首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A variety of lines of evidence support the idea that neutral evolutionary processes (genetic drift, mutation) have been important in generating cranial differences between Neandertals and modern humans. But how do Neandertals and modern humans compare with other species? And how do these comparisons illuminate the evolutionary processes underlying cranial diversification? To address these questions, we used 27 standard cranial measurements collected on 2524 recent modern humans, 20 Neandertals and 237 common chimpanzees to estimate split times between Neandertals and modern humans, and between Pan troglodytes verus and two other subspecies of common chimpanzee. Consistent with a neutral divergence, the Neandertal versus modern human split-time estimates based on cranial measurements are similar to those based on DNA sequences. By contrast, the common chimpanzee cranial estimates are much lower than DNA-sequence estimates. Apparently, cranial evolution has been unconstrained in Neandertals and modern humans compared with common chimpanzees. Based on these and additional analyses, it appears that cranial differentiation in common chimpanzees has been restricted by stabilizing natural selection. Alternatively, this restriction could be due to genetic and/or developmental constraints on the amount of within-group variance (relative to effective population size) available for genetic drift to act on.  相似文献   

2.
Lengths within the cranial base and vault were measured in cephalometric radiographs of 220 boys and 177 girls ranging in age from 0 to 15 years; all these children are participants in The Fels Longitudinal Growth Study. The present study is based on mixed longitudinal data derived from 1640 radiographs for boys and 1260 radiographs for girls. Factor analysis was applied separately for boys and girls for each age group; i.e., 0–3, 4–6, 7–9, 10–12, and 13–15 years. For the 0–3 year age group, two factors were extracted in each sex, whereas four factors were extracted in the rest of the age groups. The factor structures are similar in the three older age groups of boys (7–9, 10–12, and 13–15 years). The first four factors for these groups are labelled, respectively: cranial vault size, posterior cranial base length, presphenoid length, and basisphenoid length. The order of the third and fourth factors is reversed in the 7–9 year olds. For girls, the factors extracted were also the same in both the 7–9 and 10–12 year age groups, even though the order of factors was different between age groups; i.e., anterior cranial base length, cranial vault size, basisphenoid length, and basioccipital length. Differential growth rates among cranial base dimensions probably cause changes in factor patterns. Obliteration of the spheno-occipital synchondrosis is suggested as the mechanism responsible for the change of factor pattern in the girls. Closure of this synchondrosis would have occurred too late to affect the patterns in boys.  相似文献   

3.
The basicranium is the keystone of the primate skull, and understanding its morphological interdependence on surrounding soft-tissue structures, such as the brain, can reveal important mechanisms of skull development and evolution. In particular, several extensive investigations have shown that, across extant adult primates, the degree of basicranial flexion and petrous orientation are closely linked to increases in brain size relative to cranial base length. The aim of this study was to determine if an equivalent link exists during prenatal life. Specific hypotheses tested included the idea that increases in relative endocranial size (IRE5), relative infratentorial size (RIE), and differential encephalization (IDE) determine the degree of basicranial flexion and coronal petrous reorientation during non-hominoid primate fetal development. Cross-sectional fetal samples of Alouatta caraya (n=17) and Macaca nemestrina (n=24) were imaged using high-resolution magnetic resonance imaging (hrMRI). Cranial base angles (CBA), petrous orientations (IPA), base lengths, and endocranial volumes were measured from the images. Findings for both samples showed retroflexion, or flattening, of the cranial base and coronal petrous reorientation as well as considerable increases in absolute and relative brain sizes. Although significant correlations of both IRE5 and RIE were observed against CBA and IPA, the correlation with CBA was in the opposite direction to that predicted by the hypotheses. Variations of IDE were not significantly correlated with either angle. Correlations of IPA with IRE5 and RIE appeared to support the hypotheses. However, partial coefficients computed for all significant correlations indicated that changes to the fetal non-hominoid primate cranial base were more closely related to increases in body size than the hypothesized influence of relative brain enlargement. These findings were discussed together with those from a previous study of modern human fetuses.  相似文献   

