共查询到20条相似文献,搜索用时 0 毫秒
1.
Information on relative solvent accessibility (RSA) of amino acid residues in proteins provides valuable clues to the prediction of protein structure and function. A two-stage approach with support vector machines (SVMs) is proposed, where an SVM predictor is introduced to the output of the single-stage SVM approach to take into account the contextual relationships among solvent accessibilities for the prediction. By using the position-specific scoring matrices (PSSMs) generated by PSI-BLAST, the two-stage SVM approach achieves accuracies up to 90.4% and 90.2% on the Manesh data set of 215 protein structures and the RS126 data set of 126 nonhomologous globular proteins, respectively, which are better than the highest published scores on both data sets to date. A Web server for protein RSA prediction using a two-stage SVM method has been developed and is available (http://birc.ntu.edu.sg/~pas0186457/rsa.html). 相似文献
2.
A number of methods for predicting levels of solvent accessibility or accessible surface area (ASA) of amino acid residues in proteins have been developed. These methods either predict regularly spaced states of relative solvent accessibility or an analogue real value indicating relative solvent accessibility. While discrete states of exposure can be easily obtained by post prediction assignment of thresholds to the predicted or computed real values of ASA, the reverse, that is, obtaining a real value from quantized states of predicted ASA, is not straightforward as a two-state prediction in such cases would give a large real valued errors. However, prediction of ASA into larger number of ASA states and then finding a corresponding scheme for real value prediction may be helpful in integrating the two approaches of ASA prediction. We report a novel method of obtaining numerical real values of solvent accessibility, using accumulation cutoff set and support vector machine. This so-called SVM-Cabins method first predicts discrete states of ASA of amino acid residues from their evolutionary profile and then maps the predicted states onto a real valued linear space by simple algebraic methods. Resulting performance of such a rigorous approach using 13-state ASA prediction is at least comparable with the best methods of ASA prediction reported so far. The mean absolute error in this method reaches the best performance of 15.1% on the tested data set of 502 proteins with a coefficient of correlation equal to 0.66. Since, the method starts with the prediction of discrete states of ASA and leads to real value predictions, performance of prediction in binary states and real values are simultaneously optimized. 相似文献
3.
We have improved the multiple linear regression (MLR) algorithm for protein secondary structure prediction by combining it with the evolutionary information provided by multiple sequence alignment of PSI-BLAST. On the CB513 dataset, the three states average overall per-residue accuracy, Q(3), reached 76.4%, while segment overlap accuracy, SOV99, reached 73.2%, using a rigorous jackknife procedure and the strictest reduction of eight states DSSP definition to three states. This represents an improvement of approximately 5% on overall per-residue accuracy compared with previous work. The relative solvent accessibility prediction also benefited from this combination of methods. The system achieved 77.7% average jackknifed accuracy for two states prediction based on a 25% relative solvent accessibility mode, with a Mathews' correlation coefficient of 0.548. The improved MLR secondary structure and relative solvent accessibility prediction server is available at http://spg.biosci.tsinghua.edu.cn/. 相似文献
4.
A novel support vector regression (SVR) approach is proposed to predict protein accessible surface areas (ASAs) from their primary structures. In this work, we predict the real values of ASA in squared angstroms for residues instead of relative solvent accessibility. Based on protein residues, the mean and median absolute errors are 26.0 A(2) and 18.87 A(2), respectively. The correlation coefficient between the predicted and observed ASAs is 0.66. Cysteine is the best predicted amino acid (mean absolute error is 13.8 A(2) and median absolute error is 8.37 A(2)), while arginine is the least predicted amino acid (mean absolute error is 42.7 A(2) and median absolute error is 36.31 A(2)). Our work suggests that the SVR approach can be directly applied to the ASA prediction where data preclassification has been used. 相似文献
5.
