首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 15 毫秒
1.
Phenotypic plasticity allows organisms to cope with rapid environmental change. Yet exactly when during ontogeny plastic responses are elicited, whether plastic responses produced in one generation influence phenotypic variation and fitness in subsequent generations, and the role of plasticity in shaping population divergences, remains overall poorly understood. Here, we use the dung beetle Onthophagus taurus to assess plastic responses to temperature at several life stages bridging three generations and compare these responses across three recently diverged populations. We find that beetles reared at hotter temperatures grow less than those reared at mild temperatures, and that this attenuated growth has transgenerational consequences by reducing offspring size and survival in subsequent generations. However, we also find evidence that plasticity may mitigate these consequences in two ways: 1) mothers modify the temperature of their offspring's developmental environment via behavioral plasticity and 2) in one population, offspring exhibit accelerated growth when exposed to hot temperatures during very early development (‘developmental programming’). Lastly, our study reveals that offspring responses to temperature diverged among populations in fewer than 100 generations, possibly in response to range‐specific changes in climatic or social conditions.  相似文献   

2.
Maternal nutrition can strongly influence embryo development and offspring fitness. The environmental matching hypothesis posits that developmental conditions affect offspring in ways that enable them to appropriately deal with similar post‐developmental conditions, although mismatches between developmental and post‐developmental environments will reduce fitness. To test this hypothesis, reproductive lizards (Anolis sagrei) were reared in environments with high versus low prey availability. The resultant offspring were then reared reciprocally under the same two prey conditions that their mothers experienced. High levels of prey available to mothers increased egg production, although the survival of eggs was low compared to those produced by mothers in the low‐prey treatment. Low prey availability to offspring reduced growth, regardless of the amount of prey available to their mothers. Low prey availability also compromised offspring survival, although this negative effect was only present when mothers experienced high‐prey conditions, whereas matching of low‐prey conditions in maternal and offspring stages resulted in high survival. However, because the mismatch of low maternal and high offspring prey availability resulted in similar offspring survival to the matched treatments, our results do not fully support the environmental matching hypothesis. Nevertheless, the present study highlights the interactive role of maternal and post‐hatching environments in generating variation in offspring fitness. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 115 , 437–447.  相似文献   

3.
Niche construction, by which organisms modify the environment in which they live, has been proposed to affect the evolution of many phenotypic traits. But what about the evolution of a niche constructing trait itself, whose expression changes the pattern of natural selection to which the trait is exposed in subsequent generations? This article provides an inclusive fitness analysis of selection on niche constructing phenotypes, which can affect their environment from local to global scales in arbitrarily spatially subdivided populations. The model shows that phenotypic effects of genes extending far beyond the life span of the actor can be affected by natural selection, provided they modify the fitness of those individuals living in the future that are likely to have inherited the niche construction lineage of the actor. Present benefits of behaviors are thus traded off against future indirect costs. The future costs will generally result from a complicated interplay of phenotypic effects, population demography and environmental dynamics. To illustrate these points, I derive the adaptive dynamics of a trait involved in the consumption of an abiotic resource, where resource abundance in future generations feeds back to the evolutionary dynamics of the trait.  相似文献   

4.
A major goal of evolutionary science is to understand how biological diversity is generated and altered. Despite considerable advances, we still have limited insight into how phenotypic variation arises and is sorted by natural selection. Here we argue that an integrated view, which merges ecology, evolution and developmental biology (eco evo devo) on an equal footing, is needed to understand the multifaceted role of the environment in simultaneously determining the development of the phenotype and the nature of the selective environment, and how organisms in turn affect the environment through eco evo and eco devo feedbacks. To illustrate the usefulness of an integrated eco evo devo perspective, we connect it with the theory of resource polymorphism (i.e. the phenotypic and genetic diversification that occurs in response to variation in available resources). In so doing, we highlight fishes from recently glaciated freshwater systems as exceptionally well‐suited model systems for testing predictions of an eco evo devo framework in studies of diversification. Studies on these fishes show that intraspecific diversity can evolve rapidly, and that this process is jointly facilitated by (i) the availability of diverse environments promoting divergent natural selection; (ii) dynamic developmental processes sensitive to environmental and genetic signals; and (iii) eco evo and eco devo feedbacks influencing the selective and developmental environments of the phenotype. We highlight empirical examples and present a conceptual model for the generation of resource polymorphism – emphasizing eco evo devo, and identify current gaps in knowledge.  相似文献   

5.
I present and apply some powerful tools for studying humanevolution and the impact of cultural resourceson it. The tools in question are a theory ofniche construction and a theory about theevolutionary significance of extragenetic (and,in particular, of psychological and social)inheritance. These tools are used to show howculturally transmitted resources can berecruited by development and becomegeneratively entrenched. The case study isconstituted by those culturally transmitteditems that social psychologists call`expectancies'. Expectancy effects aremindshaping effects of our mindreadingdispositions. I show how expectancies may havebeen recruited by important human developmentalprocesses (like those involved in languageacquisition and those responsible for genderdifferences) and how they may have becomeentrenched. If the hypothesis is correct, therelation between mindreading and humanevolution is more intricate than usuallythought.  相似文献   

6.
Keyword index     
《Journal of neurochemistry》2002,83(6):1543-1546
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号