4.
Facial heights, i.e. the vertical distances between the superior and inferior limits of facial compartments, contribute to the orientation of the viscerocranium in the primate skull. In humans, vertical facial variation is among the main sources of diversity and frequently associated with an integrated suite of other cranio-mandibular traits. Facial heights and kyphosis are also important factors in interspecific variation and models of hominoid evolution. The ontogenetic determination of adult facial orientation and its relation to phylogenetic variation are unclear, but crucial in all previously mentioned respects. We addressed these issues in a sample of 175 humans and chimpanzees with Procrustes based geometric morphometrics, testing hypotheses of interspecific similarity in postnatal ontogenetic trajectories, early versus later ontogenetic facial pattern determination, and a developmental model of morphological integration. We analyzed the contribution of postnatal morphogenesis to adult vertical facial variation by partitioning morphological variation into a portion of pure growth allometry and a non-allometric fraction. A statistically significant difference of growth-allometries revealed that in both species growth established the adult skull proportions by vertical facial expansion, but while in chimpanzees the complete viscerocranium showed reorientation, in humans only the lower face was modified. In both species the results support a hypothesis of early facial pattern determination. A coincident emergence of morphological traits favors a hypothesis of developmental integration of the face, excluding traits of the basi- and neurocranium. Interspecific differences in integration may have implications for evolutionary studies. The present findings indicate that growth establishes the adult skull proportions and integrates principal facial orientation patterns, already there in early postnatal ontogeny.  相似文献   

5.
6.
The purpose of the present study was to describe normal midsagittal craniofacial morphology in second trimester human fetuses. Measurements of the cranial base angle and the prognathism of the maxilla and the mandible were performed on radiographs of cranial midsagittal tissue blocks of 52 fetuses with a gestational age from 13 to 27 weeks. Special procedures were developed for the definitions of the nasion and sella reference points on the radiographs in the early stages of fetal development. Mean data were reported for stages of crown rump length (CRL) and maturation of the fetal cranial base (MSS), usable as reference in assessment of pathological fetal crania in reports and autopsy procedures. Regression equations were determined for the regression of the angular values on CRL, MSS, and general skeletal maturation (TNO). The cranial base angle was found to decrease significantly, and the angles of prognathism to increase significantly with increasing CRL, TNO, and MSS values. It was suggested that these simultaneous and similar changes in the three angles could be accounted for by the upwards movement of the sella point produced by a cranial displacement of the pituitary fossa caused by local cartilagenous growth and bony remodelling during the period of study. The study thus reflects the influence of cranial skeletal maturation on the early development in shape of the craniofacial complex.  相似文献   

7.
Dental development and skeletal growth are central aspects used by anthropologists when investigating the ontogeny of a population or species. The interrelatedness of the two phenomena is often assumed to be high, but the nature of their relationship is obscured by the fact that they are both highly dependent upon chronological age. The exact relationship between the tempo of dental development and skeletal growth is unclear even in modern humans, which limits the ability to extrapolate to archaeological or fossil forms. It is clear that the influence of chronological age on these two aspects of ontogeny must be accounted for before examining their relationship to one another. This study tests whether dental development and skeletal growth are conditionally independent given age using known‐age modern human skeletal samples and proportional odds logistic regression. The results suggest that dental development and skeletal growth are moderately correlated and thus not conditionally independent given age. That is, individuals that are dentally advanced relative to their peers also tend to be skeletally advanced. However, this relationship is moderate at best, so dental development does not appear to be a highly reliable proxy for skeletal growth, or vice versa, in modern humans. These findings have implications for the reconstruction of ontogeny and life history of fossil hominin taxa, since the pace of dental development is often used as a life history proxy. Implications of this study suggest that the proposed accelerated dental development in Pleistocene hominins was not necessarily accompanied by faster skeletal growth. Am J Phys Anthropol, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
 Codon bias and base composition in major histocompatibility complex (MHC) sequences have been studied for both class I and II loci in Homo sapiens and Pan troglodytes. There is low to moderate codon bias for the MHC of humans and chimpanzees. In the class I loci, the same level of moderate codon bias is seen for HLA-B, HLA-C, Patr-A, Patr-B, and Patr-C, while at HLA-A the level of codon bias is lower. There is a correlation between codon usage bias and G+C content in the A and B loci in humans and chimps, but not at the C locus. To examine the effect of diversifying selection on codon bias, we subdivided class I alleles into antigen recognition site (ARS) and non-ARS codons. ARS codons had lower bias than non-ARS codons. This may indicate that the constraint of codon bias on nucleotide substitution may be selected against in ARS codons. At the class II loci, there are distinct differences between alpha and beta chain genes with respect to codon usage, with the beta chain genes being much more biased. Species-specific differences in base composition were seen in exon 2 at the DRB1 locus, with lower GC content in chimpanzees. Considering the complex evolutionary history of MHC genes, the study of codon usage patterns provides us with a better understanding of both the evolutionary history of these genes and the evolution of synonymous codon usage in genes under natural selection. Received: 2 April 1998 / Revised: 2 September 1998  相似文献   

