首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The basic prerequisite for an efficient breeding program to improve levels of resistance to pathogens in plants is the identification of genes controlling the resistance character. If the response to pathogens is under the control of a multilocus system, the utilization of molecular markers becomes essential. Stalk and ear rot caused by Gibberella zeae is a widespread disease of corn: resistance to G. zeae is quantitatively inherited. Our experimental approach to understanding the genetic basis of resistance to Gibberella is to estimate the genetic linkage between available molecular markers and the character, measured as the amount of diseased tissue 40 days after inoculation of a suspension of Fusarium graminearum, the conidial form of G. zeae, into the first stalk internode. Sensitive and resistant parental inbreds were crossed to obtain F1 and F2 populations: the analysis of the segregation of 95 RFLP (restriction fragment length polymorphism) clones and 10 RAPD (random amplified polymorphic DNA) markers was performed on a population of 150 F2 individuals. Analysis of resistance was performed on the F3 families obtained by selfing the F2 plants. Quantitative trait loci (QTL) detection was based either on analysis of regression coefficients between family mean value and allele values in the F2 population, or by means of interval mapping, using MAPMAKER-QTL. A linkage map of maize was obtained, in which four to five genomic regions are shown to carry factors involved in the resistance to G. zeae.  相似文献   

2.
Sheath blight, caused by Rhizoctonia solani, is one of the most important diseases of rice. Despite extensive searches of the rice germ plasm, the major gene(s) which give complete resistance to the fungus have not been identified. However, there is much variation in quantitatively inherited resistance to R. solani, and this type of resistance can offer adequate protection against the pathogen under field conditions. Using 255 F4 bulked populations from a cross between the susceptible variety Lemont and the resistant variety Teqing, 2 years of field disease evaluation and 113 well-distributed RFLP markers, we identified six quantitative trait loci (QTLs) contributing to resistance to R. solani. These QTLs are located on 6 of the 12 rice chromosomes and collectively explain approximately 60% of the genotypic variation or 47% of the phenotypic variation in the LemontxTeqing cross. One of these resistance QTLs (QSbr4a), which accounted for 6% of the genotypic variation in resistance to R. solani, appeared to be independent of associated morphological traits. The remaining five putative resistance loci (QSbr2a, QSbr3a, QSbr8a, QSbr9a and QSbr12a) all mapped to chromosomal regions also associated with increased plant height, three of which were also associated with QTLs causing later heading. This was consistent with the observation that heading date and plant height accounted for 47% of the genotypic variation in resistance to R. solani in this population. There were also weak associations between resistance to R. solani and leaf width, which were likely due to linkage with a QTL for this trait rather than to a physiological relationship.  相似文献   

3.
Quantitative trait loci (QTLs) for pollen thermotolerance detected in maize   总被引:1,自引:0,他引:1  
Pollen thermotolerance is an important component of the adaptability of crops to high temperature stress. The tolerance level of the different genotypes in a population of 45 maize recombinant inbred lines was determined as the degree of injury caused by high temperature to pollen germinability (IPGG) and pollen tube growth (IPTG) in an in vitro assay. Both traits revealed quantitative variability and high heritability. The traits were genetically dissected by the analysis of molecular markers using 184 mapped restriction fragment length polymorphisms (RFLPs). Significant genetic correlation between the markers and the trait allowed us to identify a minimum number of five quatitative trait loci (QTLs) for IPGG and six QTLs for IPTG. Their chromosomal localization indicated that the two characters are controlled by different sets of genes. In addition, IPGG and IPTG were shown to be basically independent of the pollen germination ability and pollen tube growth rate under non-stress conditions. These results are discussed in relation to their possible utilization in a breeding strategy for the improvement of thermotolerance in maize.  相似文献   

