indicating the cleavage of a signal peptide from a Chi36 precursor to form the mature extracellular Chi36. The N-terminal sequence of Chi36 demonstrated highest similarity with Bacillus circulans WL-12 chitinase D and significant similarity with several other bacterial chitinases.  相似文献   

2.
Aeromonas caviae CB101 secretes four chitinases (around 92, 82, 70, and 55 kDa) into the culture supernatant. A chitinase gene chi1 (92 kDa) was previously studied. To identify the genes encoding the remaining three chitinases, a cosmid library of CB101 was constructed to screen for putative chitinase genes. Nine cosmid clones were shown to contain a chitinase gene on chitin plates. Surprisingly, all the positive clones contained chi1. In parallel, we purified the 55-kDa chitinase (Chi55) from the CB101 culture supernatant by continuous DEAE-Sepharose and Mono-Q anion exchange chromatography. The N-terminal amino acid sequence of the purified chitinase exactly matched the N-terminal sequence of mature Chi1, indicating that the purified chitinase (Chi55) is a truncated form of Chi1. The N- and C-terminal domains of chi1 were cloned, expressed, and purified, separately. Western blots using anti-sera to the N- and C-terminal domains of chi1 on the chitinases of CB101 showed that the four chitinases in the culture supernatant are either chi1 or C-terminal truncations of Chi1. In addition, the CB101 chi1 null mutant showed no chitinolytic activity, while CB101 chi1 null mutant complemented by pUC19chi1 containing chi1 showed all four chitinases in gel activity assay. These data indicated that all four chitinases secreted by CB101 in the culture supernatant are the product of one chitinase gene chi1.  相似文献   

3.
A new chitinase (1,4-beta-D-N-acetyl-glucosaminidase, EC 3.2.1.14) was detected and purified to homogeneity in its native form from the chitinolytic enzyme system of the extremely thermophilic archaeon Thermococcus chitonophagus. This is the first nonrecombinant chitinase purified and characterized from archaea and also constitutes the first case of a membrane-associated chitinase isolated from archaea. The enzyme is a monomer with an apparent molecular weight of 70 kDa [therefore named chitinase 70 (Chi70)] and pI of 5.9; it is hydrophobic and appears to be associated with the outer side of the cell membrane. Chi70 is optimally active at 70 degrees C and pH 7.0 and exhibits remarkable thermostability, maintaining 50% activity even after 1 h at 120 degrees C, and therefore the enzyme is the most thermostable chitinase so far isolated. The enzyme was not inhibited by allosamidin, the natural inhibitor of chitinolytic activity, and was also resistant to denaturation by urea and SDS. On the other hand, guanidine hydrochloride significantly reduced enzymatic activity, indicating that, apart from the hydrophobic interactions, ion pairs located on the surface of the protein could be playing an important role in maintaining the protein's fold and enzyme activity. Chi70 showed broad substrate specificity for several chitinous substrates and derivatives. The lowest K(m) and highest K(cat) values were found for pNP(NAG)(2) as substrate and were determined to be 0.14 mM and 23 min(-1), respectively. The hydrolysis pattern was similar for oligomers and polymers, with N, N'-diacetylchitobiose [(NAG)(2)] being the final, major hydrolysis product. Chi70 was classified as an endochitinase due to its ability to release chitobiose from colloidal chitin. Additionally, the enzyme presented considerable cellulolytic activity. Analysis of the NH(2)-terminal amino acid sequence showed no detectable homology with other known sequences, suggesting that Chi70 is a new protein.  相似文献   

4.
AIMS: The present work aims to study a new chitinase from Bacillus thuringiensis subsp. kurstaki. METHODS AND RESULTS: BUPM255 is a chitinase-producing strain of B. thuringiensis, characterized by its high chitinolytic and antifungal activities. The cloning and sequencing of the corresponding gene named chi255 showed an open reading frame of 2031 bp, encoding a 676 amino acid residue protein. Both nucleotide and amino acid sequences similarity analyses revealed that the chi255 is a new chitinase gene, presenting several differences from the published chi genes of B. thuringiensis. The identification of chitin hydrolysis products resulting from the activity, exhibited by Chi255 through heterologous expression in Escherichia coli revealed that this enzyme is a chitobiosidase. CONCLUSIONS: Another chitinase named Chi255 belonging to chitobiosidase class was evidenced in B. thuringiensis subsp. kurstaki and was shown to present several differences in its amino acid sequence with those of published ones. The functionality of Chi255 was proved by the heterologous expression of chi255 in E. coli. SIGNIFICANCE AND IMPACT OF THE STUDY: The addition of the sequence of chi255 to the few sequenced B. thuringiensis chi genes might contribute to a better investigation of the chitinase 'structure-function' relation.  相似文献   

