首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Escherichia coli ras locus: its involvement in radiation repair   总被引:5,自引:3,他引:2       下载免费PDF全文
There are several classes of Escherichia coli mutants defective in radiation repair. These include strains defective in pyrimidine dimer excision, in photoreactivation, in recombination, in repair of X-ray damage, and ultraviolet (UV)-conditional mutants which do not divide after UV. Another mutant (ras(-)) has been isolated. The ras(-) has increased UV sensitivity, but only slightly increased X-ray sensitivity (1.5-fold increase). Ability to effect genetic recombination, to reactivate irradiated bacteriophage T1, and to be photoreactivated is normal. UV-induced mutation frequency is greatly increased in the mutant. The ras(-) apparently lacks the ability to repair some UV damage in the bacterial cell but can repair UV damage to bacteriophage DNA. The ras locus is located between lac and purE on the chromosome map.  相似文献   

2.
Xeroderma pigmentosum (XP) cells are dificient in the repair of damage induced by ultraviolet irradiation. Excision-repair-deficient XP cell strains have been classified into 7 distinct complementation groups, according to results of studies on cell fusion and UV irradiation. XP cells are not only abnormally sensitive to UV, but also to a variety of chemical carcinogens, including 4-nitroquinoline-1-oxide (4NQO). Complementation analysis with XP strains from 4 different complementation groups with respect to the repair of 4NQO-induced DNA damage revealed that the classification of the strains into complementation groups with respect to 4NQO-induced repair coincides with the classification based on the repair of UV damage.  相似文献   

3.
The cytotoxic action of physical and chemical agents on 10 skin fibroblast strains in culture derived from individuals with Cockayne's syndrome was measured in terms of colony-forming ability. As compared to fibroblasts from normal donors, all Cockayne cell strains tested exhibited a significantly increased sensitivity to UV light and a normal sensitivity to X-rays. Cells from two sets of parents of unrelated Cockayne children showed an intermediate level of UV sensitivity. There was no effect of 0.5 mM caffeine on UV survival in normal and two Cockayne strains tested, indicating that postreplicational repair in Cockayne cells as measured by caffeine sensitivity was probably normal. Sensitivity of normal and Cockayne cells to the chemical carcinogens and mutagens 4NQO, N-AcO-AAF, ICR-170 and EMS was also compared. An increased sensitivity of Cockayne cells to 4NQO or N-AcO-AAF, but not the ICR-170 or EMS, was observed. However, unlike the intermediate UV sensitivity, the cell strains from two parents of Cockayne patients showed the same sensitivity to N-AcO-AAF or 4NQO as fibroblasts from normal individuals. Quantiation of damage to the DNA after 20 J . m-2 UV irradiation indicates normal levels of [3H] thymidine incorporation in the Cockayne cells, in contrast to UV-irradiated xeroderma pigmentosum cells (XP 12BE) in which there was a very low level of repari synthesis. Moreover, we have shown previously that excision of UV-induced pyrimidine dimers in 2 of the 10 Cockayne cell strains was normal.  相似文献   

4.
Cockayne's syndrome (CS) is a rare autosomal recessive genetic disease characterized by mental and physical retardation, microcephaly, dwarfism, retinitis pigmentosa and a hypersensitivity to sunlight. Cells originating from patients also exhibit, in vitro, a hypersensitivity to UV radiation. Using a colony assay in vitro, we studied the sensitivity of 5 CS cell strains (GM739, BOR, CS697, CS698 and KA) and two normal ones (HF19 and GP) to UV- and gamma-irradiation. The 5 CS strains appear to be UV-hypersensitive but the sensitivity varies widely from one strain to another. Hypersensitivity to gamma-rays has been reported for 4 out of the 5 CS cell strains investigated. However, these CS cell strains are less sensitive to gamma-rays than are ataxia telangiectasia cells. The KA cell strain exhibits a normal response to gamma-irradiation. Repair of potentially lethal damage (PLD) after UV- and gamma-irradiation was investigated by using unfed plateau-cell cultures. Under these conditions, control cells show a great capacity to repair PLD (10- to 30-fold survival increase at 1% survival level). The two CS strains (GM739 and BOR), which are hypersensitive to both UV- and gamma-irradiation, exhibit no or only little PLD repair after treatment. In contrast, the normal response of KA cells to gamma-rays is associated with a normal PLD repair capability. This latter cell strain exhibits an intermediate sensitivity to UV and shows an intermediate PLD repair capacity. The response of CS cell strains after gamma-irradiation suggests a genetic heterogeneity. Three complementation groups are described in CS cells when dealing with UV radiosensitivity. However, variations in gamma-ray sensitivity are reported for cells within the same UV complementation group.  相似文献   

