共查询到20条相似文献,搜索用时 0 毫秒
1.
Information on relative solvent accessibility (RSA) of amino acid residues in proteins provides valuable clues to the prediction of protein structure and function. A two-stage approach with support vector machines (SVMs) is proposed, where an SVM predictor is introduced to the output of the single-stage SVM approach to take into account the contextual relationships among solvent accessibilities for the prediction. By using the position-specific scoring matrices (PSSMs) generated by PSI-BLAST, the two-stage SVM approach achieves accuracies up to 90.4% and 90.2% on the Manesh data set of 215 protein structures and the RS126 data set of 126 nonhomologous globular proteins, respectively, which are better than the highest published scores on both data sets to date. A Web server for protein RSA prediction using a two-stage SVM method has been developed and is available (http://birc.ntu.edu.sg/~pas0186457/rsa.html). 相似文献
2.
A Support Vector Machine learning system has been trained to predict protein solvent accessibility from the primary structure. Different kernel functions and sliding window sizes have been explored to find how they affect the prediction performance. Using a cut-off threshold of 15% that splits the dataset evenly (an equal number of exposed and buried residues), this method was able to achieve a prediction accuracy of 70.1% for single sequence input and 73.9% for multiple alignment sequence input, respectively. The prediction of three and more states of solvent accessibility was also studied and compared with other methods. The prediction accuracies are better than, or comparable to, those obtained by other methods such as neural networks, Bayesian classification, multiple linear regression, and information theory. In addition, our results further suggest that this system may be combined with other prediction methods to achieve more reliable results, and that the Support Vector Machine method is a very useful tool for biological sequence analysis. 相似文献
3.
A number of methods for predicting levels of solvent accessibility or accessible surface area (ASA) of amino acid residues in proteins have been developed. These methods either predict regularly spaced states of relative solvent accessibility or an analogue real value indicating relative solvent accessibility. While discrete states of exposure can be easily obtained by post prediction assignment of thresholds to the predicted or computed real values of ASA, the reverse, that is, obtaining a real value from quantized states of predicted ASA, is not straightforward as a two-state prediction in such cases would give a large real valued errors. However, prediction of ASA into larger number of ASA states and then finding a corresponding scheme for real value prediction may be helpful in integrating the two approaches of ASA prediction. We report a novel method of obtaining numerical real values of solvent accessibility, using accumulation cutoff set and support vector machine. This so-called SVM-Cabins method first predicts discrete states of ASA of amino acid residues from their evolutionary profile and then maps the predicted states onto a real valued linear space by simple algebraic methods. Resulting performance of such a rigorous approach using 13-state ASA prediction is at least comparable with the best methods of ASA prediction reported so far. The mean absolute error in this method reaches the best performance of 15.1% on the tested data set of 502 proteins with a coefficient of correlation equal to 0.66. Since, the method starts with the prediction of discrete states of ASA and leads to real value predictions, performance of prediction in binary states and real values are simultaneously optimized. 相似文献
4.
We have improved the multiple linear regression (MLR) algorithm for protein secondary structure prediction by combining it with the evolutionary information provided by multiple sequence alignment of PSI-BLAST. On the CB513 dataset, the three states average overall per-residue accuracy, Q(3), reached 76.4%, while segment overlap accuracy, SOV99, reached 73.2%, using a rigorous jackknife procedure and the strictest reduction of eight states DSSP definition to three states. This represents an improvement of approximately 5% on overall per-residue accuracy compared with previous work. The relative solvent accessibility prediction also benefited from this combination of methods. The system achieved 77.7% average jackknifed accuracy for two states prediction based on a 25% relative solvent accessibility mode, with a Mathews' correlation coefficient of 0.548. The improved MLR secondary structure and relative solvent accessibility prediction server is available at http://spg.biosci.tsinghua.edu.cn/. 相似文献
5.
A novel support vector regression (SVR) approach is proposed to predict protein accessible surface areas (ASAs) from their primary structures. In this work, we predict the real values of ASA in squared angstroms for residues instead of relative solvent accessibility. Based on protein residues, the mean and median absolute errors are 26.0 A(2) and 18.87 A(2), respectively. The correlation coefficient between the predicted and observed ASAs is 0.66. Cysteine is the best predicted amino acid (mean absolute error is 13.8 A(2) and median absolute error is 8.37 A(2)), while arginine is the least predicted amino acid (mean absolute error is 42.7 A(2) and median absolute error is 36.31 A(2)). Our work suggests that the SVR approach can be directly applied to the ASA prediction where data preclassification has been used. 相似文献
6.