5.
Chitinases (EC 3.2.1.14) are hydrolytic enzymes found in different organisms. In plants, they have been described in different tissues and organs, including seeds. This study was triggered by the isolation of a 30-kDa thermostable chitinase from Adenanthera pavonina L. seeds. The enzyme was submitted to N-terminal amino acid sequencing, and the analysis revealed a high degree of homology with class III chitinases. Bidimensional electrophoresis of the 30-kDa band showed the presence of three isoforms with pIs of 5.2, 5.5 and 5.8. A chitinase was also found in exudates released from the same seeds, which was seen to be immunorelated to the above 30-kDa protein. It was also submitted to N-terminal amino acid sequencing and seen as highly homologous to class III chitinases. In addition, the expression of chitinases during A. pavonina L. seed germination and seedling development was investigated. Seeds were allowed to germinate in the absence of light for approximately 5 days and were grown, for different times, in the absence or presence of light. After each seedling developmental time, samples of exudates, roots and cotyledonary leaves were collected and submitted to protein extraction. The presence of proteins immunorelated to the 30-kDa chitinase was detected in all analyzed samples. Further analyses showed that light significantly interfered with the chitinase expression in some organs. The tissue and subcellular chitinase location in seedling roots was also investigated, and it was majorly localized in the cell wall and in the intercellular spaces of the root hair zone.  相似文献   

6.
A method was developed to purify a 30-kDa protein from jelly fig (Ficus awkeotsang) pericarp, including preparation of jelly curd from achenes, extraction of proteins from the curd, and isolation of the 30-kDa protein by anion-exchanger and gel filtration. Chitinase activity was detected in the purified 30-kDa protein by activity staining in both non-denaturing gel electrophoresis and SDS-PAGE. Isoelectrofocusing showed that the isoelectric point of the 30-kDa protein was lower than pH 3.5. The K(m), k(cat), optimal pH and temperature of this putative chitinase were determined to be 0.076 mM, 0.089 s(-1), pH 4, and 60 degrees C, respectively. The purified 30-kDa protein was thermostable (retaining activity up to 65 degrees C for several hours) and could be stored at 4 degrees C for a year without apparent loss of chitinase activity. Antifungal activity of this putative chitinase was measured in terms of inhibition of Colletotrichum gloeosporioides spore germination.  相似文献   

7.
Chitinase in cucumber xylem sap   总被引:2,自引:0,他引:2  
A chitinase activity was detected in fractions of xylem sap collected from the cut surface of cucumber stems. A 28-kDa acidic protein was purified from the active fractions and its N-terminal amino acid sequence was found to be identical to that of a chitinase gene. Cucumber roots produce and secrete an acidic chitinase, one of the PR proteins, into xylem sap and deliver it to aboveground organs.  相似文献   

8.
Homogenates from a mixed ruminal protozoal population and a ruminal protozoon Entodinium caudatum were analyzed for chitinolytic and lysozyme activities by sodium dodecyl sulfate polyacrylamide gel electrophoresis. For chitinase activity, up to eight bands in mixed protozoa and seven bands in E. caudatum were detected. Estimated molecular mass ranged from 70 to 110 kDa. These enzymes did not display lysozyme activity. N-Acetyl-β-glucosaminidase activity was also detected in both samples with an estimated molecular mass of 37 kDa. Lysozyme activity in mixed protozoa was present in two major and three minor bands, where one major band displayed the same motility as chicken egg white (CEW) lysozyme, and the other had an approximate molecular mass of 17.5 kDa. The latter remained active even when denatured in the presence of dithiothreitol and renatured under anaerobic conditions. Entodinium caudatum presented one major band coincident with that of CEW lysozyme and a minor band at the 17.5-kDa point. This study showed that protozoal chitinase and lysozyme activities are originated from several enzymes and that none of these enzymes exhibited both activities.  相似文献   

