首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Leukotriene B4 (LTB4) is a derivative of arachidonic acid which causes neutrophil diapedesis, endothelial swelling and increased permeability of post-capillary venules. To detect whether these effects are accompanied by degranulation of leukocytes and visible injury to the microvessels, the vasculature of rabbit skeletal muscle (tenuissimus) was exposed to LTB4 (10-20 nM). Some preparations were pre-treated with prostaglandin E1, (PGE1). When leukocytes started to adhere markers of plasma leakage were infused. Ultrastructural examination of leakage areas revealed that neutrophils and eosinophils appeared structurally intact, but many basophils and mast cells had been partially degranulated which indicated that vasoactive substances may have been liberated. However, endothelial gaps, such as may form in response to histamine released during degranulation, were not observed and there was no obvious injury to the endothelial cells. The apparent swelling observed by light microscopy was due to pseudopods of migrating leukocytes. Electron dense markers occurred in some endothelial vesicles and in the vicinity of neutrophils which had reached the abluminal side. These particles are interpreted to have escaped concurrent with leukocyte migration. After treatment with both PGE1 and LTB4 a few post-capillary venules showed endothelial gaps. However, leakage of markers was insignificant where the basement membrane persisted. It is concluded that exposure to LTB4 per se and the resulting leukocyte diapedesis are not structurally damaging to the vasculature.  相似文献   

2.
1. The high viscoelastic property of neutrophils is the major factor contributing to their extensive accumulation (more than 50% of circulating neutrophils) in the pulmonary micro vasculature.2. The cholinergic parasympathetic and adrenergic sympathetic nerves modulate the size of the pulmonary neutrophil pool by regulating arterial and venous pressures, increases in which promote or reduce neutrophil transit times, respectively.3. Biochemical factors, such as the cytokines and complement, which act upon the neutrophils to increase their viscoelasticity and promote the interaction of neutrophil cell adhesion molecules with counter ligands on the endothelial cell, are the primary factors regulating the size of the pulmonary pool of vascular neutrophils.4. The primary afferent nerves, through their release of substance P, are the most important neural elements regulating neutrophil accumulation and function. Substance P facilitates the actions of other inflammatory agents (e.g. LTB4, platelet activating factor) on neutrophil adhesion, migration and biochemical reactivity.5. The sympathetic nervous system indirectly regulates neutrophil functions by regulating the release of an immunosuppressive factor from submandibular glands.6. With continued study of nervous system regulation of neutrophil function, the mechanisms by which psychological factors affect these cells will eventually be revealed.  相似文献   

3.
It has been shown that Bothrops jararaca venom (BjV) induces a significant leukocyte accumulation, mainly neutrophils, at the local of tissue damage. Therefore, the role of the adhesion molecules intercellular adhesion molecule-1 (ICAM-1), LECAM-1, CD18, leukocyte function-associated antigen-1 (LFA-1) and platelet endothelial cell adhesion molecule-1 (PECAM-1) on the BjV-induced neutrophil accumulation and the correlation with release of LTB4, TXA2, tumor necrosis factor-alpha, interleukin (IL)-1 and IL-6 have been investigated. Anti-mouse LECAM-1, LFA-1, ICAM-1 and PECAM-1 monoclonal antibody injection resulted in a reduction of 42%, 80%, 66% and 67%, respectively, of neutrophil accumulation induced by BjV (250 microg/kg, intraperitoneal) injection in male mice compared with isotype-matched control injected animals. The anti-mouse CD18 monoclonal antibody had no significant effect on venom-induced neutrophil accumulation. Concentrations of LTB(4), TXA(2), IL-6 and TNF-alpha were significant increased in the peritoneal exudates of animals injected with venom, whereas no increment in IL-1 was detected. This results suggest that ICAM-1, LECAM-1, LFA-1 and PECAM-1, but not CD18, adhesion molecules are involved in the recruitment of neutrophils into the inflammatory site induced by BjV. This is the first in vivo evidence that snake venom is able to up-regulate the expression of adhesion molecules by both leukocytes and endothelial cells. This venom effect may be indirect, probably through the release of the inflammatory mediators evidenced in the present study.  相似文献   