9.
10.
11.
The distributions of allele sizes at eight simple-sequence repeat (SSR) or microsatellite loci in chimpanzees are found and compared with the distributions previously obtained from several human populations. At several loci, the differences in average allele size between chimpanzees and humans are sufficiently small that there might be a constraint on the evolution of average allele size. Furthermore, a model that allows for a bias in the mutation process shows that for some loci a weak bias can account for the observations. Several alleles at one of the loci (Mfd 59) were sequenced. Differences between alleles of different lengths were found to be more complex than previously assumed. An 8-base-pair deletion was present in the nonvariable region of the chimpanzee locus. This locus contains a previously unrecognized repeated region, which is imperfect in humans and perfect in chimpanzees. The apparently greater opportunity for mutation conferred by the two perfect repeat regions in chimpanzees is reflected in the higher variance in repeat number at Mfd 59 in chimpanzees than in humans. These data indicate that interspecific differences in allele length are not always attributable to simple changes in the number of repeats.   相似文献   

12.
Simms, Michael J. 1969 01 15: Columnal ontogeny in articulate crinoids and its implications for their phylogeny. Lethaia , Vol. 22, pp. 61–68. Oslo. ISSN 0024–1164.
Detailed doamentation of columnal ontogeny in several Lower Jurassic isocrinids reveals a number of features which are of phylogenetic significance. Columnal proportions are determined by two largely independent growth vectors. Columnal diameter is primarily a function of cup size at the time of formation, though it may subsequently undergo considerable increase through lateral accretion. Columnal height is largely independent of cup size except for a gradual increase with the growth of the whole animal. Columnal diameter increases at a much greater rate than columnal height and so columnals are relatively lower in large individuals. Heterochronous variation in vertical growth rate or the extent of lateral accretion in columnals may significantly alter their shape. The smallest isocrinid columnals found (0.35 mm diameter) have synarthrial articula. The transformation to a typical pentaradiate symplexy, via a triradiate stage, occurs at a diameter of about 0.75 mm. Synarthrial articula are unknown in millericrinid columnals, which instead have symplectial articula at small diameters (0.45 mm). The presence of synarthrial articula in the stems of juvenile isocrinids, and their absence in millericrinids. supports previous hypotheses concerning derivation of bourgueticrinids from an isocrinid, rather than a millericrinid, ancestor.  相似文献   

13.
14.
Detailed accounts of the muscular relations and attachments in the prevertebral and upper pharyngeal region of the cranial base of extant hominoids and fossil hominids are described in this paper. Marked differences exist in the cranial attachments of the longus capitis, superior constrictor, tensor palati and levator palati muscles between the three great apes and Homo sapiens. Many of the bony ridges and processes characteristic of the three great apes are also present in the 'gracile' australopithecines. Some of the differences between the muscle markings in this region of the cranial base in certain fossil hominids are discussed in the light of the findings of the dissection study of the three great apes and previous studies of the hominoid cranial base.  相似文献   

15.
It has become a truism that we humans are genetically about 99% identical to chimpanzees. The origins of this assertion are clear: among early studies of DNA sequences, nucleotide identity between humans and chimpanzees was found to average around 98.9%.(1) However, this figure is correct only with respect to regions of the genome that are shared between humans and chimpanzees. Often ignored are the many parts of their genomes that are not shared. Genomic rearrangements, including insertions, deletions, translocations and duplications, have long been recognized as potentially important sources of novel genomic material(2,3) and are known to account for major genomic differences between humans and chimpanzees.(4) Further, such changes have been implicated in a number of genetic disorders, such as DiGeorge, Angelman/Prader-Willi and Charcot-Marie-Tooth syndromes.(5)  相似文献   

16.
Modern human populations differ in developmental processes and in several phenotypic traits. However, the link between ontogenetic variation and human diversification has not been frequently addressed. Here, we analysed craniofacial ontogenies by means of geometric-morphometrics of Europeans and Southern Africans, according to dental and chronological ages. Results suggest that different adult cranial morphologies between Southern Africans and Europeans arise by a combination of processes that involve traits modified during the prenatal life and others that diverge during early postnatal ontogeny. Main craniofacial changes indicate that Europeans differ from Southern Africans by increasing facial developmental rates and extending the attainment of adult size and shape. Since other studies have suggested that native subsaharan populations attain adulthood earlier than Europeans, it is probable that facial ontogeny is linked with other developmental mechanisms that control the timing of maturation in other variables. Southern Africans appear as retaining young features in adulthood. Facial ontogeny in Europeans produces taller and narrower noses, which seems as an adaptation to colder environments. The lack of these morphological traits in Neanderthals, who lived in cold environments, seems a paradox, but it is probably the consequence of a warm-adapted faces together with precocious maturation. When modern Homo sapiens migrated into Asia and Europe, colder environments might establish pressures that constrained facial growth and development in order to depart from the warm-adapted morphology. Our results provide some answers about how cranial growth and development occur in two human populations and when developmental shifts take place providing a better adaptation to environmental constraints.  相似文献   