9.
10.
The purpose of the present study was to characterize the intracellular distribution of a native Neospora caninum 56-kDa protein that is recognized by sera from N. caninum-infected dairy cattle. The complementary DNA coding for this protein was expressed in Escherichia coli as a polyHis fusion protein to which antiserum was prepared and used to localize the antigen in N. caninum tachyzoites and bradyzoites. By sodium dodecylsulfate-polyacrylamide gel electrophoresis and immunoblotting, antirecombinant Nc56 serum recognized a major 56-kDa protein and 2 minor (43 and 39 kDa) proteins of N. caninum tachyzoites. Antiserum to recombinant 56-kDa protein showed this antigen to be present in both N. caninum tachyzoites and bradyzoites/cysts as detected by immunofluorescence staining. Immunoelectron microscopy revealed the 56-kDa antigen to be present in the apical end of both tachyzoites and bradyzoites and possibly extracellularly secreted by tachyzoites.  相似文献   

11.
Immunoprecipitation of native rat liver microsomal 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, phosphorylated by [gamma-32P]ATP in the presence of reductase kinase, revealed a major 97-kDa 32P band which disappeared upon competition with pure unlabeled 53-kDa HMG-CoA reductase. A linear correlation between the expressed/total HMG-CoA reductase activity ratio (E/T) and the fraction of 32P released from the 97-kDa enzyme established the validity of the E/T ratio as an index of HMG-CoA reductase phosphorylation state in isolated microsomes. Incubation of rat hepatocytes with mevalonolactone resulted in a rapid increase in phosphorylation of microsomal reductase (decrease in E/T) followed by an enhanced rate of decay of total reductase activity which was proportional to the loss of 97-kDa enzyme mass determined by immunoblots. Inhibitors of lysosome function dampened both basal and mevalonate-induced reductase degradation in hepatocytes. In an in vitro system using the calcium-dependent protease calpain-2, up to 5-fold greater yields of soluble 52-56-kDa fragments of reductase (immunoblot and total activity) were obtained when the substrate 97-kDa reductase was phosphorylated before proteolysis. Immunoblots of unlabeled phosphorylated reductase compared with gels of immunoprecipitated 32P-labeled reductase resolved a 52-56-kDa doublet which contained 32P solely in the upper band. These data suggest that a major phosphorylation site of HMG-CoA reductase lies within the "linker" segment joining the membrane spanning and cytoplasmic domains of the native 97-kDa protein.  相似文献   

12.
The chitinase gene (chiA71) from Bacillus thuringiensis subsp. pakistani consists of an open reading frame of 1,905 nucleotides encoding 635 amino acid residues with an estimated molecular mass of 71 kDa. Comparison of the deduced amino acid sequence of the mature enzyme to other microbial chitinases shows a putative catalytic domain and a region with conserved amino acids similar to that of the type III module of fibronectin and a chitin-binding domain. By activity detection of chitinase on SDS-PAGE after renaturation, the molecular mass of protein bands with chitinase activity were 66, 60, 47, and 32 kDa. The N-terminal amino acid sequence of each chitinase activity band was the same (Asp-Ser-Pro-Lys-Gln), suggesting that the 60-, 47-, and 32-kDa chitinases were derived from the 66-kDa chitinase by processing step(s) at the C-terminus. The enzyme was identified as an exochitinase, since it generated N-acetylglucosamine from early stage of colloidal chitin hydrolysis. The crude protein (2.3-18.4 mg/ml), containing chitinase at final activities of 8, 16, 32, and 64 mU/ml, was toxic to Aedes aegypti larvae and caused mortalities of 7.5, 15.0, 51.3, and 70.0% respectively, but the same amount of crude protein from a B. thuringiensis subsp. pakistani mutant lacking chitinase was not toxic.  相似文献   

13.
The endochitinase gene chiA74 from Bacillus thuringiensis serovar kenyae strain LBIT-82 was cloned in Escherichia coli DH5 alpha F'. A sequence of 676 amino acids was deduced when the gene was completely sequenced. A molecular mass of 74 kDa was estimated for the preprotein, which includes a putative 4-kDa signal sequence located at the N terminus. The deduced amino acid sequence showed high degree of identity with other chitinases such as ChiB from Bacillus cereus (98%) and ChiA71 from Bacillus thuringiensis serovar pakistani (70%). Additionally, ChiA74 showed a modular structure comprised of three domains: a catalytic domain, a fibronectin-like domain, and a chitin-binding domain. All three domains showed conserved sequences when compared to other bacterial chitinase sequences. A ca. 70-kDa mature protein expressed by the cloned gene was detected in zymograms, comigrating with a chitinase produced by the LBIT-82 wild-type strain. ChiA74 is active within a wide pH range (4 to 9), although a bimodal activity was shown at pH 4.79 and 6.34. The optimal temperature was estimated at 57.2 degrees C when tested at pH 6. The potential use of ChiA74 as a synergistic agent, along with the B. thuringiensis insecticidal Cry proteins, is discussed.  相似文献   

