首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Genetic‐epidemiological data and linkage studies with chromosomal markers are reviewed from the vantage point of X‐linked inheritance. The results overall suggest that a gene predisposing to manic depression (bipolar affective illness) localized on the X‐chromosome may exist in a subgroup of bipolar cases. However, in light of conflicting findings and methodological uncertainties in studying a disorder with unclear phenotype and complex inheritance, this issue is not yet closed. Additional research, including new linkage data and extension and re‐evaluation of published data, is required to further our understanding of this intriguing hypothesis.  相似文献   

2.
Linkage analysis identifies markers that appear to be co-inherited with a trait within pedigrees. The inheritance of a chromosomal segment may be probabilistically reconstructed, with missing data complicating inference. Inheritance patterns are further obscured in the analysis of complex traits, where variants in one or more genes may contribute to phenotypic variation within a pedigree. In this case, determining which relatives share a trait variant is not simple. We describe how to represent these patterns of inheritance for marker loci. We summarize how to sample patterns of inheritance consistent with genotypic and pedigree data using gl_auto, available in MORGAN v3.0. We describe identification of classes of equivalent inheritance patterns with the program IBDgraph. We finally provide an example of how these programs may be used to simplify interpretation of linkage analysis of complex traits in general pedigrees. We borrow information across loci in a parametric linkage analysis of a large pedigree. We explore the contribution of each equivalence class to a linkage signal, illustrate estimated patterns of identity-by-descent sharing, and identify a haplotype tagging the chromosomal segment driving the linkage signal. Haplotype carriers are more likely to share the linked trait variant, and can be prioritized for subsequent DNA sequencing.  相似文献   

3.
High lod scores were obtained in several X-linkage studies of bipolar illness under the assumption that a subgroup of manic depression follows an X-linked dominant mode of inheritance. We have previously shown that the segregation patterns do not substantiate this assumption. We now statistically address the lack of evidence for X-linked inheritance by sex-dependently analyzing segregation ratios and clinical data presented in eight positive X-linkage studies. Accordingly, affected males have significantly fewer offspring, a lower mean age and a higher bipolar to unipolar ratio than affected females. There are two possible explanations for these findings: either the X-linked subgroup of bipolar illness has unique features that have not been accounted for clinically, or (more probably) the pedigree structures could also (and might be more likely to) result from ascertaining kindreds following autosomal or multifactorial inheritance only, with exclusion of kindreds encompassing male to male transmission.  相似文献   

4.
Determining the mode of inheritance is often difficult under the best of circumstances, but when segregation analysis is used, the problems of ambiguous ascertainment procedures, reduced penetrance, heterogeneity, and misdiagnosis make mode-of-inheritance determinations even more unreliable. The mode of inheritance can also be determined using a linkage-based method (maximized maximum lod score or mod score) and association-based methods, which can overcome many of these problems. In this work, we determined how much information is necessary to reliably determine the mode of inheritance from linkage data when heterogeneity and reduced penetrance are present in the data set. We generated data sets under both dominant and recessive inheritance with reduced penetrance and with varying fractions of linked and unlinked families. We then analyzed those data sets, assuming reduced penetrance, both dominant and recessive inheritance, and no heterogeneity. We investigated the reliability of two methods for determining the mode of inheritance from the linkage data. The first method examined the difference (delta) between the maximum lod scores calculated under the two mode-of-inheritance assumptions. We found that if delta was > 1.5, then the higher of the two maximum lod scores reflected the correct mode of inheritance with high reliability and that a delta of 2.5 appeared to practically guarantee a correct mode-of-inheritance inference. Furthermore, this reliability appeared to be virtually independent of alpha, the fraction of linked families in the data set, although the reliability decreased slightly as alpha fell below .50.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
In complex disease studies, it is crucial to perform multipoint linkage analysis with many markers and to use robust nonparametric methods that take account of all pedigree information. Currently available methods fall short in both regards. In this paper, we describe how to extract complete multipoint inheritance information from general pedigrees of moderate size. This information is captured in the multipoint inheritance distribution, which provides a framework for a unified approach to both parametric and nonparametric methods of linkage analysis. Specifically, the approach includes the following: (1) Rapid exact computation of multipoint LOD scores involving dozens of highly polymorphic markers, even in the presence of loops and missing data. (2) Non-parametric linkage (NPL) analysis, a powerful new approach to pedigree analysis. We show that NPL is robust to uncertainty about mode of inheritance, is much more powerful than commonly used nonparametric methods, and loses little power relative to parametric linkage analysis. NPL thus appears to be the method of choice for pedigree studies of complex traits. (3) Information-content mapping, which measures the fraction of the total inheritance information extracted by the available marker data and points out the regions in which typing additional markers is most useful. (4) Maximum-likelihood reconstruction of many-marker haplotypes, even in pedigrees with missing data. We have implemented NPL analysis, LOD-score computation, information-content mapping, and haplotype reconstruction in a new computer package, GENEHUNTER. The package allows efficient multipoint analysis of pedigree data to be performed rapidly in a single user-friendly environment.  相似文献   

