首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 693 毫秒
1.
Reaction norms to growth temperature of two size-related traits, wing and thorax length, were compared in tropical (West Indies) and temperate (France) populations of the two sibling species, Drosophila melanogaster and D. simulans. A major body size difference was found in D. melanogaster, with much smaller Caribbean flies, while D. simulans exhibited little size variation between geographical populations. The concave norms of reaction were adjusted to second- or third-degree polynomials, and characteristic points calculated i.e. maximum value (MV) and temperature of maximum value (TMV). TMVs were confirmed to be higher for thorax than for wing length, higher in D. melanogaster than in D. simulans, and higher in females than in males. For both traits Caribbean populations exhibited higher TMVs in the two species, strongly suggesting an adaptive shift of the reaction norms toward higher temperature in warm-adapted populations. The wing/thorax ratio was also analysed, and found to be significantly lower in tropical populations of both species. This ratio, which is related to wing loading and flight capacity, might evolve independently of body weight itself.  相似文献   

2.
A natural population ofDrosophila melanogaster in southern France was sampled in three different years and 10 isofemale lines were investigated from each sample. Two size-related traits, wing and thorax length, were measured and the wing/thorax ratio was also calculated. Phenotypic plasticity was analysed after development at seven different constant temperatures, ranging from 12‡C to 31‡C. The three year samples exhibited similar reaction norms, suggesting a stable genetic architecture in the natural population. The whole sample (30 lines) was used to determine precisely the shape of each reaction norm, using a derivative analysis. The practical conclusion was that polynomial adjustments could be used in all cases, but with different degrees: linear for the wing/thorax ratio, quadratic for thorax length, and cubic for wing length. Both wing and thorax length exhibited concave reaction norms, with a maximum within the viable thermal range. The temperatures of the maxima were, however, quite different, around 15‡C for the wing and 19.5‡C for the thorax. Assuming that thorax length is a better estimate of body size, it is not possible to state that increasing the temperature results in monotonically decreasing size (the temperature-size rule), although this is often seen to be the case for genetic variations in latitudinal clines. The variability of the traits was investigated at two levels—within and between lines—and expressed as a coefficient of variation. The within-line (environmental) variability revealed a regular, quadratic convex reaction norm for the three traits, with a minimum around 21‡C. This temperature of minimum variability may be considered as a physiological optimum, while extreme temperatures are stressful. The between-line (genetic) variability could also be adjusted to quadratic polynomials, but the curvature parameters were not significant. Our results show that the mean values of the traits and their variance are both plastic, but react in different ways along a temperature gradient. Extreme low or high temperatures decrease the size but increase the variability. These effects may be considered as a functional response to environmental stress.  相似文献   

3.
Genetic variability of quantitative traits was investigated in aMoroccan population of Drosophila melanogaster, with an isofemale line design. Results were compared with data previously obtained from French populations. Although the environmental and thermal conditions are very different in France and Morocco, only two significant differences were observed: a shorter wing and a lighter abdomen pigmentation in Morocco. It is, therefore, concluded that Moroccan D. melanogaster are quite typical temperate flies, belonging to the Palaearctic region, and very different from the ancestral Afrotropical populations. Almost all traits were genetically variable, as shown by significant intraclass correlations among lines. Genetic correlations were highly significant among three size-related traits, while much lower between size and bristle numbers. Fluctuating asymmetry was greater for abdominal bristles than for sternopleural bristles. Sex dimorphism, analysed as a female/male ratio, was identical in French and Moroccan populations. Examination of the thorax length/thorax width ratio showed that the thorax is more elongated in females. Sexual dimorphism of wing length was significantly more correlated to thorax width than to thorax length. The results illustrate the value of measuring numerous quantitative traits on the same flies for characterizing the genetic architecture of a natural population. In several cases, and especially for genetic correlations, some interesting suggestions could be made, which should be confirmed, or invalidated, by more extensive investigations.  相似文献   