A multiple linear regression method was applied to predict real values of solvent accessibility from the sequence and evolutionary information. This method allowed us to obtain coefficients of regression and correlation between the occurrence of an amino-acid residue at a specific target and its sequence neighbor positions on the one hand, and the solvent accessibility of that residue on the other. Our linear regression model based on sequence information and evolutionary models was found to predict residue accessibility with 18.9% and 16.2% mean absolute error respectively, which is better than or comparable to the best available methods. A correlation matrix for several neighbor positions to examine the role of evolutionary information at these positions has been developed and analyzed. As expected, the effective frequency of hydrophobic residues at target positions shows a strong negative correlation with solvent accessibility, whereas the reverse is true for charged and polar residues. The correlation of solvent accessibility with effective frequencies at neighboring positions falls abruptly with distance from target residues. Longer protein chains have been found to be more accurately predicted than their smaller counterparts. 相似文献
7.
Summary. The support vector machine, a machine-learning method, is used to predict the four structural classes, i.e. mainly α, mainly
β, α–β and fss, from the topology-level of CATH protein structure database. For the binary classification, any two structural
classes which do not share any secondary structure such as α and β elements could be classified with as high as 90% accuracy.
The accuracy, however, will decrease to less than 70% if the structural classes to be classified contain structure elements
in common. Our study also shows that the dimensions of feature space 202 = 400 (for dipeptide) and 203 = 8 000 (for tripeptide) give nearly the same prediction accuracy. Among these 4 structural classes, multi-class classification
gives an overall accuracy of about 52%, indicating that the multi-class classification technique in support of vector machines
may still need to be further improved in future investigation. 相似文献
8.
We address the problem of predicting solvent accessible surface area (ASA) of amino acid residues in protein sequences, without classifying them into buried and exposed types. A two-stage support vector regression (SVR) approach is proposed to predict real values of ASA from the position-specific scoring matrices generated from PSI-BLAST profiles. By adding SVR as the second stage to capture the influences on the ASA value of a residue by those of its neighbors, the two-stage SVR approach achieves improvements of mean absolute errors up to 3.3%, and correlation coefficients of 0.66, 0.68, and 0.67 on the Manesh dataset of 215 proteins, the Barton dataset of 502 nonhomologous proteins, and the Carugo dataset of 338 proteins, respectively, which are better than the scores published earlier on these datasets. A Web server for protein ASA prediction by using a two-stage SVR method has been developed and is available (http://birc.ntu.edu.sg/~ pas0186457/asa.html). 相似文献
9.
Knowing the quality of a protein structure model is important for its appropriate usage. We developed a model evaluation method to assess the absolute quality of a single protein model using only structural features with support vector machine regression. The method assigns an absolute quantitative score (i.e. GDT‐TS) to a model by comparing its secondary structure, relative solvent accessibility, contact map, and beta sheet structure with their counterparts predicted from its primary sequence. We trained and tested the method on the CASP6 dataset using cross‐validation. The correlation between predicted and true scores is 0.82. On the independent CASP7 dataset, the correlation averaged over 95 protein targets is 0.76; the average correlation for template‐based and ab initio targets is 0.82 and 0.50, respectively. Furthermore, the predicted absolute quality scores can be used to rank models effectively. The average difference (or loss) between the scores of the top‐ranked models and the best models is 5.70 on the CASP7 targets. This method performs favorably when compared with the other methods used on the same dataset. Moreover, the predicted absolute quality scores are comparable across models for different proteins. These features make the method a valuable tool for model quality assurance and ranking. Proteins 2009. © 2008 Wiley‐Liss, Inc. 相似文献
10.
11.