4.
Mapping quantitative trait loci for seedling vigor in rice using RFLPs   总被引:13,自引:0,他引:13  
Improving seedling vigor is an important objective of modern rice (Oryza saliva L.) breeding programs. The purpose of this study was to identify and map quantitative trait loci (QTL) underlying seedling vigor-related traits using restriction fragment length polymorphisms (RFLPs). An F2 population of 204 plants was developed from a cross between a low-vigor japonica cultivar Labelle (LBL) and a high-vigor indica cultivar Black Gora (BG). A linkage map was constructed of 117 markers spanning 1496 Haldane cM and encompassing the 12 rice chromosomes with an average marker spacing of 14 cM. The length of the shoots, roots, coleoptile and mesocotyl were measured on F3 families in slantboard tests conducted at two temperatures (18° and 25°C). By means of interval analysis, 13 QTLs, each accounting for 7% to 38% of the phenotypic variance, were identified and mapped in the two temperature regimes at a log-likelihood (LOD) threshold of 2.5. Four QTLs controlled shoot length, 2 each controlled root and coleoptile lengths and 5 influenced mesocotyl length. Single-point analysis confirmed the presence of these QTLs and detected additional loci for shoot, root and coleoptile lengths, these latter usually accounting for less than 5% of the phenotypic variation. Only 3 QTLs detected both by interval and singlepoint analyses were expressed under both temperature regimes. Additive, dominant and overdominant modes of gene action were observed. Contrary to what was predicted from parental phenotype, the low-vigor LBL contributed 46% of the positive alleles for shoot, root and coleoptile lengths. Positive alleles from the high-vigor parent BG were identified for increased root, coleoptile and mesocotyl lengths. However, BG contributed alleles with only minor effects for shoot length, the most important determinant of seedling vigor in water-seeded rice, suggesting that it would not be an ideal donor parent for introducing faster shoot growth alleles into temperate japonica cultivars.  相似文献   

5.
 We describe and apply an interval mapping method for quantitative trait locus (QTL) detection using F3 and testcross progenies derived from F2 populations obtained from a diallel cross among four elite lines of maize. Linear model-based procedures were used for the test and estimation of putative QTL effects together with genetic interactions including epistasis. We mapped QTL associated with silking date and explored their genetic effects. Ten QTL were detected, and these explained more than 40% of the phenotypic variance. Most of these QTL had consistent and stable effects among genetic backgrounds and did not show significant epistasis. QTL-by-environment interaction was important for four QTL and was essentially due to changes in magnitude of allelic effects. These results show the efficiency of our method in several genetic situations as well as the power of the diallel design in detecting QTL simultaneously over several populations. Received: 2 September 1996 / Accepted: 20 December 1996  相似文献   

6.
Quantitative trait loci (QTLs) affecting seed weight in pea (Pisum sativum L.) were mapped using two populations, a field-grown F2 progeny of a cross between two cultivated types (Primo and OSU442-15) and glasshouse-grown single-seed-descent recombinant inbred lines (RILs) from a wide cross between a P. sativum ssp. sativum line (Slow) and a P. sativum ssp. humile accession (JI1794). Linkage maps for these crosses consisted of 199 and 235 markers, respectively. QTLs for seed weight in the Primo x OSU442-15 cross were identified by interval mapping, bulked segregant analysis, and selective genotyping. Four QTLs were identified in this cross, demonstrating linkage to four intervals on three linkage groups. QTLs for seed weight in the JI1794 x Slow cross were identified by single-marker analyses. Linkage were demonstrated to four intervals on three linkage groups plus three unlinked loci. In the two crosses, only one common genomic region was identified as containing seed-weight QTLs. Seed-weight QTLs mapped to the same region of linkage group III in both crosses. Conserved linkage relationships were demonstrated for pea, mungbean (Vigna radiata L.), and cowpea (V. unguiculata L.) genomic regions containing seed-weight QTLs by mapping RFLP loci from the Vigna maps in the Primo x OSU442-15 and JI1794 x Slow crosses.  相似文献   

7.
Yield-enhancing quantitative trait loci (QTLs) from wild species   总被引:1,自引:0,他引:1  
Wild species of crop plants are increasingly being used to improve various agronomic traits including yield in cultivars. Dense molecular maps have enabled mapping of quantitative trait loci (QTLs) for complex traits such as yield. QTLs for increased yield have been identified from wild relatives of several crop plants. Advanced backcross QTL analysis has been used to identify naturally occurring favorable QTL alleles for yield and minimize the effect of unwanted alleles from wild species. Yield QTLs from wild species are distributed on almost all chromosomes but more often in some regions. Many QTLs for yield and related traits derived from different wild accessions or species map to identical chromosomal regions. QTLs for highly correlated yield associated traits are also often co-located implying linkage or pleiotropic effects. Many QTLs have been detected in more than one environment and in more than one genetic background. The overall direction of effect of some QTLs however, may vary with genetic context. Thus, there is evidence of stable and consistent major effect yield-enhancing QTLs derived from wild species in several crops. Such QTLs are good targets for use in marker assisted selection though their context-dependency is a major constraint. Literature on yield QTLs mapped from wild species is summarized with special reference to rice and tomato.  相似文献   