6.
We conducted genomewide linkage analyses on 1,152 individuals from 250 families segregating for bipolar disorder and related affective illnesses. These pedigrees were ascertained at 10 sites in the United States, through a proband with bipolar I affective disorder and a sibling with bipolar I or schizoaffective disorder, bipolar type. Uniform methods of ascertainment and assessment were used at all sites. A 9-cM screen was performed by use of 391 markers, with an average heterozygosity of 0.76. Multipoint, nonparametric linkage analyses were conducted in affected relative pairs. Additionally, simulation analyses were performed to determine genomewide significance levels for this study. Three hierarchical models of affection were analyzed. Significant evidence for linkage (genomewide P<.05) was found on chromosome 17q, with a peak maximum LOD score of 3.63, at the marker D17S928, and on chromosome 6q, with a peak maximum LOD score of 3.61, near the marker D6S1021. These loci met both standard and simulation-based criteria for genomewide significance. Suggestive evidence of linkage was observed in three other regions (genomewide P<.10), on chromosomes 2p, 3q, and 8q. This study, which is based on the largest linkage sample for bipolar disorder analyzed to date, indicates that several genes contribute to bipolar disorder.  相似文献   

7.
We describe a simple, graphical method for determining plausible modes of inheritance for complex traits and apply this to bipolar disorder. The constraints that allele frequencies and penetrances lie in the interval 0-1 impose limits on recurrence risks, KR, in relatives of an affected proband for a given population prevalence, KP. We have investigated these limits for KR in three classes of relatives (MZ co-twin, sibling, and parent/offspring) for the general single-locus model and for two types of multilocus models: heterogeneity and multiplicative. In our models we have assumed Hardy-Weinberg equilibrium, an all-or-none trait, absence of nongenetic resemblance between relatives, and negligible mutation at the disease loci. Although the true values of KP and the KR''s are only approximately known, observed population and family data for bipolar disorder are inconsistent with a single-locus model or with any heterogeneity model. In contrast, multiplicative models involving three or more loci are consistent with observed data and, thus, represent plausible models for the inheritance of bipolar disorders. Studies to determine the genetic basis of most bipolar disorder should use methods capable of detecting interacting oligogenes.  相似文献   

8.
Previously reported linkage of bipolar affective disorder to DNA markers in the pericentromeric region of chromosome 18 was reexamined in a larger homogeneous sample of Old Order Amish families. Four markers (D18S21, D18S53, D18S44, and D18S40) were examined in three kindreds containing 31 bipolar I (BP I) individuals. Although linkage findings were replicated in the one previously studied Amish pedigree containing four BP I individuals, linkage to this region was excluded in the larger sample. If a susceptibility locus for bipolar disorder is located in this region of chromosome 18, it is of minor significance in this population.  相似文献   

9.
Linkage evidence suggests that chromosome 13 (13q32-33) contains susceptibility genes for both bipolar disorder and schizophrenia. Recently, genes called "G72" and "G30" were identified, and polymorphisms of these overlapping genes were reported to be associated with schizophrenia. We studied two series of pedigrees with bipolar disorder: the Clinical Neurogenetics (CNG) pedigrees (in which linkage to illness had been previously reported at 13q32-33), with 83 samples from 22 multiplex families, and the National Institute of Mental Health (NIMH) Genetics Initiative pedigrees, with 474 samples from 152 families. Sixteen single-nucleotide polymorphisms (SNPs) were genotyped at and around the G72/G30 locus, which covered a 157-kb region encompassing the entire complementary DNA sequences of G72 and G30. We performed transmission/disequilibrium testing (TDT) and haplotype analysis, since a linkage-disequilibrium block was present at this gene locus. In the CNG and NIMH data sets, the results of global TDT of the entire haplotype set were significant and consistent (P=.0004 and P=.008, respectively). In the CNG series, the associated genotypes divided the families into those with linkage and those without linkage (partitioned by the linkage evidence). Analysis of the decay of haplotype sharing gave a location estimate that included G72/G30 in its 95% confidence interval. Although statistically significant association was not detected for individual SNPs in the NIMH data set, the same haplotype was consistently overtransmitted in both series. These data suggest that a susceptibility variant for bipolar illness exists in the vicinity of the G72/G30 genes. Taken together with the earlier report, this is the first demonstration of a novel gene(s), discovered through a positional approach, independently associated with both bipolar illness and schizophrenia.  相似文献   