Owing to the use of evolutionary information and advanced machine learning protocols, secondary structures of amino acid residues in proteins can be predicted from the primary sequence with more than 75% per-residue accuracy for the 3-state (i.e., helix, beta-strand, and coil) classification problem. In this work we investigate whether further progress may be achieved by incorporating the relative solvent accessibility (RSA) of an amino acid residue as a fingerprint of the overall topology of the protein. Toward that goal, we developed a novel method for secondary structure prediction that uses predicted RSA in addition to attributes derived from evolutionary profiles. Our general approach follows the 2-stage protocol of Rost and Sander, with a number of Elman-type recurrent neural networks (NNs) combined into a consensus predictor. The RSA is predicted using our recently developed regression-based method that provides real-valued RSA, with the overall correlation coefficients between the actual and predicted RSA of about 0.66 in rigorous tests on independent control sets. Using the predicted RSA, we were able to improve the performance of our secondary structure prediction by up to 1.4% and achieved the overall per-residue accuracy between 77.0% and 78.4% for the 3-state classification problem on different control sets comprising, together, 603 proteins without homology to proteins included in the training. The effects of including solvent accessibility depend on the quality of RSA prediction. In the limit of perfect prediction (i.e., when using the actual RSA values derived from known protein structures), the accuracy of secondary structure prediction increases by up to 4%. We also observed that projecting real-valued RSA into 2 discrete classes with the commonly used threshold of 25% RSA decreases the classification accuracy for secondary structure prediction. While the level of improvement of secondary structure prediction may be different for prediction protocols that implicitly account for RSA in other ways, we conclude that an increase in the 3-state classification accuracy may be achieved when combining RSA with a state-of-the-art protocol utilizing evolutionary profiles. The new method is available through a Web server at http://sable.cchmc.org. 相似文献
12.
Knowing the coordination number and relative solvent accessibility of all the residues in a protein is crucial for deriving constraints useful in modeling protein folding and protein structure and in scoring remote homology searches. We develop ensembles of bidirectional recurrent neural network architectures to improve the state of the art in both contact and accessibility prediction, leveraging a large corpus of curated data together with evolutionary information. The ensembles are used to discriminate between two different states of residue contacts or relative solvent accessibility, higher or lower than a threshold determined by the average value of the residue distribution or the accessibility cutoff. For coordination numbers, the ensemble achieves performances ranging within 70.6-73.9% depending on the radius adopted to discriminate contacts (6A-12A). These performances represent gains of 16-20% over the baseline statistical predictor, always assigning an amino acid to the largest class, and are 4-7% better than any previous method. A combination of different radius predictors further improves performance. For accessibility thresholds in the relevant 15-30% range, the ensemble consistently achieves a performance above 77%, which is 10-16% above the baseline prediction and better than other existing predictors, by up to several percentage points. For both problems, we quantify the improvement due to evolutionary information in the form of PSI-BLAST-generated profiles over BLAST profiles. The prediction programs are implemented in the form of two web servers, CONpro and ACCpro, available at http://promoter.ics.uci.edu/BRNN-PRED/. 相似文献
13.
14.
15.
Protein structure prediction is an important problem of both intellectual and practical interest. Most protein structure prediction approaches generate multiple candidate models first, and then use a scoring function to select the best model among these candidates. In this work, we develop a scoring function using support vector regression (SVR). Both consensus-based features and features from individual structures are extracted from a training data set containing native protein structures and predicted structural models submitted to CASP5 and CASP6. The SVR learns a scoring function that is a linear combination of these features. We test this scoring function on two data sets. First, when used to rank server models submitted to CASP7, the SVR score selects predictions that are comparable to the best performing server in CASP7, Zhang-Server, and significantly better than all the other servers. Even if the SVR score is not allowed to select Zhang-Server models, the SVR score still selects predictions that are significantly better than all the other servers. In addition, the SVR is able to select significantly better models and yield significantly better Pearson correlation coefficients than the two best Quality Assessment groups in CASP7, QA556 (LEE), and QA634 (Pcons). Second, this work aims to improve the ability of the Robetta server to select best models, and hence we evaluate the performance of the SVR score on ranking the Robetta server template-based models for the CASP7 targets. The SVR selects significantly better models than the Robetta K*Sync consensus alignment score. 相似文献
16.
Predicting rRNA-, RNA-, and DNA-binding proteins from primary structure with support vector machines
In the post-genome era, the prediction of protein function is one of the most demanding tasks in the study of bioinformatics. Machine learning methods, such as the support vector machines (SVMs), greatly help to improve the classification of protein function. In this work, we integrated SVMs, protein sequence amino acid composition, and associated physicochemical properties into the study of nucleic-acid-binding proteins prediction. We developed the binary classifications for rRNA-, RNA-, DNA-binding proteins that play an important role in the control of many cell processes. Each SVM predicts whether a protein belongs to rRNA-, RNA-, or DNA-binding protein class. Self-consistency and jackknife tests were performed on the protein data sets in which the sequences identity was < 25%. Test results show that the accuracies of rRNA-, RNA-, DNA-binding SVMs predictions are approximately 84%, approximately 78%, approximately 72%, respectively. The predictions were also performed on the ambiguous and negative data set. The results demonstrate that the predicted scores of proteins in the ambiguous data set by RNA- and DNA-binding SVM models were distributed around zero, while most proteins in the negative data set were predicted as negative scores by all three SVMs. The score distributions agree well with the prior knowledge of those proteins and show the effectiveness of sequence associated physicochemical properties in the protein function prediction. The software is available from the author upon request. 相似文献
17.