14.
Pro-parasporin-1 is a parasporal inclusion protein of the non-insecticidal Bacillus thuringiensis strain A1190. Cytotoxic fragments, named parasporin-1, were generated from pro-parasporin-1 by trypsin digestion. Parasporin-1 was purified by a combination of chromatography procedures based on the cytotoxic activity to HeLa cells. Two different fragments of 15-kDa and 56-kDa were detected in the purified parasporin-1 fraction. These fragments were tightly associated with each other and could not be separated by chromatography under conditions that preserve cytotoxic activity, indicating that the active form of parasporin-1 is a heterodimer of the 15- and 56-kDa fragments. Amino acid sequencing and MALDI-TOF mass spectrometric analysis revealed that parasporin-1 is generated from pro-parasporin-1 by trypsin digestion at Arg 93 and Arg 231. Of 12 human cell lines tested, parasporin-1 showed strong cytotoxicity to four cell lines derived from cancer tissues, but low to no cytotoxicity to the other cell lines. The time-courses of cytotoxicity indicated that the mode of action of parasporin-1 to sensitive cells differs from that shown for previously isolated cytotoxic proteins from Bacillus thuringiensis, Cyt proteins, and other bacterial pore-forming toxins. Thus, parasporin-1 is a novel cytotoxic protein to human cancer cells produced by B. thuringiensis, and may be useful as a tool to recognize and destroy specific cancer cells.  相似文献   

15.
We investigated the biochemical characteristics of the 51-kDa protein that is a major mitotic apparatus-associated basic protein of sea urchin eggs (Toriyama, M., Ohta, K., Endo, S., and Sakai, H. (1988) Cell Motil. Cytoskeleton 9, 117-128). The amino acid composition of the 51-kDa protein was apparently different from those of tubulin, actin, histones, and myelin basic protein; yet it was similar to those of polypeptide elongation factors 1 alpha (EF-1 alpha). In addition, antibody to EF-1 alpha from yeast cross-reacted with the 51-kDa protein. [3H] GTP binding activity was detected in the phosphocellulose-purified fraction (PC fraction) which predominantly contained the 51-kDa protein and was shown to be specific to GTP, GDP, guanylyl imidodiphosphate, and ITP. Photo-affinity labeling using [alpha-32P]8-azidoguanosine triphosphate (8-azido-GTP) demonstrated that a 51-kDa polypeptide in the PC fraction specifically bound 8-azido-GTP. This GTP-binding polypeptide was bound to a GTP affinity column, could be eluted by the addition of GTP, and was immunoreactive with anti-51-kDa protein antibodies. When the PC fraction was applied to a gel filtration chromatography column, GTP binding activity was completely coeluted with the 51-kDa protein. Furthermore, the PC fraction and the gel filtration-purified fraction had EF-1 alpha activity: [14C]Phe-tRNA transferring activity to ribosomes in the presence of poly(U) and ribosome-dependent GTPase activity. The results indicate that the mitotic apparatus-associated 51-kDa protein is a GTP-binding protein and suggest that it is structurally and functionally related to yeast EF-1 alpha.  相似文献   

16.
一株Sanguibacter sp.C4产几丁质酶基因的克隆与表达   总被引:1,自引:0,他引:1  
陶勇  金虹  龙章富  张丽  丁秀琼  陶科  刘世贵 《遗传学报》2006,33(11):1037-1046
Chi58是Sanguibacter sp.strain C4产生的一种胞外几丁质酶。通过chiA的特异性PCR引物探测到菌株C4中存在几丁质酶,并将扩增到的几丁质酶基因片段(chiA-F)克隆、测序后,提交GenBank数据库进行同源性搜索。对从GenBank中获得的高同源性序列进行比对,并根据保守区域设计2对PCR引物进行嵌套PCR,扩增出Chi58基因的开放阅读框(ORF)。测序结果表明该酶的ORF由1692个核苷酸组成,编码563个氨基酸,在N端有23个氨基酸的信号肽,其成熟蛋白的分子量应为58.544kDa。对其推导氨基酸的序列分析表明Chi58与沙雷氏菌的几丁质酶(如徂)有高度同源性(88.9%-99.6%),其结构主要包括信号肽序列、PKD结构域和18家族糖苷水解酶结构域。将该基因克隆到pET32a(+)载体构建重组质粒pChi58,转入大肠杆菌BL-21(DE3)进行融合表达。经IPTG诱导后,可见分子量约81.1kDa的融合蛋白的表达。  相似文献   