We address the problem of predicting solvent accessible surface area (ASA) of amino acid residues in protein sequences, without classifying them into buried and exposed types. A two-stage support vector regression (SVR) approach is proposed to predict real values of ASA from the position-specific scoring matrices generated from PSI-BLAST profiles. By adding SVR as the second stage to capture the influences on the ASA value of a residue by those of its neighbors, the two-stage SVR approach achieves improvements of mean absolute errors up to 3.3%, and correlation coefficients of 0.66, 0.68, and 0.67 on the Manesh dataset of 215 proteins, the Barton dataset of 502 nonhomologous proteins, and the Carugo dataset of 338 proteins, respectively, which are better than the scores published earlier on these datasets. A Web server for protein ASA prediction by using a two-stage SVR method has been developed and is available (http://birc.ntu.edu.sg/~ pas0186457/asa.html). 相似文献
6.
An easy and uncomplicated method to predict the solvent accessibility state of a site in a multiple protein sequence alignment is described. The approach is based on amino acid exchange and compositional preference matrices for each of three accessibility states: buried, exposed, and intermediate. Calculations utilized a modified version of the 3D―ali databank, a collection of multiple sequence alignments anchored through protein tertiary structural superpositions. The technique achieves the same accuracy as much more complex methods and thus provides such advantages as computational affordability, facile updating, and easily understood residue substitution patterns useful to biochemists involved in protein engineering, design, and structural prediction. The program is available from the authors; and, due to its simplicity, the algorithm can be readily implemented on any system. For a given alignment site, a hand calculation can yield a comparative prediction. Proteins 32:190–199, 1998. © 1998 Wiley-Liss, Inc. 相似文献
7.
A Support Vector Machine learning system has been trained to predict protein solvent accessibility from the primary structure. Different kernel functions and sliding window sizes have been explored to find how they affect the prediction performance. Using a cut-off threshold of 15% that splits the dataset evenly (an equal number of exposed and buried residues), this method was able to achieve a prediction accuracy of 70.1% for single sequence input and 73.9% for multiple alignment sequence input, respectively. The prediction of three and more states of solvent accessibility was also studied and compared with other methods. The prediction accuracies are better than, or comparable to, those obtained by other methods such as neural networks, Bayesian classification, multiple linear regression, and information theory. In addition, our results further suggest that this system may be combined with other prediction methods to achieve more reliable results, and that the Support Vector Machine method is a very useful tool for biological sequence analysis. 相似文献
8.
Accuracy of predicting protein secondary structure and solvent accessibility from sequence information has been improved significantly by using information contained in multiple sequence alignments as input to a neural 'network system. For the Asilomar meeting, predictions for 13 proteins were generated automatically using the publicly available prediction method PHD. The results confirm the estimate of 72% three-state prediction accuracy. The fairly accurate predictions of secondary structure segments made the tool useful as a starting point for modeling of higher dimensional aspects of protein structure. © 1995 Wiley-Liss, Inc. 相似文献
9.
We developed dictionaries of two-, three-, and five-residue patterns in proteins and computed the average solvent accessibility of the central residues in their native proteins. These dictionaries serve as a look-up table for making subsequent predictions of solvent accessibility of amino acid residues. We find that predictions made in this way are very close to those made using more sophisticated methods of solvent accessibility prediction. We also analyzed the effect of immediate neighbors on the solvent accessibility of residues. This helps us in understanding how the same residue type may have different accessible surface areas in different proteins and in different positions of the same protein. We observe that certain residues have a tendency to increase or decrease the solvent accessibility of their neighboring residues in C- or N-terminal positions. Interestingly, the C-terminal and N-terminal neighbor residues are found to have asymmetric roles in modifying solvent accessibility of residues. As expected, similar neighbors enhance the hydrophobic or hydrophilic character of residues. Detailed look-up tables are provided on the web at www.netasa.org/look-up/. 相似文献
10.
A multiple linear regression method was applied to predict real values of solvent accessibility from the sequence and evolutionary information. This method allowed us to obtain coefficients of regression and correlation between the occurrence of an amino-acid residue at a specific target and its sequence neighbor positions on the one hand, and the solvent accessibility of that residue on the other. Our linear regression model based on sequence information and evolutionary models was found to predict residue accessibility with 18.9% and 16.2% mean absolute error respectively, which is better than or comparable to the best available methods. A correlation matrix for several neighbor positions to examine the role of evolutionary information at these positions has been developed and analyzed. As expected, the effective frequency of hydrophobic residues at target positions shows a strong negative correlation with solvent accessibility, whereas the reverse is true for charged and polar residues. The correlation of solvent accessibility with effective frequencies at neighboring positions falls abruptly with distance from target residues. Longer protein chains have been found to be more accurately predicted than their smaller counterparts. 相似文献
11.