4.
Soto I  Cortese M  Carreira V  Folguera G  Hasson E 《Genetica》2006,127(1-3):199-206
We assessed the indirect response of longevity in lines selected for wing length (WL) and developmental time (DT). Longevity in selection lines was compared to laboratory control lines and the offspring of recently collected females. Wild flies (W lines), flies from lines selected for fast development (F lines), and for fast development and large wing length (L lines) outlived control laboratory lines (C lines) and lines selected for fast development and short wing (S lines). The decline in longevity in S lines is in line with the idea that body size and longevity are correlated and may be the result of the fixation of alleles at loci affecting pleiotropically the two traits under selection and longevity. In addition, inbreeding and artificial selection affected the correlation between wing length and longevity that occurs in natural populations of Drosophila buzzatii, suggesting that correlations between traits are not a perdurable feature in a population.  相似文献   

5.
Karan D  Dubey S  Moreteau B  Parkash R  David JR 《Genetica》2000,108(1):91-100
We analyzed natural populations of Zaprionus indianusin 10 Indian localities along a south-north transect (latitude: 10–31°3 N). Size traits (body weight, wing length and thorax length) as well as a reproductive trait (ovariole number) followed a pattern of clinal variation, that is, trait value increased with latitude. Wing/thorax ratio, which is inversely related to wing loading, also had a positive, but non-significant correlation with latitude. By contrast, bristle numbers (sternopleural and abdominal) exhibited a non-significant but negative correlation with latitude. Sex dimorphism, estimated as the female/male ratio, was very low in Z. indianus, contrasting with results already published in other species. Genetic variations among populations were also analyzed according to other geographic parameters (altitude and longitude) and to climatic conditions from each locality. A significant effect of altitude was found for size traits. For abdominal bristles, a multiple regression technique evidenced a significant effect of both latitude and altitude, but in opposite directions. Genetic variations were also correlated to climate, and mainly with average year temperature. Taking seasonal variations into account failed however to improve the predictability of morphometrical variations. The geographic differentiation of Z.indianusfor quantitative traits suggests adaptive response to local conditions, especially to temperature, but also reveals a complex situation according to traits investigated and to environmental parameters, which does not match results on other drosophilid species.  相似文献   

6.
Sambucetti P  Loeschcke V  Norry FM 《Hereditas》2006,143(2006):77-83
Clinal analysis for fitness-related traits provides a well-known approach to investigate adaptive evolution. Several fitness-related traits (developmental time, thorax length, wing length and wing loading) were measured at two laboratory generations (G7 and G33) of D. buzzatii from an altitudinal gradient from northwestern Argentina, where significant thermal differences persist. Developmental time (DT) was positively correlated with altitude of origin of population. Further, DT was negatively correlated with maximal mean temperature at the site of origin of population, and this thermal variable decreases with altitude. Wing loading tended to be larger in highland than in lowland populations, suggesting that flight performance is subject to stronger selection pressure in highland populations. Developmental time showed a significant increase with laboratory generation number. There was no significant correlation between developmental time and body size across populations along the altitudinal cline of DT. This result illustrates that developmental time and body size do not always evolve in the same direction, even though both traits are often positively and genetically correlated in a well-known tradeoff in Drosophila.  相似文献   

7.
Reaction norms across three temperatures of development were measured for thorax length, wing length and wing length/thorax length ratio for ten isofemale lines from each of two populations of Drosophila aldrichi and D. buzzatii. Means for thorax and wing length in both species were larger at 24 °C than at either 18 °C or 31 °C, with the reduction in size at 18 °C most likely due to a nutritional constraint. Although females were larger than males, the sexes were not different for wing length/thorax length ratio. The plasticity of the traits differed between species and between populations of each species, with genetic variation in plasticity similar for the two species from one locality, but much higher for D. aldrichi from the other. Estimates of heritabilities for D. aldrichi generally were higher at 18 °C and 24 °C than at 31 °C, but for D. buzzatii they were highest at 31 °C, although heritabilities were not significantly different between species at any temperature. Additive genetic variances for D. aldrichi showed trends similar to that for heritability, being highest at 18 °C and decreasing as temperature increased. For D. buzzatii, however, additive genetic variances were lowest at 24 °C. These results are suggestive that genetic variation for body size characters is increased in more stressful environments. Thorax and wing lengths showed significant genetic correlations that were not different between the species, but the genetic correlations between each of these traits and their ratio were significantly different. For D. aldrichi, genetic variation in the wing length/thorax length ratio was due primarily to variation in thorax length, while for D. buzzatii, it was due primarily to variation in wing length. The wing length/thorax length ratio, which is the inverse of wing loading, decreased linearly as temperature increased, and it is suggested that this ratio may be of greater adaptive significance than either of its components.  相似文献   

