首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cells with functional DNA mismatch repair (MMR) stimulate G(2) cell cycle checkpoint arrest and apoptosis in response to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). MMR-deficient cells fail to detect MNNG-induced DNA damage, resulting in the survival of "mutator" cells. The retrograde (nucleus-to-cytoplasm) signaling that initiates MMR-dependent G(2) arrest and cell death remains undefined. Since MMR-dependent phosphorylation and stabilization of p53 were noted, we investigated its role(s) in G(2) arrest and apoptosis. Loss of p53 function by E6 expression, dominant-negative p53, or stable p53 knockdown failed to prevent MMR-dependent G(2) arrest, apoptosis, or lethality. MMR-dependent c-Abl-mediated p73alpha and GADD45alpha protein up-regulation after MNNG exposure prompted us to examine c-Abl/p73alpha/GADD45alpha signaling in cell death responses. STI571 (Gleevec, a c-Abl tyrosine kinase inhibitor) and stable c-Abl, p73alpha, and GADD45alpha knockdown prevented MMR-dependent apoptosis. Interestingly, stable p73alpha knockdown blocked MMR-dependent apoptosis, but not G(2) arrest, thereby uncoupling G(2) arrest from lethality. Thus, MMR-dependent intrinsic apoptosis is p53-independent, but stimulated by hMLH1/c-Abl/p73alpha/GADD45alpha retrograde signaling.  相似文献   

2.
GADD45, MyD118, and CR6 (also termed GADD45alpha, beta, and gamma) comprise a family of genes that encode for related proteins playing important roles in negative growth control, including growth suppression. Data accumulated suggest that MyD118/GADD45/CR6 serve similar but not identical functions along different apoptotic and growth suppressive pathways. It is also apparent that individual members of the MyD118/GADD45/CR6 family are differentially induced by a variety of genetic and environmental stress agents. The MyD118, CR6, and GADD45 proteins were shown to predominantly localize within the cell nucleus. Recently, we have shown that both MyD118 and GADD45 interact with proliferating cell nuclear antigen (PCNA), a protein that plays a central role in DNA replication, DNA repair, and cell cycle progression, as well as with the universal cyclin-dependent kinase inhibitor p21. In this work we show that also CR6 interacts with PCNA and p21. Moreover, it is shown that CR6 interacts with PCNA via a domain that also mediates interaction of both GADD45 and MyD118 with PCNA. Importantly, evidence has been obtained that interaction of CR6 with PCNA impedes the function of this protein in negative growth control, similar to observations reported for MyD118 and GADD45.  相似文献   

3.
Growth arrest and DNA damage inducible 45 alpha (GADD45α) is a central player in mediating apoptosis induced by a variety of stress stimuli and genotoxic agents. Regular usage of nonselective nonsteroidal anti-inflammatory drugs (NSAIDs) such as indomethacin and sulindac is associated with reduced risk for various cancers, including colon cancer. The role of GADD45α in NSAID-induced colon cancer cell cytotoxicity is unknown. In this study, we report that indomethacin and sulindac sulfide treatments up-regulate GADD45α mRNA expression and protein levels in colon cancer HT-29, RKO and Caco-2 cells. This up-regulation of GADD45α is accompanied by necrotic cell death and apoptosis. Anti-sense suppression of GADD45α expression inhibited indomethacin and sulindac sulfide-induced necrotic cell death and apoptosis. These findings confirm a role for GADD45α in NSAID-induced cytotoxicity, a mechanism for the anti-neoplastic effect of NSAIDs in colon tumorigenesis and cancer growth.  相似文献   

4.
郝一 《生物技术通讯》2011,22(2):264-268
哺乳动物细胞在遭受应激损伤因素刺激时会启动一系列信号传导通路,从而引发细胞周期阻滞、DNA修复或细胞凋亡等效应,这些机制的异常与肿瘤的发生发展密切相关。GADD45α作为生长阻滞及DNA损伤诱导基因编码家族的一员,参与维持基因组稳定性、调控细胞周期行进、DNA损伤修复、细胞衰老及细胞凋亡等多种生物学过程,在肿瘤发生发展和肿瘤抑制反应中具有重要作用。我们简要综述了GADD45α参与维持基因组稳定性并发挥肿瘤抑制效应的分子机制。  相似文献   