Owing to the use of evolutionary information and advanced machine learning protocols, secondary structures of amino acid residues in proteins can be predicted from the primary sequence with more than 75% per-residue accuracy for the 3-state (i.e., helix, beta-strand, and coil) classification problem. In this work we investigate whether further progress may be achieved by incorporating the relative solvent accessibility (RSA) of an amino acid residue as a fingerprint of the overall topology of the protein. Toward that goal, we developed a novel method for secondary structure prediction that uses predicted RSA in addition to attributes derived from evolutionary profiles. Our general approach follows the 2-stage protocol of Rost and Sander, with a number of Elman-type recurrent neural networks (NNs) combined into a consensus predictor. The RSA is predicted using our recently developed regression-based method that provides real-valued RSA, with the overall correlation coefficients between the actual and predicted RSA of about 0.66 in rigorous tests on independent control sets. Using the predicted RSA, we were able to improve the performance of our secondary structure prediction by up to 1.4% and achieved the overall per-residue accuracy between 77.0% and 78.4% for the 3-state classification problem on different control sets comprising, together, 603 proteins without homology to proteins included in the training. The effects of including solvent accessibility depend on the quality of RSA prediction. In the limit of perfect prediction (i.e., when using the actual RSA values derived from known protein structures), the accuracy of secondary structure prediction increases by up to 4%. We also observed that projecting real-valued RSA into 2 discrete classes with the commonly used threshold of 25% RSA decreases the classification accuracy for secondary structure prediction. While the level of improvement of secondary structure prediction may be different for prediction protocols that implicitly account for RSA in other ways, we conclude that an increase in the 3-state classification accuracy may be achieved when combining RSA with a state-of-the-art protocol utilizing evolutionary profiles. The new method is available through a Web server at http://sable.cchmc.org. 相似文献
12.
In plant genomes, the function of a substantial percentage of the putative protein-coding open reading frames (ORFs) is unknown. These ORFs have no significant sequence similarity to known proteins, which complicates the task of functional study of these proteins. Efforts are being made to explore methods that are complementary to, or may be used in combination with, sequence alignment and clustering methods. A web-based protein functional class prediction software, SVMProt, has shown some capability for predicting functional class of distantly related proteins. Here the usefulness of SVMProt for functional study of novel plant proteins is evaluated. To test SVMProt, 49 plant proteins (without a sequence homolog in the Swiss-Prot protein database, not in the SVMProt training set, and with functional indications provided in the literature) were selected from a comprehensive search of MEDLINE abstracts and Swiss-Prot databases in 1999-2004. These represent unique proteins the function of which, at present, cannot be confidently predicted by sequence alignment and clustering methods. The predicted functional class of 31 proteins was consistent, and that of four other proteins was weakly consistent, with published functions. Overall, the functional class of 71.4% of these proteins was consistent, or weakly consistent, with functional indications described in the literature. SVMProt shows a certain level of ability to provide useful hints about the functions of novel plant proteins with no similarity to known proteins. 相似文献
13.
Structural flexibility has been associated with various biological processes such as molecular recognition and catalytic activity. In silico studies of protein flexibility have attempted to characterize and predict flexible regions based on simple principles. B-values derived from experimental data are widely used to measure residue flexibility. Here, we present the most comprehensive large-scale analysis of B-values. We used this analysis to develop a neural network-based method that predicts flexible-rigid residues from amino acid sequence. The system uses both global and local information (i.e., features from the entire protein such as secondary structure composition, protein length, and fraction of surface residues, and features from a local window of sequence-consecutive residues). The most important local feature was the evolutionary exchange profile reflecting sequence conservation in a family of related proteins. To illustrate its potential, we applied our method to 4 different case studies, each of which related our predictions to aspects of function. The first 2 were the prediction of regions that undergo conformational switches upon environmental changes (switch II region in Ras) and the prediction of surface regions, the rigidity of which is crucial for their function (tunnel in propeller folds). Both were correctly captured by our method. The third study established that residues in active sites of enzymes are predicted by our method to have unexpectedly low B-values. The final study demonstrated how well our predictions correlated with NMR order parameters to reflect motion. Our method had not been set up to address any of the tasks in those 4 case studies. Therefore, we expect that this method will assist in many attempts at inferring aspects of function. 相似文献
14.