8.
Twelve Indian natural populations of Drosophila ananassae, a cosmopolitan and domestic species, were sampled and laboratory populations (mass cultures) were established from naturally impregnated females. These populations were maintained in the laboratory for some generations and were analysed chromosomally to know the frequency of different inversions. The chromosomal analysis revealed the presence of three cosmopolitan inversions. The data on the whole show that there are significant differences in the frequencies of different chromosome arrangements in these populations. Body size (wing length and thorax length) was measured in both sexes (50 females and 50 males), in all the 12 geographical populations of D. ananassae. There are statistically significant differences in wing length as well as in thorax length of both sexes among different geographical populations. Five geographical strains were crossed reciprocally and body size (wing length and thorax length) was measured in F1 and F2 progeny. The comparison of body size (both traits) between mid‐parent, F1 and F2 shows that there is an increase in body size in F1 and F2 progeny as compared with parents. Thus, there is no break down of heterosis in F2, which suggests absence of coadaptation in geographical populations of D. ananassae. Scaling test statistical analysis showed additive, dominance and epistatic effects in certain crosses involving geographical strains of D. ananassae. Correlation between chromosome arrangement frequency and body size has also been tested and significant negative correlation has been found between 2L – ST chromosome arrangement and male thorax.  相似文献   

9.
F. W. Robertson 《Genetica》1987,72(2):111-125
Four populations of the cactophilous species D. buzzatii have been compared with respect to the phenotypic variation of thorax and wing length of wild versus laboratory reared flies. Three of the strains were intercrossed to provide parent, F1 and F2 comparisons as a test of co-adaptation. The genetic contribution to phenotypic variation of laboratory reared flies was estimated from the correlation between sibs derived from random pair mating and reared individually in separate cultures. The average natural temperature during development was estimated from the relations between the wing/thorax ratio and temperature in laboratory tests.The variance of thorax and wing length of wild flies was several times greater than that of laboratory reared flies and the increase was attributed primarily to variation in larval food supply although temperature fluctuation is also important. There was no evidence of heterosis or F2 break-down in the crosses. For two of the populations the heritability of thorax length was high, 60–70%, and substantially lower for the third. The average temperature estimated from the wing/thorax/temperature relationship differed between sites. The reduction of body size below the potential maximum averaged 30% for two and 20% for the other population, with a wide spread about these values. The evidence is discussed in relation to assessing the nature of ecological variation by comparing the variation of morphological traits in wild and laboratory reared flies.  相似文献   

10.
Five morphometrical traits (wing and thorax length, ovariole number, and thoracic and female abdomen pigmentation) were investigated in laboratory stocks of 20 species belonging to the Drosophila obscura group (subgenus Sophophora). These species originated from four biogeographical regions and represent all five of the presently recognized, taxonomic subgroups. Size‐related traits (wing and thorax length) were highly variable across species, and interspecific variation explained more than 90% of total variability. In both traditional and phylogenetic analyses, wing size was positively correlated with latitude of origin. These interspecific correlations were however notably weaker than those for intraspecific correlations. Wing/thorax ratio, which may be related to flight capacity, showed little variation. Ovariole number was highly variable (range 27–53) both within and between species, and was positively correlated with the wing/thorax ratio, suggesting that species with relatively large ovaries have relatively low wing loading. Although many species are completely dark, 11 had some regions of light coloration. A light thorax with a median darkening was observed in six species. A variable pigmentation of abdominal tergites, in females only, was found in nine species, belonging to three subgroups only. With respect to both molecular phylogeny and morphometrical evolution, the D. obscura subgroup is probably now the best investigated clade in Drosophila.  相似文献   

11.
Size-related phenotypic variation among second-chromosome karyotypes inDrosophila buzzatii was examined in an Argentinian natural population. For all measured traits (thorax and wing length; wing, head and face width), this inversion polymorphism exhibited a significant and (additive) linear contribution to the phenotypic variance in newly emerged wild flies. The results suggest that only overall body size, and not body shape, is affected. as no karyotypic variation was found for any trait when the effects of differences in within-karyotype size were removed with Burnaby's method. Likewise, in an experiment of longevity selection in the wild, variation in chromosomal frequencies was verified in the direction predicted on the basis of: (i) previous studies on longevity selection for body size in the wild and (ii) the pattern of chromosomal effects we observed on size. The direction of such selection is consistent with a pattern of antagonistic selection detected in previous studies on the inversion polymorphism.  相似文献   