5.
A series of Escherichia coli strains deficient in the 5'----3' exonuclease activity associated with deoxyribonucleic acid (DNA) polymerase I (exonuclease VI) and exonuclease VII has been constructed. Both of these enzymes are capable of pyrimidine dimer excision in vitro. These strains were examined for conditional lethality, sensitivity to ultraviolet (UV) and X-irradiation, postirradiation DNA degradation, and ability to excise pyrimidine dimers. It was found that strains deficient in both exonuclease VI (polAex-) and exonuclease VII (xseA-) are significantly reduced in their ability to survive incubation at elevated temperature (43 degrees C) beyond the reduction previously observed for the polAex single mutants. The UV and X-ray sensitivity of the exonuclease VI-deficient strains was not increased by the addition of the xseA7 mutation. Mutants deficient in both enzymes are about as efficient as wild-type strains at excising dimers produced by up to 40 J/m2 UV. At higher doses strains containing only polAex- mutations show reduced ability to excise dimers; however, the interpretation of dimer excision data at these doses is complicated by extreme postirradiation DNA degradation in these strains. The additional deficiency in the polAex xseA7 double-mutant strains has no significant effect on either postirradiation DNA degradation or the apparent deficiency in dimer excision at high UV doses observed in polAex single mutants.  相似文献   

6.
In order to study the possible relationship between gene amplification and DNA repair we analyzed the amplification of the CAD gene in four mutants hypersensitive to UV light (CHO43RO, CHO7PV, UV5 and UV61) isolated in vitro from Chinese hamster cell lines (CHO-K1 and AA8). These mutants are characterized by different defects in the nucleotide excision repair mechanism and represent complementation groups 1, 9, 2, and 6 respectively. To evaluate the amplification ability of each cell line we measured the rate of appearance of PALA resistant clones with the Luria and Delbrück fluctuation test. Resistance to PALA is mainly due to amplification of the CAD gene. In the mutants CHO43RO, UV5 and CHO7PV we reproducibly found an amplification rate lower than in the parental cell lines (2–5 times), while in UV61 the amplification rate was about 4 times higher. This result indicates that each mutant is characterized by a specific amplification ability and that the unefficient removal of UV induced DNA damage can be associated with either a higher or a lower amplification rate. However, the analysis of randomly isolated CHO-K1 clones with normal UV sensitivity has shown variability in their amplification ability, making it difficult to relate the specific amplification ability of the mutants to the DNA repair defect and suggesting clonal heterogeneity of the parental population.  相似文献   

7.
We investigated the cloning efficiency, DNA repair, and the rate of DNA replication in the skin fibroblasts from patients with Werner's syndrome (WS) of an autosomal recessive premature aging disease. Five WS strains exhibited normal levels of sensitivity toward X-ray and UV killings and repair of X-ray induced single strand breaks of DNA (rejoining) and UV damage to DNA (unscheduled DNA synthesis). The sedimentation of newly synthesizing DNA in alkaline sucrose gradients demonstrated a characteristic feature that only the elongation rate of DNA chains, estimated by the molecular weight increase, was significantly slower during early passages in WS cells than in normal Hayflick Phase II fibroblasts. In addition, plating efficiencies as well as the replicative potentials of five WS strains were more limited than those of normal cells under the identical culture conditions. It seems therefore that at least in the WS cells tested, the slow rate of DNA replication may be more related to the shortened lifespan and enhanced cell death, as manifestation of premature senescence at the cellular level, than be the DNA repair ability.  相似文献   