Ab initio protein folding is one of the major unsolved problems in computational biology owing to the difficulties in force field design and conformational search. We developed a novel program, QUARK, for template-free protein structure prediction. Query sequences are first broken into fragments of 1-20 residues where multiple fragment structures are retrieved at each position from unrelated experimental structures. Full-length structure models are then assembled from fragments using replica-exchange Monte Carlo simulations, which are guided by a composite knowledge-based force field. A number of novel energy terms and Monte Carlo movements are introduced and the particular contributions to enhancing the efficiency of both force field and search engine are analyzed in detail. QUARK prediction procedure is depicted and tested on the structure modeling of 145 nonhomologous proteins. Although no global templates are used and all fragments from experimental structures with template modeling score >0.5 are excluded, QUARK can successfully construct 3D models of correct folds in one-third cases of short proteins up to 100 residues. In the ninth community-wide Critical Assessment of protein Structure Prediction experiment, QUARK server outperformed the second and third best servers by 18 and 47% based on the cumulative Z-score of global distance test-total scores in the FM category. Although ab initio protein folding remains a significant challenge, these data demonstrate new progress toward the solution of the most important problem in the field. 相似文献
15.
Recognizing the structural similarity without significant sequence identity (called fold recognition) is the key for bridging the gap between the number of known protein sequences and the number of structures solved. Previously, we developed a fold-recognition method called SP(3) which combines sequence-derived sequence profiles, secondary-structure profiles and residue-depth dependent, structure-derived sequence profiles. The use of residue-depth-dependent profiles makes SP(3) one of the best automatic predictors in CASP 6. Because residue depth (RD) and solvent accessible surface area (solvent accessibility) are complementary in describing the exposure of a residue to solvent, we test whether or not incorporation of solvent-accessibility profiles into SP(3) could further increase the accuracy of fold recognition. The resulting method, called SP(4), was tested in SALIGN benchmark for alignment accuracy and Lindahl, LiveBench 8 and CASP7 blind prediction for fold recognition sensitivity and model-structure accuracy. For remote homologs, SP(4) is found to consistently improve over SP(3) in the accuracy of sequence alignment and predicted structural models as well as in the sensitivity of fold recognition. Our result suggests that RD and solvent accessibility can be used concurrently for improving the accuracy and sensitivity of fold recognition. The SP(4) server and its local usage package are available on http://sparks.informatics.iupui.edu/SP4. 相似文献
16.
Membrane-binding peripheral proteins play important roles in many biological processes, including cell signaling and membrane trafficking. Unlike integral membrane proteins, these proteins bind the membrane mostly in a reversible manner. Since peripheral proteins do not have canonical transmembrane segments, it is difficult to identify them from their amino acid sequences. As a first step toward genome-scale identification of membrane-binding peripheral proteins, we built a kernel-based machine learning protocol. Key features of known membrane-binding proteins, including electrostatic properties and amino acid composition, were calculated from their amino acid sequences and tertiary structures, which were then incorporated into the support vector machine to perform the classification. A data set of 40 membrane-binding proteins and 230 non-membrane-binding proteins was used to construct and validate the protocol. Cross-validation and holdout evaluation of the protocol showed that the accuracy of the prediction reached up to 93.7% and 91.6%, respectively. The protocol was applied to the prediction of membrane-binding properties of four C2 domains from novel protein kinases C. Although these C2 domains have 50% sequence identity, only one of them was predicted to bind the membrane, which was verified experimentally with surface plasmon resonance analysis. These results suggest that our protocol can be used for predicting membrane-binding properties of a wide variety of modular domains and may be further extended to genome-scale identification of membrane-binding peripheral proteins. 相似文献
17.