5.
Arsenite is a well documented environmental pathogen, whereas it has also been applied as medication to treat various neoplasmas. The pathogenic and therapeutic effects of arsenite are associated with cellular apoptotic responses. However, the molecular mechanisms of arsenite-induced apoptosis are not very well understood. Our previous study has shown that arsenite exposure is able to activate JNKs, which subsequently mediate the apoptotic outcome. The present study further revealed that the coordination of JNK1 and JNK2 was critical for the arsenite-induced expression of GADD45alpha (growth arrest and DNA damage 45alpha), which in turn mediated the cellular apoptosis. The arsenite-induced apoptosis and GADD45alpha expression were significantly impaired in mouse embryonic fibroblasts deficient in either jnk1 (JNK1-/-) or jnk2 (JNK2-/-). Knockdown of GADD45alpha by its specific small interfering RNA also dramatically reduced the apoptotic responses, and overexpression of GADD45alpha in either JNK1-/- or JNK2-/- mouse embryonic fibroblasts partially resensitized the cell death. Furthermore, it was found that the regulation of GADD45alpha by JNK1 and JNK2 was achieved through mediating the activation of c-Jun, since in the JNK1-/- and JNK2-/- cells the c-Jun activation was impaired, and overexpression of the dominant negative mutant of c-Jun (TAM67) in wild type cells could also block GADD45alpha induction as well as cellular apoptosis. Our results demonstrate that the coordination of JNK1 and JNK2 is critical for c-Jun/GADD45alpha-mediated cellular apoptosis induced by arsenite.  相似文献   

6.
7.
Cell death suppression by cytomegaloviruses   总被引:5,自引:0,他引:5  
Cytomegaloviruses (CMVs), a subset of betaherpesviruses, employ multiple strategies to suppress apoptosis in infected cells and thus to delay their death. Human cytomegalovirus (HCMV) encodes at least two proteins that directly interfere with the apoptotic signaling pathways, viral inhibitor of caspase-8-induced apoptosis vICA (pUL36), and mitochondria-localized inhibitor of apoptosis vMIA (pUL37 × 1). vICA associates with pro-caspase-8 and appears to block its recruitment to the death-inducing signaling complex (DISC), a step preceding caspase-8 activation. vMIA binds and sequesters Bax at mitochondria, and interferes with BH3-only-death-factor/Bax-complex-mediated permeabilization of mitochondria. vMIA does not seem to either interact with Bak, a close structural and functional homologue of Bax, or to suppress Bak-mediated permeabilization of mitochondria and Bak-mediated apoptosis. All sequenced betaherpesviruses, including CMVs, encode close homologues of vICA, and those vICA homologues that have been tested, were found to be functional cell death suppressors. Overt sequence homologues of vMIA were found only in the genomes of primate CMVs, but recent observations made with murine CMV (MCMV) indicate that non-primate CMVs may also encode a cell death suppressor functionally resembling vMIA. The exact physiological rolesand relative contributions of vMIA and vICA in suppressing death of CMV-infected cells in vivo have not been elucidated. There is strong evidence that the cell death suppressing function of vMIA is indispensable, and that vICA is dispensable for replication of HCMV. In addition to suppressed caspase-8 activation and sequestered Bax, CMV-infected cells display several other phenomena, less well characterized, that may diminish, directly or indirectly the extent of cell death.  相似文献   

8.
Norris KL  Youle RJ 《Journal of virology》2008,82(13):6232-6243
Apoptosis is a host defense mechanism against viruses that can be subverted by viral gene products. Human cytomegalovirus encodes viral mitochondria-localized inhibitor of apoptosis (vMIA; also known as pUL37x1), which is targeted to mitochondria and functions as a potent cell death suppressor by binding to and inhibiting proapoptotic Bcl-2 family members Bax and Bak. vMIA expression also dramatically alters mitochondrial morphology, causing the fragmentation of these organelles. A potential ortholog of vMIA, m38.5, which was identified in murine cytomegalovirus, has been shown to localize to mitochondria and protect against chemically induced apoptosis by unknown mechanisms. Despite sharing negligible homology with vMIA and no region detectably corresponding to the vMIA Bax-binding domain, we find that m38.5, like vMIA, binds to Bax and recruits Bax to mitochondria. Interestingly, m38.5 and vMIA appear to block Bax downstream of translocation to mitochondria and after an initial stage of Bax conformational change. In contrast to vMIA, m38.5 neither binds to Bak nor causes mitochondrial fragmentation. Consistently with Bax-selective inactivation by m38.5, m38.5 fragments mitochondria in Bak knockout (KO) cells and protects Bak KO cells from apoptosis better than Bax KO cells. Thus, vMIA and m38.5 share some, but not all, features of apoptosis regulation through Bcl-2 family interaction and allow the dissection of Bax translocation into discrete steps.  相似文献   