12.
Restricted maximum likelihood was used to estimate genetic parameters of male and female wing and thorax length in isofemale lines ofDrosophila melanogaster, and results compared to estimates obtained earlier with the classical analysis of variance approach. As parents within an isofemale line were unknown, a total of 500 parental pedigrees were simulated and mean estimates computed. Full and half sibs were distinguished, in contrast to usual isofemale studies in which animals were all treated as half sibs and hence heritability was overestimated. Heritability was thus estimated at 0.33, 0.38, 0.30 and 0.33 for male and female wing length and male and female thorax length, respectively, whereas corresponding estimates obtained using analysis of variance were 0.46, 0.54, 0.35 and 0.38. Genetic correlations between male and female traits were 0.85 and 0.62 for wing and thorax length, respectively. Sexual dimorphism and the ratio of female to male traits were moderately heritable (0.30 and 0.23 for wing length, 0.38 and 0.23 for thorax length). Both were moderately and positively correlated with female traits, and weakly and negatively correlated with male traits. Such heritabilities confirmed that sexual dimorphism might be a fast evolving trait inDrosophila. An erratum to this article is available at .  相似文献   

13.
The correlation between body size and longevity was tested in an Argentinian natural population of Drosophila buzzatii. Mean thorax length of flies newly emerging from rotting cladodes of Opuntia vulgaris was significantly smaller than that of two samples of flies caught at baits. The present results which might be interpreted as directional selection for longevity favoring larger flies are in agreement with previous results achieved in a Spanish natural population of D. buzzatii. Flies emerging from different substrates showed significant differences in thorax length, suggesting that an important fraction of phenotypic variance can be attributed to environmental variability. However, laboratory and field work in different populations of D. buzzatii showed a significant genetic component for thorax length variation.  相似文献   

14.
Using wild-reared flies, we examined sexual selection on five phenotypic traits (thorax length, wing length, wing width, head width, and face width) inDrosophila buzzatii, by scoring copulatory status in nine mass mating cages. Only male face width was identified as a direct target of sexual selection in an analysis of selection gradient, while indirect selection was present on all other studied traits, as expected from their correlations with face width. In contrast to males, there was no indication of selection in females. Nor was there evidence of assortative mating. The suggested direct selection on face width seems to take place during licking behavior of the courtship and might be related to courtship feeding. This study suggests that courtship success gives rise to indirect selection on body size.  相似文献   

15.
Loh R  Bitner-Mathé BC 《Genetica》2005,125(2-3):271-281
Zaprionus indianus (Diptera: Drosophilidae) is an African species that was introduced in Brazil near the end of the 1990’s decade. To evaluate the adaptive potential of morphological traits in natural populations of this recently introduced species, we have investigated wing size and shape variation at Rio de Janeiro populations only two years after the first record of Z. indianus in Brazil. Significant genetic differences among populations from three distinct ecological habitats were detected. The heritability and evolvability estimates show that, even with the population bottleneck that should have occurred during the invasion event, an appreciable amount of additive genetic variation for wing size and shape was retained. Our results also indicated a greater influence of environmental variation on wing size than on wing shape. The importance of quantitative genetic variability and plasticity in the successful establishment and dispersal of Z. indianus in the Brazilian territory is then discussed.  相似文献   

16.
A. C. James  RBR. Azevedo    L. Partridge 《Genetics》1995,140(2):659-666
We examined 20 Drosophila melanogaster populations collected from a 2600-km north-south transect in Australia. In laboratory culture at constant temperature and standard larval density, a genetic cline in thorax length and wing area was found, with both traits increasing with latitude. The cline in wing area was based on clines in both cell size and cell number, but was primarily determined by changes in cell number. Body size and larval development time were not associated among populations. We discuss our results in the context of selection processes operating in natural and experimental populations.  相似文献   