8.
We have applied a two-way pseudo-testcross strategy in an analysis of Pinus sylvestris for genetic mapping and detection of quantitative trait loci (QTLs) associated with economically important traits targeted in the Swedish tree-breeding programme. Based on 94 full-sib progeny of a cross between two plus-trees from northern Sweden we generated two parental maps using AFLP markers. The female map was comprised of 94 markers assigned to 15 linkage groups giving a size of 796 cM. On the male map 155 markers were assigned to 15 linkage groups, giving a total size of 1335 cM. The recombination frequency was found to be sex-dependent, being 29.3% higher in male than in female gametes. On the female map, 12 QTLs were detected (but none for branch diameter or wood density). Three QTLs for tree height accounted for 25.8% of the total phenotypic variation of this trait. When the QTLs detected for all the traits were taken independently, the percentages of phenotypic variance ranged from 9.3% to 22.7%. The highest value was observed for frost hardiness, an important trait in northern Sweden for which a major gene seemed to be involved. A cluster of QTLs for tree height, trunk diameter and volume was located on one linkage group. On the male map, four QTLs for trunk diameter and volume were detected. Due to the reduced number of individuals under study, the results are preliminary and have to be validated on more trees.  相似文献   

9.
Quantitative trait loci for aluminum resistance in wheat   总被引:4,自引:0,他引:4  
Quantitative trait loci (QTL) for wheat resistance to aluminum (Al) toxicity were analyzed using simple sequence repeats (SSRs) in a population of 192 F6 recombinant inbred lines (RILs) derived from a cross between an Al-resistant cultivar, Atlas 66 and an Al-sensitive cultivar, Chisholm. Wheat reaction to Al was measured by relative root growth and root response to hematoxylin stain in nutrient-solution culture. After screening 1,028 SSR markers for polymorphisms between the parents and bulks, we identified two QTLs for Al resistance in Atlas 66. One major QTL was mapped on chromosome 4D that co-segregated with the Al-activated malate transporter gene (ALMT1). Another minor QTL was located on chromosome 3BL. Together, these two QTLs accounted for about 57% of the phenotypic variation in hematoxylin staining score and 50% of the variation in net root growth (NRG). Expression of the minor QTL on 3BL was suppressed by the major QTL on 4DL. The two QTLs for Al resistance in Atlas 66 were also verified in an additional RIL population derived from Atlas 66/Century. Several SSR markers closely linked to the QTLs were identified and have potential to be used for marker-assisted selection (MAS) to improve Al-resistance of wheat cultivars in breeding programs.  相似文献   

10.
Quantitative trait loci (QTLs) for resistance to pathogen populations of Scelerospora graminicola from India, Nigeria, Niger and Senegal were mapped using a resistant x susceptible pearl millet cross. An RFLP map constructed using F2 plants was used to map QTLs for traits scored on F4 families. QTL analysis was carried out using the interval mapping programme Mapmaker/QTL. Independent inheritance of resistance to pathogen populations from India, Senegal, and populations from Niger and Nigeria was shown. These results demonstrate the existence of differing virulences in the pathogen populations from within Africa and between Africa and India. QTLs of large effect, contributing towards a large porportion of the variation in resistance, were consistently detected in repeated screens. QTLs of smaller and more variable effect were also detected. There was no QTLs that were effective against all four pathogen populations, demonstrating that pathotype-specific resistance is a major mechanism of downy mildew resistance in this cross. For all but one of the QTLs, resistance was inherited from the resistant parent and the inheritance of resistance tended to be the result of dominance or over-dominance. The implications of this research for pearl millet breeding are discussed.  相似文献   