8.
9.
Translesion synthesis (TLS) refers to mechanisms by which specialized DNA polymerases incorporate nucleotides opposite fork-blocking lesions and extend replication until standard replicative polymerases take over. The first eukaryotic TLS polymerase discovered, S. cerevisiae Polzeta, consists of catalytic subunit Rev3 and non-catalytic subunit Rev7. Human homologs of these two proteins have been identified. Studies by Lawrence, Maher, and colleagues comparing UV((254nm))-irradiated human fibroblast cell strains expressing high levels of hRev3 antisense to their normal parental strains demonstrated that there was no difference in cell survival, but that the frequency of UV-induced mutations in the derivative strains was 10-fold lower than that of the parental strains, indicating that hRev3 plays a critical role in such mutagenesis. To examine the role of hRev7 in TLS, we generated human fibroblasts expressing hRev7 siRNA, identified two derivative cell strains with significantly reduced levels of hRev7, and compared them to their parental strain and a vector control for cell survival, induction of mutations, and ability to traverse the cell cycle following exposure to UV radiation. Cells with reduced hRev7 were approximately 2-times more sensitive to UV-induced cytotoxicity than the controls, indicating that unlike hRev3, hRev7 plays a protective role for cells exposed to UV radiation. When these cell strains were assayed for the frequency of mutations induced by UV in their HPRT gene, cell stains with reduced hRev7 were 5-times less sensitive to UV-induced mutagenesis than control strains. In addition, when these four strains were synchronized at the G1/S border, released from the block, UV-irradiated, and allowed to traverse the cell cycle, the rate of progression through S-phase of the cell strains with reduced hRev7 was significantly slower than that of the control strains. These data strongly support the hypothesis that hRev7 is required for TLS past UV-photoproducts, and together with hRev3, comprise hPolzeta.  相似文献   

10.
The sensitivity of Bloom's syndrome (bl/bl) fibroblasts to ultraviolet light (254 nm) has been estimated by 4 criteria: sister-chromatid exchange (SCE) formation, micronucleus production, cell survival, and host-cell reactivation of UV-irradiated adenovirus 2. In general, bl/bl strains did not differ significantly from the normal (+/+) strains in their response to UV treatment by any of the 4 criteria. One bl/bl strain, GM1492, was exceptional: It was abnormally sensitive to UV light in the SCE, micronucleus, and host-cell reactivation assays, but was not sensitive to UV as estimated by colony-forming ability. Thus, although one of the bl/bl strains studied in the experiments was sensitive to UV light as judged by some criteria, UV sensitivity is not a universal characteristic of Bloom's syndrome cells. It is nuclear whether the UV sensitivity of the GM1492 strain reflects genetic diversity within the syndrome or some unrelated property of this strain.  相似文献   

11.
The effects of ultraviolet (UV) light on cell morphology, deoxyribonucleic acid (DNA) synthesis, and protein synthesis in UV-sensitive and UV-resistant strains of Haemophilus influenzae were examined. Relatively low doses of UV induce lyses in the sensitive strains but not in the resistant mutant; however, UV temporarily blocks cell division of the resistant mutant, and elongated cells are formed after a period of incubation. Low doses of UV do not stop DNA synthesis in any of the strains examined; however, they do slow the rate of DNA synthesis in a manner consistent with the model correlating the kinetics of postirradiation DNA synthesis with the cell's ability to repair UV-induced DNA lesions. The data are not consistent with a model in which UV causes all DNA synthesis to stop for a time linearly dependent on dose.  相似文献   

12.
Trichothiodystrophy is a genetic disease which in the majority of cases studied is associated with a deficiency in the ability to repair UV damage in cellular DNA. Three categories of UV response have been identified. In type 1 the response is completely normal, whereas type 2 cells are deficient in excision-repair, with properties indistinguishable from those of XP complementation group D. Type 3 cells have normal survival following UV-irradiation and normal rates of removal of cyclobutane pyrimidine dimer sites. Nevertheless repair synthesis is reduced by 50% in these cell strains and this is associated with a marked reduction in the repair of 6-4 photoproducts from cellular DNA. The present results show that 50% or more of repair synthesis at early times after irradiation of normal primary human fibroblasts is attributable to repair of 6-4 products. They also suggest that repair of cyclobutane dimers is crucial for cell survival.  相似文献   