17.
Drosophila kikkawai, which has colonized the Indian subcontinent in the recent past, exhibits geographical variations for five quantitative traits among eight Indian populations (8.29–32.7°N). Body weight, wing length, thorax length, abdominal bristles and ovariole number exhibit significant clinal variation with increase in latitude, while sternopleural bristles do not demonstrate such a trend. For the female sex, the slope values for body weight (2.25) and wing length (2.40) are higher but they are lower for thorax length (0.64) and ovariole number (0.51 per degree latitude). There is significant sexual dimorphism for the slope values only for body weight and thorax length suggesting simultaneous action of latitudinal selection pressure on these traits. However, the two sexes do not differ statistically in the latitudinal slope values for the wing length. A regression analysis of different traits on body weight implies correlated selection response on wing length and wing/thorax ratio while thorax length corresponds to changes in body size and does not differ in the two sexes. Regression analysis, on the basis of temperature-related climatic variables, evidence significantly higher association between all the five size-related traits and coefficient of variation of mean annual temperature (seasonal thermal amplitude; T cv), T min and relative humidity. Thus, genetic differentiation for quantitative traits in D. kikkawai are due to selective pressure from variable climatic conditions occurring on the Indian subcontinent.  相似文献   

18.
Bubliy OA  Loeschcke V 《Genetica》2000,110(1):79-85
Variation of five quantitative traits (thorax length, wing length, sternopleural bristle number, developmental time and larva-to-adult viability) was studied in Drosophila melanogaster reared at standard (25°C) and high stressful (32°C) temperatures using half-sib analysis. In all traits, both phenotypic and environmental variances increased at 32°C. For genetic variances, only two statistically significant differences between temperature treatments were found: the among-sire variance of viability and the among-dam variance of developmental time were higher under stress. Among-sire genetic variances and evolvabilities were generally higher at 32°C but narrow sense heritabilities were not. The results of the present work considered in the context of other studies in D. melanogaster indicate different patterns of genetic variation between stressful and nonstressful environments for the traits examined. Data on thorax length and viability agree with the hypothesis that genetic variance can be increased under extreme environmental conditions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Clinal variation is one of the most emblematic examples of the action of natural selection at a wide geographical range. In Drosophila subobscura, parallel clines in body size and inversions, but not in wing shape, were found in Europe and South and North America. Previous work has shown that a bottleneck effect might be largely responsible for differences in wing trait–inversion association between one European and one South American population. One question still unaddressed is whether the associations found before are present across other populations of the European and South American clines. Another open question is whether evolutionary dynamics in a new environment can lead to relevant changes in wing traits–inversion association. To analyse geographical variation in these associations, we characterized three recently laboratory founded D. subobscura populations from both the European and South American latitudinal clines. To address temporal variation, we also characterized the association at a later generation in the European populations. We found that wing size and shape associations can be generalized across populations of the same continent, but may change through time for wing size. The observed temporal changes are probably due to changes in the genetic content of inversions, derived from adaptation to the new, laboratory environment. Finally, we show that it is not possible to predict clinal variation from intrapopulation associations. All in all this suggests that, at least in the present, wing traits–inversion associations are not responsible for the maintenance of the latitudinal clines in wing shape and size.  相似文献   

20.
A. C. James  RBR. Azevedo    L. Partridge 《Genetics》1997,146(3):881-890
Field-collected Drosophila melanogaster from 19 populations in Eastern Australia were measured for body size traits, and the measurements were compared with similar ones on flies from the same populations reared under standard laboratory conditions. Wild caught flies were smaller, and latitudinal trends in size were greater. Reduced size was caused by fewer cells in the wing, and the steeper cline by greater variation in cell area. The reduction in size in field-collected flies may therefore have been caused by reduced nutrition, and the steeper cline may have been caused by an environmental response to latitudinal variation in temperature. No evidence was found for evolution of size traits in response to laboratory culture. The magnitude of phenotypic plasticity in response to temperature of development time, body size, cell size and cell number was examined for six of the populations, to test for latitudinal variation in plasticity. All characters were plastic in response to temperature. Total development time showed no significant latitudinal variation in plasticity, although larval development time showed a marginally significant effect, with most latitudinal variation at intermediate rearing temperatures. Neither thorax length nor wing size and its cellular components showed significant latitudinal variation in plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号