4.
The possible role of fish mast cells in regulating neutrophil adhesion to vascular endothelial cells was studied using primary cultures of tilapia vascular endothelial cells. The endothelial cell monolayer, which was cultured in 96 well plates, was stimulated for appropriate periods with tilapia mast cell (tMC)-lysates or with Leibovitz-15 (L-15) medium, as a control, and peripheral neutrophils were added into each well after removal of the lysates. After 30 min incubation, cells in the wells were fixed with formalin and non-adherent neutrophils were removed. The cells were stained with Giemsa and neutrophil adhesion was observed microscopically. Although some neutrophils attached to the endothelial cells without stimulation, neutrophil adhesion was enhanced after the incubation of the endothelial cells with tMC-lysates. Neutrophil adhesion was maximal 6 h after the lysate stimulation, with a six-fold increase compared to the control. Neutrophil adhesion also increased when the endothelial cells were stimulated with neutrophil lysates, lipopolysaccharide and zymosan-treated tilapia sera. These results indicate that fish vascular endothelial cells express some neutrophil adhesion molecule(s) after stimulation with various substances.  相似文献   

5.
Treatment of vascular endothelial cells with inflammatory cytokines stimulates surface expression of E-selectin (previously known as endothelial-leukocyte adhesion molecule-1) and promotes the transendothelial migration of neutrophils. To assess participation of E-selectin in cytokine-mediated neutrophil migration, an in vitro model consisting of monolayers of human umbilical vein endothelial cells (HUVEC) grown on amniotic connective tissue was used. When HUVEC-amnion cultures were stimulated for 4 h with relatively low concentrations of IL-1 (0.1 to 0.15 U/ml), mAb BB11 or H18/7 to E-selectin partially inhibited migration of subsequently added neutrophils. However, when the cultures were stimulated with 15 U/ml of IL-1 for 4 or 24 h, little to no inhibition was observed. mAb to E-selectin also failed to inhibit migration of neutrophils across HUVEC-amnion cultures treated with low doses of IL-1 when the leukocytes were additionally stimulated by the chemoattractant leukotriene B4. In contrast, migration of neutrophils across IL-1-treated HUVEC was profoundly inhibited by mAb to CD11/CD18 leukocytic integrins under all conditions tested. Results of these studies suggest that participation of E-selectin is not essential for migration of neutrophils across cytokine-stimulated HUVEC in vitro; rather, E-selectin can be bypassed in favor of CD11/CD18-dependent mechanisms under appropriate circumstances.  相似文献   

6.
To study the effects of the cytokines IL-1 and TNF-alpha on the transendothelial migration of neutrophils, human umbilical vein endothelial cells (HUVEC) were grown to confluence on connective tissue prepared from human amniotic membrane. Pretreatment of HUVEC-amnion cultures with rIL-1 beta (7.5 ng/ml) or rTNF-alpha (5 ng/ml) for 4 h resulted in rapid migration of from 20 to 50% of subsequently added neutrophils across the endothelial monolayer. In contrast, only 3 +/- 3% of added neutrophils penetrated the HUVEC monolayer in the absence of any stimulus. The number of neutrophils that migrated across cytokine-treated HUVEC was similar to the number that traversed untreated monolayers in response to gradients of FMLP; in addition, it was only 35% less than the number of neutrophils that migrated in response to leukotriene B4. No consistent additive effect was seen when migration was induced by both cytokine pretreatment of the HUVEC and a chemotactic gradient. The number of neutrophils that migrated across IL-1-treated cultures was proportional to the number added over the range of 2.5 x 10(5) to 4 x 10(6) neutrophils. When used at optimal concentrations, IL-1 and TNF-alpha were equally effective in stimulating neutrophil migration; no additive effect was seen when HUVEC were pretreated with optimal doses of both cytokines together. Direct addition of IL-1 or TNF-alpha to a 1-h migration assay had no effect on neutrophil adhesion to or migration across HUVEC, either in the presence or absence of a chemotactic gradient. Stimulation of neutrophil transendothelial migration in this system did not appear to be caused by adsorption of cytokine by the amniotic tissue, nor was it due to contamination of the cytokine preparations by LPS. These results suggest that IL-1 and TNF-alpha, generated at sites of inflammation, may act upon the endothelium to promote emigration of neutrophils from the vasculature.  相似文献   