13.
Dam methylase mutants were recovered in a screen for mutants sensitive to UV irradiation or mild inhibition of replication elongation. Dam's role in tolerance of DNA damage is to provide binding sites for SeqA, because seqA mutants showed similar sensitivity that was genetically epistatic to dam. The sensitivity of seqA mutants to UV irradiation and to the replication inhibitors hydroxyurea (HU) and azidothymidine (AZT) was suppressed by alleles of dnaA that reduce the efficiency of replication initiation. These results suggest that for survival of replication fork damage, SeqA's repression of replication initiation is more important than its effects on nucleoid organization. Convergence of forks upon DNA damage is a likely explanation for seqA mutant sensitivity, because its poor survival of UV was suppressed by reducing secondary initiation through minimal medium growth. Surprisingly, growth in minimal medium reduced the ability of seqA+ strains to form colonies in the presence of low levels of AZT. Double dnaA seqA mutants exhibited plating efficiencies much superior to wild-type strains during chronic low-level AZT exposure in minimal medium. This suggests that mild inhibition of replication fork progression may actively restrain initiation such that seqA+ strains fail to recover initiation capacity after sustained conditions of replication arrest.  相似文献   

14.
The effect of X-ray irradiation on cell survival, induction, and repair of DNA damage was studied by using 10 Chroococcidiopsis strains isolated from desert and hypersaline environments. After exposure to 2.5 kGy, the percentages of survival for the strains ranged from 80 to 35%. In the four most resistant strains, the levels of survival were reduced by 1 or 2 orders of magnitude after irradiation with 5 kGy; viable cells were recovered after exposure to 15 kGy but not after exposure to 20 kGy. The severe DNA damage evident after exposure to 2.5 kGy was repaired within 3 h, and the severe DNA damage evident after exposure to 5 kGy was repaired within 24 h. The increase in trichloroacetic acid-precipitable radioactivity in the culture supernatant after irradiation with 2.5 kGy might have been due to cell lysis and/or an excision process involved in DNA repair. The radiation resistance of Chroococcidiopsis strains may reflect the ability of these cyanobacteria to survive prolonged desiccation through efficient repair of the DNA damage that accumulates during dehydration.  相似文献   

15.
The effect of X-ray irradiation on cell survival, induction, and repair of DNA damage was studied by using 10 Chroococcidiopsis strains isolated from desert and hypersaline environments. After exposure to 2.5 kGy, the percentages of survival for the strains ranged from 80 to 35%. In the four most resistant strains, the levels of survival were reduced by 1 or 2 orders of magnitude after irradiation with 5 kGy; viable cells were recovered after exposure to 15 kGy but not after exposure to 20 kGy. The severe DNA damage evident after exposure to 2.5 kGy was repaired within 3 h, and the severe DNA damage evident after exposure to 5 kGy was repaired within 24 h. The increase in trichloroacetic acid-precipitable radioactivity in the culture supernatant after irradiation with 2.5 kGy might have been due to cell lysis and/or an excision process involved in DNA repair. The radiation resistance of Chroococcidiopsis strains may reflect the ability of these cyanobacteria to survive prolonged desiccation through efficient repair of the DNA damage that accumulates during dehydration.  相似文献   

16.
Inactivation of bacterial strains derived from E. coli B, which differ in the DNA-repair capacity (exc-, pol- and rec-) was investigated after far and near UV irradiation. The same strains were also used as hosts for UV-irradiated phage T7. The injuries caused in bacteria and phages by radiation with longer wavelengths were reparable with greater difficulty and only to a lesser extent by the investigated repair mechanisms. We suppose that near UV affects cell proteins and that, as a result of this damage, the DNA-repair systems may be inhibited.  相似文献   