17.
The kup (formerly trkD) gene from Escherichia coli encodes a minor K(+)-uptake system. The gene is located just upstream of the rbsDACBK operon at 84.5 min on the chromosome and is transcribed clockwise. kup codes for a 69-kDa protein, which may be composed of two domains. The first 440 amino acid residues appear to form an integral membrane protein that might traverse the cell membrane 12 times. The C-terminal 182 amino acid residues are predicted to form a hydrophilic domain located at the cytoplasmic side of the membrane. Deletion studies from the 3' end of kup showed that removal of almost the complete hydrophilic domain of the protein reduced, but did not abolish, K(+)-uptake activity.  相似文献   

18.
《FEMS microbiology letters》1997,151(2):197-204
A DNA fragment (pCHI5422) containing two genes encoding a 54-kDa and a 22-kDa chitinase was isolated from a cosmid DNA library of Serratia marcescens KCTC2172. The complete nucleotide sequence of pCHI5422 consisting of 4581 bp was determined. The nucleotide sequence of the 22-kDa chitinase consists of 681 bp of open reading frame encoding 227 amino acids and is located 1422 bp downstream of the translation termination codon of the 54-kDa chitinase sequence. The 54-kDa chitinase gene consisted of 1497 bp in a single open reading frame encoding 499 amino acids. The genes encoding the 54-kDa and 22-kDa chitinase were separately subcloned in Escherichia coli and the individual chitinases were expressed and purified from the culture broth using chitin affinity chromatography. When chitohexaose was used as substrate, the major product of the enzymatic reaction of both the 54-kDa and 22-kDa chitinases was a (GlcNAc)2 dimer with a minor amount of monomer. The specific activity of the 54-kDa and 22-kDa chitinases were 300 μM (min)−1 mg−1 and 17 μM (min)−1 mg−1 on the natural swollen chitin, respectively.  相似文献   

19.
The gene (chi92) encoding the extracellular chitinase of Aeromonas hydrophila JP101 has been cloned and expressed in Escherichia coli. The mature form of Chi92 is an 842-amino-acid (89.830-kDa) modular enzyme comprised of a family 18 catalytic domain, an unknown-function region (the A region), and three chitin-binding domains (ChBDs; Chi92-N, ChBD(CI), and ChBD(CII)). The C-terminally repeated ChBDs, ChBD(CI) and ChBD(CII), were grouped into family V of cellulose-binding domains on the basis of sequence homology. Chitin binding and enzyme activity studies with C-terminally truncated Chi92 derivatives lacking ChBDs demonstrated that the ChBDs are responsible for its adhesion to unprocessed and colloidal chitins. Further adsorption experiments with glutathione S-transferase (GST) fusion proteins (GST-CI and GST-CICII) demonstrated that a single ChBD (ChBD(CI)) could promote efficient chitin and cellulose binding. In contrast to the two C-terminal ChBDs, the Chi92-N domain is similar to ChiN of Serratia marcescens ChiA, which has been proposed to participate in chitin binding. A truncated derivative of Chi92 that contained only a catalytic domain and Chi92-N still exhibited insoluble-chitin-binding and hydrolytic activities. Thus, it appears that Chi92 contains Chi92-N as the third ChBD in addition to two ChBDs (ChBD(CI) and ChBD(CII)).  相似文献   

20.
《FEMS microbiology letters》1998,160(1):151-158
A chitinase gene (pCHI52) encoding the 52-kDa chitinase was isolated from a Serratia marcescens KCTC2172 cosmid library. This chitinase gene consists of 2526 bp with an open reading frame that encodes 485 amino acids. Escherichia coli harboring the pCHI52 gene secreted not only a 52-kDa but also a 35-kDa chitinase into the culture supernatant. We purified both 52-kDa and 35-kDa chitinases using a chitin affinity column and Sephacryl-S-300 gel filtration chromatography. We determined that the 17 N-terminal amino acid sequences of the 52-kDa and the 35-kDa chitinase are identical. Furthermore, a protease obtained from S. marcescens KCTC2172 cleaved the 52-kDa chitinase into the 35-kDa protein with chitinase activity. These results suggest that the 35-kDa chitinase derives from the 52-kDa chitinase by post-translational proteolytic modification. The optimal reaction temperature of 45°C and the optimal pH of 5.5 were identical for both enzymes. The specific activities of the 52-kDa and 35-kDa chitinases on natural swollen chitin were 67 μmol min−1 mg−1 and 60 μmol min−1 mg−1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号