7.
Sepsis is a systemic inflammatory response commonly caused by bacterial infection. We demonstrated that the outcome of sepsis induced by cecal ligation and puncture (CLP) correlates with the severity of the neutrophil migration failure towards infectious focus. Failure appears to be due to a decrease in the rolling and adhesion of neutrophil to endothelium cells. It seems that neutrophil migration impairment is mediated by the circulating inflammatory cytokines, such as TNF-alpha and IL-8, which induce the nitric oxide (NO) production systemically. It is supported by the fact that intravenous administration of these cytokines reduces the neutrophil migration induced by different inflammatory stimuli, and in severe sepsis the circulating concentrations of the cytokines and chemokines are significantly increased. Moreover, the neutrophil migration failure and the reduction in the rolling/adhesion were not observed in iNOS-/- mice and, aminoguanidine prevented this event. We also demonstrated that the failure of neutrophil migration is a Toll-4 receptor (TLR4) dependent mechanism, since it was not observed in TLR4 deficient mice. Furthermore, it was also observed that circulating neutrophils obtained from septic patients present failure of neutrophil chemotaxis toward fMLP, IL-8, and LTB4 and an increased in sera concentrations of NO3 and cytokines. In conclusion, we demonstrated that, in sepsis, failure of neutrophil migration is critical for the outcome and that NO is involved in the process.  相似文献   

8.
We examined the role of circulating granulocytes in the pulmonary microvascular response to leukotriene B4 (LTB4) by prior depletion of circulating granulocytes using hydroxyurea. LTB4 (2 micrograms/kg injection followed by infusion of 2 micrograms/kg over 15 min) produced transient increases in pulmonary arterial pressure and pulmonary vascular resistance, indicating that neutrophils were not required for the pulmonary hemodynamic effects of LTB4. Infusion of LTB4 in granulocyte-depleted sheep also resulted in transient increases in pulmonary lymph flow (QL) with no significant change in the lymph-to-plasma protein concentration ratio (L/P), findings similar to those in control animals. In vitro studies indicated that LTB4 (10(-7) or 10(-9) M) produced a transient adherence of neutrophils to cultured pulmonary artery endothelial monolayers. Maximal responses occurred at 10 min after the addition of LTB4 to the endothelial cell-neutrophil coculture system, and the adherence decreased to base line within 60 min. LTB4 infusion in sheep also produced a transient uptake of autologous 111In-oxine-labeled neutrophils. The results indicate that LTB4-mediated increase in pulmonary transvascular protein clearance (QL x L/P) is independent of circulating granulocytes.  相似文献   

9.
An in vitro model was designed to study the role of ischemia/reperfusion and endothelium-derived oxygen free radicals on neutrophil adhesion, with particular interest in the endothelial adhesion molecules involved. Human umbilical vein endothelial cells were submitted to 5 h hypoxia followed by various times (20 min to 24 h) of reoxygenation. Human resting neutrophils were added to monolayers for the last 15 min of reoxygenation. Adherence was evaluated by myeloperoxidase assay. Under these conditions, we found an increased adhesion of neutrophils with two peaks after 20 min and 4 h reoxygenation. This was correlated with the respective expression of the preformed granule membrane protein 140 (GMP-140) and of the de novo synthesized endothelial leukocyte adhesion molecule 1 (ELAM-1) on endothelial surface. Superoxide dismutase and/or catalase, or oxypurinol added to cultures before hypoxia efficiently prevented neutrophil adhesion. These results underline the crucial role played by endothelial oxy radicals at reoxygenation in adhesion of leukocytes, which could lead to an amplification of the oxidative stress injury. The protection offered by free radical scavengers emphasizes the potential therapeutic use of antioxidants in postischemic vascular disorders.  相似文献   

10.
Summary Immunohistological analysis of sections prepared from human palatine tonsils revealed marked differences in the distribution of the adhesion molecule, leucocyte function antigen-1 (LFA-1) and its counter receptor, intercellular adhesion molecule-1 (ICAM-1). Light microscopy showed that LFA-1 was restricted to the leucocytes, particularly the lymphocytes. In contrast, staining of ICAM-1 was predominantly confined to the vascular endothelium with the greatest expression seen on the morphologically distinct high endothelial venules in the parafollicular areas; these are the sites that appear to support lymphocyte migration. Electron microscopy revealed that ICAM-1 was present on the luminal and lateral surfaces of the high endothelium and absent from the abluminal surface supported by basal lamina. The ICAM-1 was also absent from those surfaces of the endothelium that were in close contact with intravascular lymphocytes. Other cells stained by the anti-ICM-1 antibody included dendritic cells, plasma cells and epithelial cells in the reticulated crypt epithelium and in the upper strata of the non-keratinised stratified squamous epithelium. The high expression of LFA-1 was most prominent on lymphocytes, low on antigen-presenting cells and activated lymphoid cells, and not detectable on plasma cells, epithelial and endothelial cells. We propose that LFA-1/ICAM-1 binding participates in mediating the transendothelial migration of lymphocytes across the high endothelial venules of palatine tonsil.  相似文献   