Accurate prediction of relative solvent accessibilities (RSAs) of amino acid residues in proteins may be used to facilitate protein structure prediction and functional annotation. Toward that goal we developed a novel method for improved prediction of RSAs. Contrary to other machine learning-based methods from the literature, we do not impose a classification problem with arbitrary boundaries between the classes. Instead, we seek a continuous approximation of the real-value RSA using nonlinear regression, with several feed forward and recurrent neural networks, which are then combined into a consensus predictor. A set of 860 protein structures derived from the PFAM database was used for training, whereas validation of the results was carefully performed on several nonredundant control sets comprising a total of 603 structures derived from new Protein Data Bank structures and had no homology to proteins included in the training. Two classes of alternative predictors were developed for comparison with the regression-based approach: one based on the standard classification approach and the other based on a semicontinuous approximation with the so-called thermometer encoding. Furthermore, a weighted approximation, with errors being scaled by the observed levels of variability in RSA for equivalent residues in families of homologous structures, was applied in order to improve the results. The effects of including evolutionary profiles and the growth of sequence databases were assessed. In accord with the observed levels of variability in RSA for different ranges of RSA values, the regression accuracy is higher for buried than for exposed residues, with overall 15.3-15.8% mean absolute errors and correlation coefficients between the predicted and experimental values of 0.64-0.67 on different control sets. The new method outperforms classification-based algorithms when the real value predictions are projected onto two-class classification problems with several commonly used thresholds to separate exposed and buried residues. For example, classification accuracy of about 77% is consistently achieved on all control sets with a threshold of 25% RSA. A web server that enables RSA prediction using the new method and provides customizable graphical representation of the results is available at http://sable.cchmc.org. 相似文献
18.
We develop a new threading algorithm MUSTER by extending the previous sequence profile-profile alignment method, PPA. It combines various sequence and structure information into single-body terms which can be conveniently used in dynamic programming search: (1) sequence profiles; (2) secondary structures; (3) structure fragment profiles; (4) solvent accessibility; (5) dihedral torsion angles; (6) hydrophobic scoring matrix. The balance of the weighting parameters is optimized by a grading search based on the average TM-score of 111 training proteins which shows a better performance than using the conventional optimization methods based on the PROSUP database. The algorithm is tested on 500 nonhomologous proteins independent of the training sets. After removing the homologous templates with a sequence identity to the target >30%, in 224 cases, the first template alignment has the correct topology with a TM-score >0.5. Even with a more stringent cutoff by removing the templates with a sequence identity >20% or detectable by PSI-BLAST with an E-value <0.05, MUSTER is able to identify correct folds in 137 cases with the first model of TM-score >0.5. Dependent on the homology cutoffs, the average TM-score of the first threading alignments by MUSTER is 5.1-6.3% higher than that by PPA. This improvement is statistically significant by the Wilcoxon signed rank test with a P-value < 1.0 x 10(-13), which demonstrates the effect of additional structural information on the protein fold recognition. The MUSTER server is freely available to the academic community at http://zhang.bioinformatics.ku.edu/MUSTER. 相似文献
20.
Predicting the native subcellular compartment of a protein is an important step toward elucidating its function. Here we introduce LOCtree, a hierarchical system combining support vector machines (SVMs) and other prediction methods. LOCtree predicts the subcellular compartment of a protein by mimicking the mechanism of cellular sorting and exploiting a variety of sequence and predicted structural features in its input. Currently LOCtree does not predict localization for membrane proteins, since the compositional properties of membrane proteins significantly differ from those of non-membrane proteins. While any information about function can be used by the system, we present estimates of performance that are valid when only the amino acid sequence of a protein is known. When evaluated on a non-redundant test set, LOCtree achieved sustained levels of 74% accuracy for non-plant eukaryotes, 70% for plants, and 84% for prokaryotes. We rigorously benchmarked LOCtree in comparison to the best alternative methods for localization prediction. LOCtree outperformed all other methods in nearly all benchmarks. Localization assignments using LOCtree agreed quite well with data from recent large-scale experiments. Our preliminary analysis of a few entirely sequenced organisms, namely human (Homo sapiens), yeast (Saccharomyces cerevisiae), and weed (Arabidopsis thaliana) suggested that over 35% of all non-membrane proteins are nuclear, about 20% are retained in the cytosol, and that every fifth protein in the weed resides in the chloroplast. 相似文献