10.
There are three assumptions of independence or conditional independence that underlie linkage likelihood computations on sets of related individuals. The first is the independence of meioses, which gives rise to the conditional independence of haplotypes carried by offspring, given those of their parents. The second derives from the assumption of absence of genetic interference, which gives rise to the conditional independence of inheritance vectors, given the inheritance vector at an intermediate location. The third is the assumption of independence of allelic types, at the population level, both among haplotypes of unrelated individuals and also over the loci along a given haplotype. These three assumptions have been integral to likelihood computations since the first lod scores were computed, and remain key components in analysis of modern genetic data. In this paper we trace the role of these assumptions through the history of linkage likelihood computation, through to a new framework of genetic linkage analysis in the era of dense genomic marker data.  相似文献   

11.
A method is described for segregation analysis that incorporates linkage markers. The model allows for segregation (penetrance), linkage (recombination fraction), and association (linkage disequilibrium) parameters. A single-locus-multiple-allele model underlying the trait phenotype is assumed. When families have been ascertained in a systematic fashion, a joint (markers, phenotypes) likelihood with ascertainment is advocated. When ascertainment correction is not feasible, a conditional (markers given phenotypes) approach is recommended, which is also valid in the presence of reduced fertility and assortative mating. This approach, oriented toward determining mode of inheritance, differs from conventional linkage analysis, which is oriented toward detection of linkage. Therefore, it is more appropriately considered an extension of the affected sib-pair method to arbitrary pedigrees, including association information and allowing for multiple alleles. Incorporation of coupling parameters allows for discrimination between pleiotropy and linkage disequilibrium. The method is demonstrated through a reanalysis of four recently published family studies on type 1 diabetes and HLA. Recessive inheritance is rejected in all four data sets. For three of them, dominant inheritance is not rejected, while in the fourth, all two-allele models are rejected in favor of three alleles. Although association with the DR3 and DR4 alleles is quite strong, pleiotropy with regard to these alleles is unlikely. The results also suggest an additional familial factor(s) (e.g., locus).  相似文献   

12.
Lee SH  Van der Werf JH  Tier B 《Genetics》2005,171(4):2063-2072
A linkage analysis for finding inheritance states and haplotype configurations is an essential process for linkage and association mapping. The linkage analysis is routinely based upon observed pedigree information and marker genotypes for individuals in the pedigree. It is not feasible for exact methods to use all such information for a large complex pedigree especially when there are many missing genotypic data. Proposed Markov chain Monte Carlo approaches such as a single-site Gibbs sampler or the meiosis Gibbs sampler are able to handle a complex pedigree with sparse genotypic data; however, they often have reducibility problems, causing biased estimates. We present a combined method, applying the random walk approach to the reducible sites in the meiosis sampler. Therefore, one can efficiently obtain reliable estimates such as identity-by-descent coefficients between individuals based on inheritance states or haplotype configurations, and a wider range of data can be used for mapping of quantitative trait loci within a reasonable time.  相似文献   

13.
A pedigree and linkage analysis was performed on a corrected version of the Habbanite pedigree 2 of Slatis et al. [1]. The trait "arch on any digit" was examined for major gene inheritance and possible linkage to several blood and serum group markers. The results confirm the proposed dominant major gene inheritance of this trait with almost complete penetrance. In addition, the analysis suggests linkage with the haptoglobin locus with evidence against linkage with Pl and Rhesus. These results are of particular interest in view of recently reported dermatoglyphic associations with haptoglobin.  相似文献   

14.
We have developed a highly informative set of single-nucleotide polymorphism (SNP) assays designed for linkage mapping of the human genome. These assays were developed on a robust multiplexed assay system to provide a combination of very high accuracy and data completeness with high throughput for linkage studies. The linkage panel is comprised of approximately 4,700 SNPs with 0.39 average minor allele frequency and 624-kb average spacing. Based on almost 2 million genotypes, data quality was shown to be extremely high, with a 99.94% call rate, >99.99% reproducibility and 99.995% genotypes consistent with mendelian inheritance. We constructed a genetic map with an average 1.5-cM resolution using series of 28 CEPH pedigrees. The relative information content of this panel was higher than those of commonly used STR marker panels. The potent combination of this SNP linkage panel with the multiplexed assay system provides a previously unattainable level of performance for linkage studies.  相似文献   