11.
SC-41930 was evaluated for effects on human neutrophil chemotaxis and degranulation. At concentrations up to 100 microM, SC-41930 alone exhibited no effect on neutrophil migration, but dose-dependently inhibited neutrophil chemotaxis induced by leukotriene B4 (LTB4) in a modified Boyden chamber. Concentrations of SC-41930 from 0.3 microM to 3 microM competitively inhibited LTB4-induced chemotaxis with a pA2 value of 6.35. While inactive at 10 microM against C5a-induced chemotaxis, SC-41930 inhibited N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced chemotaxis, with 10 times less potency than against LTB4-induced chemotaxis. SC-41930 inhibited [3H]LTB4 and [3H]fMLP binding to their receptor sites on human neutrophils with KD values of 0.2 microM and 2 microM, respectively. SC-41930 also inhibited neutrophil chemotaxis induced by 20-OH LTB or 12(R)-HETE. At concentrations up to 10 microM, SC-41930 alone did not cause neutrophil degranulation, but inhibited LTB4-induced degranulation in a noncompetitive manner. SC-41930 also inhibited fMLP- or C5a-induced degranulation, but was about 8 and 10 times less effective for fMLP and C5a, respectively. The results indicate that SC-41930 is a human neutrophil LTB4 receptor antagonist with greater specificity for LTB4 than for fMLP or C5a receptors.  相似文献   

12.
The integrin alpha9beta1 has been shown to be widely expressed on smooth muscle and epithelial cells, and to mediate adhesion to the extracellular matrix proteins osteopontin and tenascin-C. We have found that the peptide sequence this integrin recognizes in tenascin-C is highly homologous to the sequence recognized by the closely related integrin alpha4beta1, in the inducible endothelial ligand, vascular cell adhesion mole-cule-1 (VCAM-1). We therefore sought to determine whether alpha9beta1 also recognizes VCAM-1, and whether any such interaction would be biologically significant. In this report, we demonstrate that alpha9beta1 mediates stable cell adhesion to recombinant VCAM-1 and to VCAM-1 induced on human umbilical vein endothelial cells by tumor necrosis factor-alpha. Furthermore, we show that alpha9beta1 is highly and selectively expressed on neutrophils and is critical for neutrophil migration on VCAM-1 and tenascin-C. Finally, alpha9beta1 and alpha4 integrins contribute to neutrophil chemotaxis across activated endothelial monolayers. These observations suggest a possible role for alpha9beta1/VCAM-1 interactions in extravasation of neutrophils at sites of acute inflammation.  相似文献   

13.
Observation of the microcirculation of the hamster cheek pouch by intravital microscopy revealed five steps of neutrophil migration from the venules after topical application of leukotriene B(4) to the microvasculature: rolling along the venular wall (Step 1), adhesion to it (Step 2), disappearance from the vascular lumen (Step 3), presence between the endothelial cells and the subendothelial basement membrane (Step 4) and passage through the basement membrane (Step 5). The present study was performed to examine whether a metalloproteinase inhibitor inhibits neutrophil migration at any of the above five steps. Chymostatin and leupeptin did not inhibit any of these five steps. In contrast, FN-439, a selective inhibitor of matrix metalloproteinase, reduced the number of neutrophils in the perivascular space without affecting Steps 1 to 3. It was concluded that neutrophils may use metalloproteinase (collagenase/gelatinase) to penetrate the subendothelial basement membrane.  相似文献   

14.
The distribution of platelet endothelial cell adhesion molecule (PECAM-1, CD31) in vascular endothelium has been disputed. Originally reported to be highly concentrated at interendothelial cell contacts, recent studies have claimed that CD31 is distributed evenly over the entire endothelial cell surface. We re-investigated this question with two different murine anti-CD31 antibodies (MEC 13.3 and M-20), using a pre-embedding immunonanogold electron microscopic procedure that allowed precise label quantitation. MEC 13.3 reacted strongly with the luminal and abluminal plasma membranes of the endothelial cells lining microvessels in normal tissues and in angiogenic vessels induced by a tumor and vascular endothelial growth factor (VEGF-A164). Lateral plasma membranes were significantly less labeled. Conversely, M-20 strongly labeled the cytoplasmic face of the lateral plasma membranes of endothelial cells, although sparing specialized junctions, and only weakly labeled the luminal and abluminal plasma membranes. Both antibodies stained a significant minority of vesicles and vacuoles comprising the vesiculovacuolar organelle (VVO). Neither antibody was reactive in CD31-null mice. We conclude that CD31 is distributed over the entire endothelial cell surface, exclusive of specialized junctions, and in VVOs, but is not equally accessible to different antibodies in all locations.  相似文献   