9.
Growth arrest and DNA damage-45 alpha (GADD45alpha)   总被引:1,自引:0,他引:1  
Regulation of cell cycle and growth is integral for cell survival. The intricate mechanisms that control proliferation and cell cycle are numerous. The growth arrest and DNA damage (GADD)-inducible gene family is often up-regulated in response to various environmental stresses and drug therapies. GADD45alpha was the first stress-inducible gene determined to be up-regulated by p53 and is also a target for the p53 homologues, p63 and p73. When GADD45alpha is deleted or repressed, cells show uncontrolled proliferation. Furthermore, decreased GADD45alpha expression is also considered a survival mechanism, as cancer cells without this control can evade the apoptotic pathway leading to increased tumourigenesis. Drug therapies can act to directly or indirectly up-regulate GADD45alpha and promote apoptosis. As GADD45alpha is an essential component of many metabolic pathways that control proliferating cancer cells, it presents itself as an emerging drug target worthy of further investigation.  相似文献   

10.
Goldmacher VS 《Biochimie》2002,84(2-3):177-185
Human cytomegalovirus encodes a powerful cell death suppressor vMIA (viral mitochondria-localized inhibitor of apoptosis), also known as pUL37x1. vMIA, a product of the immediate early gene UL37 exon 1, is predominantly localized in mitochondria, where it appears to form a complex with adenine nucleotide translocator, believed to be a component of the mitochondrial transition pore complex. vMIA suppresses apoptosis by blocking permeabilization of the mitochondrial outer membrane. Expression of vMIA protects cells against apoptosis triggered by diverse stimuli, including ligation of death receptors, exposure to certain cytotoxic drugs, and infection with an adenovirus mutant deficient in E1B19K. Deletion mutagenesis of vMIA revealed two domains that are necessary and, together, sufficient for its anti-apoptotic activity. The first domain contains a mitochondrial targeting signal. The function of the second domain is still unknown. vMIA does not share any significant amino acid sequence homology with Bcl-2, and, unlike Bcl-2 or Bcl-x(L), it does not bind BAX or VDAC. These structural and functional differences between vMIA and Bcl-2 suggest that vMIA represents a separate class of cell death suppressors. Experiments with vMIA-deficient CMV (human cytomegalovirus) mutants provide strong evidence that the anti-apoptotic function of vMIA is required to prevent CMV-induced apoptosis, and is necessary for viral replication. In addition to vMIA, UL37 encodes two longer splice-variant proteins, gpUL37 and GP37(M). Biological functions of these proteins have not yet been identified, and may be unrelated to their anti-apoptotic activity. The identification of vMIA and the finding that its anti-apoptotic function is required for CMV replication provides a rationale for the development of anti-CMV pharmaceuticals that would inactivate vMIA and thus restore apoptosis in cells infected with CMV.  相似文献   

11.
Viruses encode suppressors of cell death to block intrinsic and extrinsic host-initiated death pathways that reduce viral yield as well as control the termination of infection. Cytomegalovirus (CMV) infection terminates by a caspase-independent cell fragmentation process after an extended period of continuous virus production. The viral mitochondria-localized inhibitor of apoptosis (vMIA; a product of the UL37x1 gene) controls this fragmentation process. UL37x1 mutant virus-infected cells fragment three to four days earlier than cells infected with wt virus. Here, we demonstrate that infected cell death is dependent on serine proteases. We identify mitochondrial serine protease HtrA2/Omi as the initiator of this caspase-independent death pathway. Infected fibroblasts develop susceptibility to death as levels of mitochondria-resident HtrA2/Omi protease increase. Cell death is suppressed by the serine protease inhibitor TLCK as well as by the HtrA2-specific inhibitor UCF-101. Experimental overexpression of HtrA2/Omi, but not a catalytic site mutant of the enzyme, sensitizes infected cells to death that can be blocked by vMIA or protease inhibitors. Uninfected cells are completely resistant to HtrA2/Omi induced death. Thus, in addition to suppression of apoptosis and autophagy, vMIA naturally controls a novel serine protease-dependent CMV-infected cell-specific programmed cell death (cmvPCD) pathway that terminates the CMV replication cycle.  相似文献   