15.
Several methods have been proposed for linkage analysis of complex traits with unknown mode of inheritance. These methods include the LOD score maximized over disease models (MMLS) and the "nonparametric" linkage (NPL) statistic. In previous work, we evaluated the increase of type I error when maximizing over two or more genetic models, and we compared the power of MMLS to detect linkage, in a number of complex modes of inheritance, with analysis assuming the true model. In the present study, we compare MMLS and NPL directly. We simulated 100 data sets with 20 families each, using 26 generating models: (1) 4 intermediate models (penetrance of heterozygote between that of the two homozygotes); (2) 6 two-locus additive models; and (3) 16 two-locus heterogeneity models (admixture alpha = 1.0,.7,.5, and.3; alpha = 1.0 replicates simple Mendelian models). For LOD scores, we assumed dominant and recessive inheritance with 50% penetrance. We took the higher of the two maximum LOD scores and subtracted 0.3 to correct for multiple tests (MMLS-C). We compared expected maximum LOD scores and power, using MMLS-C and NPL as well as the true model. Since NPL uses only the affected family members, we also performed an affecteds-only analysis using MMLS-C. The MMLS-C was both uniformly more powerful than NPL for most cases we examined, except when linkage information was low, and close to the results for the true model under locus heterogeneity. We still found better power for the MMLS-C compared with NPL in affecteds-only analysis. The results show that use of two simple modes of inheritance at a fixed penetrance can have more power than NPL when the trait mode of inheritance is complex and when there is heterogeneity in the data set.  相似文献   

16.
Norway spruce (Picea abies Karst.) is a most important species among European forest trees for both economical and ecological reasons. However, this species has suffered from a lack of information on the genetic side due to the scarcity of linkage data. In this study we have used a population of 72 megagametophytes from a single tree in a natural Italian stand to produce a genetic linkage map by means of RAPD markers. Ninety-six random decamers used as primers yielded 185 polymorphic loci showing Mendelian inheritance. Analysis of the segregation by multipoint analysis allowed us to define 17 major linkage groups covering a total distance of 3584 cM, with an average spacing between markers of 22 cM. Possible uses of a genetic linkage map with respect to population ecology and genetics are discussed.  相似文献   

17.
Summary Studies on the segregation of the red blood cell determinant Xg in 12 families with X-linked inheritance of agammaglobulinemia (XLA) in 3–4 generations suggested linkage of Xg with XLA. One extensive pedigree of a Dutch family with XLA in eight generations was investigated for Xg and the quantitative polymorphism 12E7. LIPED analysis indicated linkage disproven up to 25cM distance within this pedigree. Taken together with data obtained from two other informative XLA pedigrees and with published data, the results indicate no close linkage between XLA and Xg:12E7, the distance between XLA and Xg being more than 20cM.  相似文献   

18.
Dense SNP maps can be highly informative for linkage studies. But when parental genotypes are missing, multipoint linkage scores can be inflated in regions with substantial marker-marker linkage disequilibrium (LD). Such regions were observed in the Affymetrix SNP genotypes for the Genetic Analysis Workshop 14 (GAW14) Collaborative Study on the Genetics of Alcoholism (COGA) dataset, providing an opportunity to test a novel simulation strategy for studying this problem. First, an inheritance vector (with or without linkage present) is simulated for each replicate, i.e., locations of recombinations and transmission of parental chromosomes are determined for each meiosis. Then, two sets of founder haplotypes are superimposed onto the inheritance vector: one set that is inferred from the actual data and which contains the pattern of LD; and one set created by randomly selecting parental alleles based on the known allele frequencies, with no correlation (LD) between markers. Applying this strategy to a map of 176 SNPs (66 Mb of chromosome 7) for 100 replicates of 116 sibling pairs, significant inflation of multipoint linkage scores was observed in regions of high LD when parental genotypes were set to missing, with no linkage present. Similar inflation was observed in analyses of the COGA data for these affected sib pairs with parental genotypes set to missing, but not after reducing the marker map until r2 between any pair of markers was 相似文献   

19.
The results of segregation analysis applied to a family study of idiopathic torsion dystonia in Ashkenazi Jews are reported. The study is based on 43 probands (with age at onset prior to 27 years) from 42 nuclear families; pedigrees were extended systematically through all available first- and second-degree relatives, who were directly examined and videotaped. Final diagnoses were based on exam information and blinded videotape review. Segregation analysis demonstrated that the data are consistent with autosomal dominant inheritance with 30% penetrance. Recessive and polygenic inheritance were strongly rejected. There was no evidence for sporadic cases or new mutations. The high incidence and dominant inheritance of early-onset idiopathic torsion dystonia in Ashkenazi Jews suggests genetic homogeneity within this population, making it especially useful for linkage studies of this disorder.  相似文献   

20.
Recently developed algorithms permit nonparametric linkage analysis of large, complex pedigrees with multiple inbreeding loops. We have used one such algorithm, implemented in the package SimWalk2, to reanalyze previously published genome-screen data from a Costa Rican kindred segregating for severe bipolar disorder. Our results are consistent with previous linkage findings on chromosome 18 and suggest a new locus on chromosome 5 that was not identified using traditional linkage analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号