15.
Since adhesion of neutrophils (PMN) to endothelial cells may influence PMN activation responses, we examined whether adhesion of PMN to TNF alpha-activated human umbilical vein endothelial cells (HUVEC) stimulates leukotriene B4 (LTB4) production. Endothelial adhesivity towards PMN increased after HUVEC pretreatment with TNF alpha for 4 h. LTB4 production increased markedly in response to stimulation with arachidonic acid (20 microM) when PMN were added to the hyperadhesive HUVEC. In contrast, stimulation of PMN in suspension did not potentiate LTB4 production. LTB4 production persisted when PMN were applied to TNF alpha-pretreated HUVEC fixed with 1% paraformaldehyde excluding the possibility that metabolic activity of endothelium participates in this response. PMN adhesion to plastic and gelatin also enhanced LTB4 indicating that adhesion was a critical event in inducing LTB4 production. We used monoclonal antibodies (mAb) to adhesion molecules on endothelial cells (i.e., endothelial leukocyte adhesion molecule-1 (ELAM-1) and intercellular adhesion molecule-1 (ICAM-1)) or on PMN (CD18) to assess the role of PMN adhesion to the activated endothelium on LTB4 potentiation. Both anti-ELAM-1 mAb and anti-ICAM-1 mAb inhibited PMN adhesion (by 55 and 41%, respectively) as well as LTB4 production (by 65 and 50%, respectively). Anti-CD18 mAb also reduced the adhesion (65%) and the LTB4 production (66%). Furthermore, combination of anti-ELAM-1 mAb (H18/7) and anti-ICAM-1 mAb (RR1/1) or of anti-ELAM-1 mAb (H18/7) and anti-CD18 mAb (IB4) had an additive effect in inhibiting both PMN adhesion as well as LTB4 production. PMN adherence to immobilized recombinant soluble rELAM-1 or rICAM-1 also increased LTB4 production, which was prevented with relevant mAbs. However, neither rELAM-1 nor rICAM-1 stimulated LTB4 production of PMN in suspension. We conclude that PMN adhesion to TNF alpha-stimulated endothelial cells enhances LTB4 production by PMN, a response activated by binding of PMN to expressed endothelial cell surface adhesion molecules.  相似文献   

16.
Transmigration of neutrophils across the endothelium occurs at the cell-cell junctions where the vascular endothelium cadherin (VE cadherin) is expressed. This adhesive receptor was previously demonstrated to be involved in the maintenance of endothelium integrity. We propose that neutrophil transmigration across the vascular endothelium goes in parallel with cleavage of VE cadherin by elastase and cathepsin G present on the surface of neutrophils. This hypothesis is supported by the following lines of evidence. 1) Proteolytic fragments of VE cadherin are released into the culture medium upon adhesion of neutrophils to endothelial cell monolayers; 2) conditioned culture medium, obtained after neutrophil adhesion to endothelial monolayers, cleaves the recombinantly expressed VE cadherin extracellular domain; 3) these cleavages are inhibited by inhibitors of elastase; 4) VE cadherin fragments produced by conditioned culture medium or by exogenously added elastase are identical as shown by N-terminal sequencing and mass spectrometry analysis; 5) both elastase- and cathepsin G-specific VE cadherin cleavage patterns are produced upon incubation with tumor necrosis factor alpha-stimulated and fixed neutrophils; 6) transendothelial permeability increases in vitro upon addition of either elastase or cathepsin G; and 7) neutrophil transmigration is reduced in vitro in the presence of elastase and cathepsin G inhibitors. Our results suggest that cleavage of VE cadherin by neutrophil surface-bound proteases induces formation of gaps through which neutrophils transmigrate.  相似文献   