Local quality assessment in homology models using statistical potentials and support vector machines
Fasnacht M Zhu J Honig B 《Protein science : a publication of the Protein Society》2007,16(8):1557-1568
In this study, we address the problem of local quality assessment in homology models. As a prerequisite for the evaluation of methods for predicting local model quality, we first examine the problem of measuring local structural similarities between a model and the corresponding native structure. Several local geometric similarity measures are evaluated. Two methods based on structural superposition are found to best reproduce local model quality assessments by human experts. We then examine the performance of state-of-the-art statistical potentials in predicting local model quality on three qualitatively distinct data sets. The best statistical potential, DFIRE, is shown to perform on par with the best current structure-based method in the literature, ProQres. A combination of different statistical potentials and structural features using support vector machines is shown to provide somewhat improved performance over published methods. 相似文献
18.
19.
20.
Feifei Tian Peng Zhou Fenglin Lv Rong Song Zhiliang Li 《Journal of peptide science》2007,13(8):549-566
Quantitative structure-activity relationship (QSAR) study, important in drug design, mainly involves two aspects, molecular structural characterization (MSC) and construction of a statistical model. MSC focuses on transforming molecular structural and property characteristics into a group of numerical codes, dedicated to minimizing information loss during this process. In this context, common atoms in organic compounds are classified according to their families in the periodic table, and hybridization states, and on the basis of these, three nonbonding interactions (i.e. electrostatic, van der Waals and hydrophobic) are calculated, ultimately resulting in a new rotation-translation invariant, 3D-MSC, as a three-dimensional holograph vector of atomic interaction field (3D-HoVAIF). By applying 3D-HoVAIF to QSAR studies on two classical peptides including 58 angiotensin-converting enzyme (ACE) inhibitors and 48 bitter-tasting dipeptides, we get two excellent genetic algorithm-partial least squares (GA-PLS) models, with statistics r(2), q(2), root mean square error (RMSEE), and root mean square error of cross-validation (RMSCV) of 0.857, 0.811, 0.376, and 0.432 for ACE inhibitors and 0.940, 0.892, 0.153 and 0.205 for bitter-tasting dipeptides, respectively. By equally dividing the two datasets into training and test sets by D-optimal, the 3D-HoVAIF approach undergoes rigorous statistical validation. Furthermore, the superior performance of 3D-HoVAIF is confirmed in comparison with two other peptide MSC approaches referring to z-scale and ISA-ECI. For 58 ACE inhibitors, the GA-PLS model yields two principal components, with the following statistics: r(2) = 0.893, q(2) = 0.824, RMSEE = 0.349, RMSCV = 0.425, q2(ext) = 0.739, r2(ext)= 0.784, r2(0.ext) = 0.781, rf2(0.ext) = 0.77, k = 0.962, k' = 1.019, and RMSEP = 0.460; for 48 bitter-tasting dipeptides, three principal components resulted, with the statistics as: r(2) = 0.950, q(2) = 0.893, RMSEE = 0.152, RMSCV = 0.222, q2(ext)= 0.875, r2(ext) = 0.919, r2(0.ext)= 0.919, rf2(0.ext)= 0.919, k = 1.018, k' = 0.974, and RMSEP = 0.198. In addition, the relationship of ACE-inhibiting activities with bitter-tasting thresholds has been investigated by applying the above-constructed models to predictions on 400 theoretically possible dipeptides. Through analysis, the ACE-inhibiting activities are found to be prominently related to bitter-tasting intensities. Thus, it is deemed to be difficult to find such dipeptides that simultaneously satisfy pharmacodynamic action (high ACE-inhibiting activities) and comfortable tastes, suggesting that active components of dipeptides that are served as functional food to lower blood pressure are not very ideal. 相似文献