12.
13.
14.
15.
16.
To study the molecular mechanism of neuronal cell death, we carried out the screening of genes which were induced during the neuronal cell death of neuronal PC12. We cloned the cDNA of rat GADD45gamma, the third member of the GADD45 family. Induction of GADD45gamma mRNA was observed in the neuronal cell death caused by depletion of neurotrophic factor and Ca2+ ionophore treatment. Overexpression of GADD45gamma in superior cervical ganglion neurons caused cell death. These results suggest that GADD45gamma plays an important role in neuronal cell death.  相似文献   

17.
By 24 h after infection with human cytomegalovirus, the reticular mitochondrial network characteristic of uninfected fibroblasts was disrupted as mitochondria became punctate and dispersed. These alterations were associated with expression of the immediate-early (alpha) antiapoptotic UL37x1 gene product viral mitochondrion-localized inhibitor of apoptosis (vMIA). Similar alterations in mitochondrial morphology were induced directly by vMIA in transfected cells. A 68-amino-acid antiapoptotic derivative of vMIA containing the mitochondrial localization and antiapoptotic domains also induced disruption, whereas a mutant lacking the antiapoptotic domain failed to cause disruption. These data suggest that the fission and/or fusion process that normally controls mitochondrial networks is altered by vMIA. Mitochondrial fission has been implicated in the induction of apoptosis and vMIA-mediated inhibition of apoptosis may occur subsequent to this event.  相似文献   

18.
19.
Apoptosis has the potential to function as a defence mechanism during viral infection. Identification of CMV mutants that cause the apoptotic death of infected cells confirmed that viral infection activates apoptotic pathways and that this process is counteracted by CMV to ensure efficient viral replication. The recent identification of CMV-encoded proteins that suppress cell death has greatly enhanced our understanding of the mechanisms used by this family of viruses to prevent apoptosis. CMV do not encode homologues of known death-suppressing proteins, suggesting that the CMV family has evolved novel, more sophisticated strategies for the inhibition of apoptosis. The identification and characterization of the human CMV (HCMV)-encoded antiapoptotic proteins UL36 (viral inhibitor of caspase-8 activation [vICA]) and UL37 (viral mitochondria-localized inhibitor of apoptosis [vMIA]) have confirmed that CMV target unique apoptotic control points. For example, vMIA inhibits apoptosis by binding Bax and sequestering it at the mitochondrial membrane as an inactive oligomer. This knowledge not only provides a more complete understanding of the CMV replication process but also allows the identification of previously unrecognized apoptotic checkpoints. Because HCMV is an important cause of birth defects and an increasingly important opportunistic pathogen, a firm grasp of the mechanisms by which it affects cellular apoptosis may provide avenues for the design of improved therapeutic strategies. Here, we review the recent progress made in understanding the role of CMV-encoded proteins in the inhibition of apoptosis.  相似文献   

20.
The Escherichia coli verotoxin 1 (VT1) inhibits protein synthesis, cell proliferation, and damages endothelial cell in the hemolytic uremic syndrome. VT1 can specifically bind and act on endothelial cells as well as on many tumor cells because these cells express its high affinity receptor, globotriaosylceramide. This indicates that VT1 may have both antiangiogenic and antineoplastic activities. We investigated this potential of VT1 by incubating several colon cancer cell lines with VT1 for different time periods and found that HCT116 cells were especially sensitive to VT1. A combination of morphological studies, flow cytometry, DNA laddering and annexin V staining confirmed that VT1 irreversibly arrests these cells in S phase within 24 h and prolonged incubation triggers DNA fragmentation. Concomitant to the activation of the S phase checkpoint, increased levels of mRNA and proteins of growth arrest and DNA damage-inducible gene family that include GADD34, GADD45alpha, and GADD45beta was observed. Interestingly, no significant changes in expression of key cell cycle related proteins such as cdk2, cdk4, p21, p27, and p53 was found during the S phase arrest and apoptosis. We therefore suggest that GADD proteins might play an important role in VT1 induced S phase arrest and programmed cell death in HCT116 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号