17.
Little is known concerning the possible contribution of T helper 2 (Th2)-type cytokines to the recruitment of neutrophils into the lung tissue. In the present study, endothelial cells from equine pulmonary arteries were cultured in the presence of recombinant equine (re) IL-4 and reIL-5, and the cytokine mRNA expression of molecules implicated in the chemotaxis and migration of neutrophils was studied using real-time RT-PCR. The functional response of reIL-4-induced endothelial cell stimulation on neutrophil migration was also studied using a chemotaxis chamber. ReIL-4 either increased the expression of CXCL-8, E-selectin, vascular endothelial growth factor (VEGF), and inducible nitric oxide synthase (iNOS), or potentiated the coeffects of lipopolysaccharide (LPS) and tumor necrosis factor-alpha (TNF-alpha) on CXCL-8. Supernatants collected from cultured endothelial cells stimulated with reIL-4 significantly promoted neutrophil migration in a dose-dependent manner. Dexamethasone (DXM) decreased the expression of CXCL-8, VEGF, and iNOS induced by reIL-4, while 1400W dihydrochloride (1400W), a selective inhibitor of iNOS, decreased the expression of E-selectin, VEGF, and iNOS. DXM and 1400W attenuated the mRNA expression of E-selectin and iNOS induced by the costimulation of reIL-4, reTNF-alpha, and LPS. Neither equine nor human recombinant IL-5 influenced the mRNA expression of CXCL-8, E-selectin, or VEGF. These findings suggest that Th2-type cytokines may contribute to pulmonary neutrophilia during allergic inflammation by the increased expression of neutrophil chemokines and adhesion molecules by endothelial cells. DXM and the iNOS inhibitors may decrease pulmonary neutrophilia due, in part, to a direct inhibition of some of these factors.  相似文献   

18.
Leukotriene B4 (LTB4) induces a number of functional changes in human neutrophils, including both superoxide release and CD11b/CD18 (Mo1)-mediated adherence to various substrates, such as keyhole limpet hemocyanin (KLH). These effects are both time- and concentration-dependent. Neutrophil adhesion was at least 10-fold more sensitive to the stimulatory action of LTB4 than superoxide production. Two LTB4 receptor antagonists, LY255283 (1-(5-ethyl-2-hydroxy-4-(6-methyl-6-(1H-tetrazol-5-yl)heptyloxy )- phenyl)ethanone) and the sodium salt of SC-41930 (7-[3-(4-acetyl-3-methoxy-2-propylphenoxy)-propoxy]-3,4-dihydro-8- propyl-2H- 1-benzopyran-2-carboxylic acid) were evaluated for effects on human neutrophil superoxide production and adhesion. Despite being more sensitive to LTB4-induced stimulation, neutrophil adhesion was at least 100-fold less sensitive to inhibition by LY255283 and SC-41930 than superoxide production. Both LTB4 receptor antagonists behaved similarly in these models. These compounds did not inhibit neutrophil responses induced by granulocyte/macrophage colony-stimulating factor (GM-CSF).  相似文献   

19.
Neutrophils isolated from a child with severe leukocyte adhesion deficiency 1 (LAD1) had a complete absence of expression of the CD11/CD18 beta2 integrin family of adhesion molecules, and were shown to be deficient in the in vitro adhesion and migration properties. However, we found that interleukin-8 (IL8), a potent chemoattractant for neutrophils, and sputum sol phase induced these LAD1 neutrophils to migrate through an endothelial cell layer in vitro, and confirmed that this migration was CD18-independent. These findings add to evidence of CD18-independent mechanisms of neutrophil recruitment, in particular neutrophil infiltration into the lungs, where IL8 may be an important recruitment factor.  相似文献   

20.
Eosinophils, through their ability to generate an array of potent mediators, are thought to be the major effector cells in a number of conditions, including parasitic infection, asthma, and other allergic diseases. The mechanism(s) by which eosinophils, as opposed to neutrophils, accumulate at inflammatory sites is unknown. One possible mechanism would be an eosinophil-specific pathway of adhesion to vascular endothelium. In this study we have demonstrated that human eosinophils, but not neutrophils, constitutively express alpha 4 beta 1 (CD49d/CD29). Expression was not increased on low density eosinophils or normal density cells stimulated with platelet-activating factor. Eosinophils, but not neutrophils, specifically adhered to COS cells transfected with vascular adhesion molecule-1 in a alpha 4 beta 1-dependent manner. Eosinophil, but not neutrophil, adhesion to IL-1 stimulated human umbilical vascular endothelial cells was significantly inhibited by alpha 4 beta 1 mAb at both 5 h (p less than 0.05) and 20 h (p less than 0.001). Inhibition of both resting and platelet-activating factor-(10(-7) M) stimulated eosinophil adhesion was observed. We conclude that the alpha 4 beta 1/vascular adhesion molecule-1 adhesion pathway may be involved in specific eosinophil, as opposed to neutrophil, migration into sites of eosinophilic inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号