11.
The use of molecular markers to identify quantitative trait loci (QTLs) has the potential to enhance the efficiency of trait selection in plant breeding. The purpose of the present study was to identify additional QTLs for plant height, lodging, and maturity in a soybean, Glycine max (L.) Merr., population segregating for growth habit. In this study, 153 restriction fragment length polymorphisms (RFLP) and one morphological marker (Dt1) were used to identify QTLs associated with plant height, lodging, and maturity in 111 F2-derived lines from a cross of PI 97100 and Coker 237. The F2-derived lines and two parents were grown at Athens, Ga., and Blackville, S.C., in 1994 and evaluated for phenotypic traits. The genetic linkage map of these 143 loci covered about 1600 cM and converged into 23 linkage groups. Eleven markers remained unlinked. Using interval-mapping analysis for linked markers and single-factor analysis of variance (ANOVA), loci were tested for association with phenotypic data taken at each location as well as mean values over the two locations. In the combined analysis over locations, the major locus associated with plant height was identified as Dt1 on linkage group (LG) L. The Dt1 locus was also associated with lodging. This locus explained 67.7% of the total variation for plant height, and 56.4% for lodging. In addition, two QTLs for plant height (K007 on LG H and A516b on LG N) and one QTL for lodging (cr517 on LG J) were identified. For maturity, two independent QTLs were identified in intervals between R051 and N100, and between B032 and CpTI, on LG K. These QTLs explained 31.2% and 26.2% of the total variation for maturity, respectively. The same QTLs were identified for all traits at each location. This consistency of QTLs may be related to a few QTLs with large effects conditioning plant height, lodging, and maturity in this population.  相似文献   

12.
Lemont and Teqing are both semidwarf rice varieties that differ in heading date by only 6 days. However, when Lemont and Teqing are crossed there is transgressive segregation for both heading date (HD) and plant height (PH). By testing 2418 F4 lines with 113 well-distributed RFLP markers, we identified and mapped chromosomal regions that were largely responsible for this transgressive segregation. QHd3a, a QTL from Lemont that gives 8 days earlier heading, was identified on chromosome 3 approximately 3 cM from the marker RG348. Another QTL with a large effect, QHd8a, which gives 7 days earlier heading, was identified on chromosome 8 of Teqing between RG20 and RG1034. Along with a QTL, QHd9a with a phenotypic effect of 3.5 days, these genomic regions collectively explain 76.5% of the observed phenotypic variance in heading date. Four QTLs which altered plant height from 4 to 7 cm were also mapped; these collectively explain 48.8% of the observed phenotypic variation in plant height. None of the QTLs for plant height mapped to chromosome 1, the location of the semidwarf gene sd-1. All three of the HD loci mapped to approximately the same genomic locations as PH QTLs, and in all cases, there was a reduction in height of approximately 1 cm for every day of earlier heading. The correspondence between the HD and some of the PH loci suggests that genes at these chromosome locations may have pleiotropic effects on both HD and PH. The observed heterosis in the F1 plants for HD can be largely explained by the dominance for earliness of the identified HD loci and distribution of earlier heading alleles in the parents. However, overdominance observed at one of the PH QTL may, at least in part, be responsible for the observed heterosis in PH.  相似文献   

13.
The breeding of sugar beet varieties that combine resistance to Cercospora and high yield under non-diseased conditions is a major challenge to the breeder. The understanding of the quantitative trait loci (QTLs) contributing to Cercospora resistance offers one route to solving this problem. A QTL analysis of Cercospora resistance in sugar beet was carried out using a linkage map based on AFLP and RFLP markers. Two different screening methods for Cercospora resistance (a field test at Copparo, Italy, under natural infection, and a newly-developed leaf disc test) were used to estimate the level of Cercospora resistance; the correlation between scores from the field (at 162 days after sowing) and the leaf disc test was significant. QTL analysis was based on F2 and F3 (half-sib family) generations derived from crosses between diploid single plants of 93164P (resistant to Cercospora leaf spot disease) and 95098P (susceptible). Four QTLs associated with Cercospora resistance (based on Lsmean data of the leaf disc test) on chromosomes III, IV, VII and IX were revealed using Composite interval mapping. To produce populations segregating for leaf spot resistance as a single Mendelian factor, we selected for plants heterozygous for only one of the QTLs (on chromosome IV or IX) but homozygous for the others. Received: 1 September 1999 / Accepted 7 October 1999  相似文献   