17.
We compared concentrations of nucleotide substrates and activities of enzymes of nucleotide metabolism in pig and human blood, heart, and kidney. The most important difference was lower ecto-5-nucleotidase (ESN) activity in both pig hearts and kidney. Furthermore, higher hypoxanthine, inosine, adenine, and uracil, but lower uridine and uric acid concentrations were observed in pig blood as compared to human. A twofold increase in UTP concentration has been observed in pig hearts following 4 h perfusion with human blood. Purine metabolism is an important target for genetic and pharmacological manipulation during xenotransplantations.  相似文献   

18.
A large body of theoretical work suggests that analyses of variation at the maternally inherited mitochondrial (mt)DNA and the paternally inherited non-recombining portion of the Y chromosome (NRY) are a potentially powerful way to reveal the differing migratory histories of men and women across human societies. However, the few empirical studies comparing mtDNA and NRY variation and known patterns of sex-biased migration have produced conflicting results. Here we review some methodological reasons for these inconsistencies, and take them into account to provide an unbiased characterization of mtDNA and NRY variation in chimpanzees, one of the few mammalian taxa where males routinely remain in and females typically disperse from their natal groups. We show that patterns of mtDNA and NRY variation are more strongly contrasting in patrilocal chimpanzees compared with patrilocal human societies. The chimpanzee data we present here thus provide a valuable comparative benchmark of the patterns of mtDNA and NRY variation to be expected in a society with extremely female-biased dispersal.  相似文献   

19.
More studies have focused on aspects of chimpanzee behaviour and cognition relevant to the evolution of culture than on any other species except our own. Accordingly, analysis of the features shared by chimpanzees and humans is here used to infer the scope of cultural phenomena in our last common ancestor, at the same time clarifying the nature of the special characteristics that advanced further in the hominin line. To do this, culture is broken down into three major aspects: the large scale, population-level patterning of traditions; social learning mechanisms; and the behavioural and cognitive contents of culture. Each of these is further dissected into subcomponents. Shared features, as well as differences, are identified in as many as a dozen of these, offering a case study for the comparative analysis of culture across animal taxa and a deeper understanding of the roots of our own cultural capacities.  相似文献   

20.
The large theropod dinosaur Tyrannosaurus rex underwent remarkable changes during its growth from <10 kg hatchlings to >6000 kg adults in <20 years. These changes raise fascinating questions about the morphological transformations involved, peak growth rates, and scaling of limb muscle sizes as well as the body's centre of mass that could have influenced ontogenetic changes of locomotion in T. rex. Here we address these questions using three-dimensionally scanned computer models of four large, well-preserved fossil specimens as well as a putative juvenile individual. Furthermore we quantify the variations of estimated body mass, centre of mass and segment dimensions, to characterize inaccuracies in our reconstructions. These inaccuracies include not only subjectivity but also incomplete preservation and inconsistent articulations of museum skeletons. Although those problems cause ambiguity, we conclude that adult T. rex had body masses around 6000-8000 kg, with the largest known specimen ("Sue") perhaps ~9500 kg. Our results show that during T. rex ontogeny, the torso became longer and heavier whereas the limbs became proportionately shorter and lighter. Our estimates of peak growth rates are about twice as rapid as previous ones but generally support previous methods, despite biases caused by the usage of scale models and equations that underestimate body masses. We tentatively infer that the hindlimb extensor muscles masses, including the large tail muscle M. caudofemoralis longus, may have decreased in their relative size as the centre of mass shifted craniodorsally during T. rex ontogeny. Such ontogenetic changes would have worsened any relative or absolute decline of maximal locomotor performance. Regardless, T. rex probably had hip and thigh muscles relatively larger than any extant animal's. Overall, the limb "antigravity" muscles may have been as large as or even larger than those of ratite birds, which themselves have the most muscular limbs of any living animal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号