17.
Adenovirus is a focus of the water treatment community because of its resistance to standard, monochromatic low-pressure (LP) UV irradiation. Recent research has shown that polychromatic, medium-pressure (MP) UV sources are more effective than LP UV for disinfection of adenovirus when viral inactivation is measured using cell culture infectivity assays; however, UV-induced DNA damage may be repaired during cell culture infectivity assays, and this confounds interpretation of these results. Objectives of this work were to study adenoviral response to both LP and MP UV using (i) standard cell culture infectivity assays and (ii) a PCR assay to directly assess damage to the adenoviral genome without introducing the virus into cell culture. LP and MP UV dose response curves were determined for (i) log inactivation of the virus in cell culture and (ii) UV-induced lesions per kilobase of viral DNA as measured by the PCR assay. Results show that LP and MP UV are equally effective at damaging the genome; MP UV is more effective at inactivating adenovirus in cell culture. This work suggests that the higher disinfection efficacy of MP UV cannot be attributed to a difference in DNA damage induction. These results enhance our understanding of the fundamental mechanisms of UV disinfection of viruses—especially double-stranded DNA viruses that infect humans—and improve the ability of the water treatment community to protect public health.  相似文献   

18.
This constitutes the first study to report on the relationship between pulsed UV light (PL) irradiation and the simultaneous occurrence of molecular and cellular damage in clinical strains of Candida albicans. Microbial protein leakage and propidium iodide (PI) uptake assays demonstrated significant increases in cell membrane permeability in PL-treated yeast that depended on the amount of UV pulses applied. This finding correlated well with the measurement of increased levels of lipid hydroperoxidation in the cell membrane of PL-treated yeast. PL-treated yeast cells also displayed a specific pattern of intracellular reactive oxygen species (ROS) generation, where ROS were initially localised in the mitochondria after low levels of pulsing (UV dose 0.82 μJ/cm2) before more wide-spread cytosolic ROS production occurred with enhanced pulsing. Intracellular ROS levels were measured using the specific mitochondrial peroxide stain dihydrorhodamine 123 and the cytosolic oxidation stain dichloroflurescin diacetate. Use of the dihydroethidium stain also revealed increased levels of intracellular superoxide as a consequence of augmented pulsing. The ROS bursts observed during the initial phases of PL treatment was consistent with the occurrence of apoptotic cells as confirmed by detection of specific apoptotic markers, abnormal chromatin condensation and externalisation of cell membrane lipid phosphatidylserine. Increased amount of PL-irradiation (ca. UV does 1.24-1.65 μJ/cm2) also resulted in the occurrence of late apoptotic and necrotic yeast phenotypes, which coincided with the transition from mitochondrial to cytosolic localisation of ROS and with irreversible cell membrane leakage. Use of the comet assay also revealed significant nuclear damage in similarly treated PL samples. Although some level of cellular repair was observed in all test strains during sub-lethal exposure to PL-treatments (≤ 20 pulses or UV dose 0.55 μJ/cm2), this was absent in similar samples exposed to increased amounts of pulsing. This study showed that PL-irradiation inactivates C. albicans test strains through a multi-targeted process with no evidence of microbial ability to support cell growth after ≤ 20 pulses. Implications of our findings in terms of application of PL for contact-surface disinfection are discussed.  相似文献   

19.
Cockayne syndrome (CS) is an autosomal recessive disorder with dwarfism, mental retardation, sun sensitivity and a variety of other features. Cultured CS cells are hypersensitive to ultraviolet (UV) light, and following UV irradiation, CS cells are unable to restore RNA synthesis rates to normal levels. This has been attributed to a specific deficiency in CS cells in the ability to repair damage in actively transcribed regions of DNA at the rapid rate seen in normal cells. We have used the failure of recovery of RNA synthesis, following UV irradiation of CS cells, in a complementation test. Cells of different CS donors are fused. Restoration of normal RNA synthesis rates in UV-irradiated heterodikaryons indicates that the donors are in different complementation groups, whereas a failure to effect this recovery implies that they are in the same group. In an analysis of cell strains from 22 CS donors from several countries and different racial groups, we have assigned five cell strains to the CS-A group and the remaining 17 to CS-B. No obvious racial, clinical or cellular distinctions could be made between individuals in the two groups. Our analysis will assist the identification of mutations in the recently cloned CSA and CSB genes and the study of structure-function relationships. Received: 19 June 1995  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号