14.
Breeding maize for gray leaf spot (GLS) resistance has been hindered by the quantitative nature of the inheritance of GLS resistance and by the limitations of selection under less than optimumal disease pressure. In order to identify the quantitative trait loci (QTLs) controlling GLS resistance, a cross was made between B73 (susceptible) and Va14 (resistant) to generate a large F2 population. Six GLS disease assessments were made throughout the disease season for over 1000 F2 plants in 1989, and for 600 F2-derived F3 lines replicated in two blocks in 1990. RFLP analysis for78 marker loci representing all ten maize chromosomes was conducted in 239 F2 individuals including those with the extreme GLS disease phenotypes. The GLS disease scores of the three field evaluations, each averaged over six ratings, were separately used for the interval mapping in order to determine the consistency of the QTL effects. The heavy GLS disease pressure, meticulous disease ratings, and large population size of this study afforded us the sensitivity for detecting QTL effects. QTLs located on three chromosomes (1, 4, and 8) had large effects on GLS resistance, each explaining 35.0–56.0%, 8.8–14.3%, and 7.7–11.0% of the variance, respectively. These three QTL effects were remarkably consistent across three disease evaluations over 2 years and two generations. Smaller QTL effects were also found on chromosomes 2 and 5, but the chromosome-5 effect might be a false positive because it was not repeatable even in the same location. The chromosome-1 QTLs had the largest effect or highest R2 reported for any quantitative trait to-date. Except for the chromosome-4 gene, which was from the susceptible parent B73, the resistance alleles at all QTL were derived from Va14. The resistance QTLs on chromosomes 1 and 2 appear to have additive effects, but those on chromosomes 4 and 8 are dominant and recessive, respectively. Significant interaction between the QTLs on chromosomes 1 and 4 was detected in all three evaluations. Cumulatively, the four QTLs identified in this study explained 44, 60, and 68% of the variance in F2, and in F3 replications 1 and 2, respectively.  相似文献   

15.
 One hundred and thirty nine restriction fragment length polymorphisms (RFLPs) were used to construct a soybean (Glycine max L. Merr.) genetic linkage map and to identify quantitative trait loci (QTLs) associated with resistance to corn earworm (Helicoverpa zea Boddie) in a population of 103 F2-derived lines from a cross of ‘Cobb’ (susceptible) and PI229358 (resistant). The genetic linkage map consisted of 128 markers which converged onto 30 linkage groups covering approximately 1325 cM. There were 11 unlinked markers. The F2-derived lines and the two parents were grown in the field under a plastic mesh cage near Athens, Ga., in 1995. The plants were artificially infested with corn earworm and evaluated for the amount of defoliation. Using interval-mapping analysis for linked markers and single-factor analysis of variance (ANOVA), markers were tested for an association with resistance. One major and two minor QTLs for resistance were identified in this population. The PI229358 allele contributed insect resistance at all three QTLs. The major QTL is linked to the RFLP marker A584 on linkage group (LG) ‘M’ of the USDA/Iowa State University public soybean genetic map. It accounts for 37% of the total variation for resistance in this cross. The minor QTLs are linked to the RFLP markers R249 (LG ‘H’) and Bng047 (LG ‘D1’). These markers explain 16% and 10% of variation, respectively. The heritability (h2) for resistance was estimated as 64% in this population. Received: 15 October 1997 / Accepted: 4 November 1997  相似文献   

16.
Eucalyptus globulus Labill. ssp. globulus is an important tree species for the pulp and paper industry, and several breeding programmes throughout the world are striving to improve key traits such as growth and wood density. This study aimed to detect quantitative trait loci (QTL) for growth, wood density, relative bark thickness and early flowering in a single full-sib E. globulus family grown across seven sites. Growth was measured a number of times over a 6-year period, enabling temporal stability of growth QTL to be studied. Ten putative QTL (LOD > 2.0) were detected in the single family, which was of moderate size. Based on permutations of the trait data, six of these QTL were significant at the experimentwise significance level of 0.1 for at least one of the four models implemented in analysis to remove site effects. For wood density, two putative QTL explained 20% of the variance for the trait, indicating that a small number of QTL might explain a reasonable proportion of the trait variance. One of these QTL was found to be independent of QTL for growth whereas the second QTL co-segregated with a QTL for relative incremental growth. The marker nearest to this QTL was associated with fast growth but low wood density. A putative growth QTL at year 6 was found to be relatively stable across ages. In addition, it was found that residuals from models based on measurements from across all families across all sites in the trial detected QTL with greater experimentwise significance.  相似文献   

17.
We report the identification and mapping of two quantitative trait loci (QTLs) of Solanum spegazzinii BGRC, accession 8218-15, involved in resistance to the potato cyst-nematode Globodera rostochiensis pathotype Ro1, by means of restriction fragment length polymorphisms (RFLPs). For this purpose we crossed a susceptible diploid S. tuberosum with the resistant S. spegazzinii, and tested the F1 population for resistance to the Ro1 pathotype. Since the F1 segregated for the resistance, the S. spegazzinii parent was concluded to be heterozygous at the nematode resistance loci. For the mapping of the resistance loci we made use of RFLP markers segregating for S. spegazzinii alleles in the F1. One hundred and seven RFLP markers were tested in combination with four different restriction enzymes; 29 of these displayed a heterozygous RFLP pattern within S. spegazzinii and were used for mapping. Analysis of variance (ANOVA) was applied to test the association of the RFLP patterns of these markers with nematode resistance. Two QTLs involved in disease resistance to Globodera rostochiensis pathotype Ro1 were identified and mapped to chromosomes 10 and 11 respectively.  相似文献   

18.
Southern leaf blight (SLB) caused by the fungus Cochliobolus heterostrophus (Drechs.) Drechs. is a major foliar disease of maize worldwide. Our objectives were to identify quantitative trait loci (QTL) for resistance to SLB and flowering traits in recombinant inbred line (RIL) population derived from the cross of inbred lines LM5 (resistant) and CM140 (susceptible). A set of 207 RILs were phenotyped for resistance to SLB at three time intervals for two consecutive years. Four putative QTL for SLB resistance were detected on chromosomes 3, 8 and 9 that accounted for 54% of the total phenotypic variation. Days to silking and anthesis–silking interval (ASI) QTL were located on chromosomes 6, 7 and 9. A comparison of the obtained results with the published SLB resistance QTL studies suggested that the detected bins 9.03/02 and 8.03/8.02 are the hot spots for SLB resistance whereas novel QTL were identified in bins 3.08 and 8.01/8.04. The linked markers are being utilized for marker‐assisted mobilization of QTL conferring resistance to SLB in elite maize backgrounds. Fine mapping of identified QTL will facilitate identification of candidate genes underlying SLB resistance.  相似文献   

19.
 Using RFLP markers, QTLs for tuber starch-content and tuber yield were mapped in two F1 populations derived from crossing non-inbred di-haploid potato breeding lines. QTLs were identified and mapped, based on both single-marker tests and interval analyses. A model specifically developed for interval QTL analysis in non-inbred plant species was successfully applied for the first time to experimental data. Results of both methods of QTL analysis were similar but not identical. QTLs for tuber starch-content and tuber yield were analysed in segregating populations K31 and LH in five and two environments, respectively. Population K31 was fully genotyped whereas population LH was selectively genotyped according to high and low tuber-starch content. Eighteen putative QTLs for tuber starch-content were identified on all 12 potato linkage groups and eight putative QTLs for tuber yield were identified on eight linkage groups. Twenty of twenty six putative QTLs were reproducibly detected in at least two environments and/or mapping populations. Few major QTLs for tuber starch-content were highly stable across environments but were detected in only one of the two mapping populations analysed. Most QTLs for tuber yield were linked with QTLs for tuber starch-content suggesting that the effects on both traits are controlled by the same genetic factors. The results are discussed with respect to marker-assisted selection in potato. Received: 9 March 1998 / Accepted: 29 April 1998  相似文献   

20.
Sucrose is a primary constituent of soybean (Glycine max) seed; however, little information concerning the inheritance of seed sucrose in soybean is available. The objective of this research was to use molecular markers to identify genomic regions significantly associated with quantitative trait loci (QTL) controlling sucrose content in a segregating F2 population. DNA samples from 149 F2 individuals were analyzed with 178 polymorphic genetic markers, including RFLPs, SSRs, and RAPDs. Sucrose content was measured on seed harvested from each of 149 F2:3 lines from replicated field experiments in 1993 and 1995. Seventeen marker loci, mapping to seven different genomic regions, were significantly associated with sucrose variation at P<0.01. Individually, these markers explained from 6.1% to 12.4% of the total phenotypic variation for sucrose content in this population. In a combined analysis these genomic regions; explained 53% of total variation for sucrose content. No significant evidence of epistasis among QTLs was observed. Comparison of our QTL mapping results for sucrose content and those previously reported for protein and oil content (the other major seed constituents in soybean), suggests that seed quality traits are inherited as clusters of linked loci or that `major' QTLs with pleiotropic effects may control all three traits. Of the seven genomic regions having significant effects on sucrose content, three were associated with significant variation for protein content and three were significantly associated with oil content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号