首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BMP signaling in skeletal development   总被引:16,自引:0,他引:16  
Development of the vertebrate skeleton, a complex biological event that includes diverse processes such as formation of mesenchymal condensations at the sites of future skeletal elements, osteoblast and chondrocyte differentiation, and three dimensional patterning, is regulated by many growth factors. Bone morphogenetic proteins (BMPs), members of the TGF-beta superfamily, play a pivotal role in the signaling network and are involved in nearly all processes associated with skeletal morphogenesis. BMP signals are transduced from the plasma membrane receptors to the nucleus through both Smad pathway and non-Smad pathways, and regulated by many extracellular and intercellular proteins that interact with BMPs or components of the BMP signaling pathways. To gain a better understanding of the molecular mechanisms underlying the role of BMP in early skeletal development, it is necessary to elucidate the BMP signaling transduction pathways in chondrocytes and osteoblasts. The major objective of this review was to summarize BMP signaling pathways in the context of craniofacial, axial, and limb development. In particular, this discourse will focus on recent advances of the role of different ligands, receptors, Smads, and BMP regulators in osteoblast and chondrocyte differentiation during embryonic development.  相似文献   

2.
Negative regulation of TGF-β signaling in development   总被引:4,自引:0,他引:4  
Chen YG  Meng AM 《Cell research》2004,14(6):441-449
The TGF-β superfamily members have important roles in controlling patterning and tissue formation in both invertebrates and vertebrates. Two types of signal transducers, receptors and Smads, mediate the signaling to regulate expression of their target genes. Despite of the relatively simple signal transduction pathway, many modulators have been found to contribute to a tight regulation of this pathway in a variety of mechanisms. This article reviews the negative regulation of TGF-β signaling with focus on its roles in vertebrate development.  相似文献   

3.
Hedgehog signaling in skeletal development   总被引:2,自引:0,他引:2  
Hedgehog signaling coordinates a variety of patterning processes during early embryonic development. Drosophila hedgehog and its vertebrate orthologs, Sonic hedgehog, Indian hedgehog, and Desert hedgehog, share a generally conserved signal transduction cascade. However, the particular mechanisms by which the lipid-modified molecules specify embryonic tissues differ substantially. Vertebrate skeletal patterning is one of the most intensively studied biological processes. During skeletogenesis, Sonic and Indian hedgehog provide positional information and initiate or maintain cellular differentiation programs regulating the formation of cartilage and bone. They either signal directly to adjacent cells or form tightly regulated gradients that act over long distances to pattern the axial and appendicular skeleton and regulate crucial steps during endochondral ossification. As a consequence, malfunction of the hedgehog signaling network can cause severe skeletal disorders and tumors.  相似文献   

4.
Cartilage patterning and differentiation are prerequisites for skeletal development through endochondral ossification (EO). Multipotential mesenchymal cells undergo a complex process of cell fate determination to become chondroprogenitors and eventually differentiate into chondrocytes. These developmental processes require the orchestration of cell-cell and cell-matrix interactions. In this review, we present limb bud development as a model for cartilage patterning and differentiation. We summarize the molecular and cellular events and signaling pathways for axis patterning, cell condensation, cell fate determination, digit formation, interdigital apoptosis, EO, and joint formation. The interconnected nature of these pathways underscores the effects of genetic and teratogenic perturbations that result in skeletal birth defects. The topics reviewed also include limb dysmorphogenesis as a result of genetic disorders and environmental factors, including FGFR, GLI3, GDF5/CDMP1, Sox9, and Cbfa1 mutations, as well as thalidomide- and alcohol-induced malformations. Understanding the complex interactions involved in cartilage development and EO provides insight into mechanisms underlying the biology of normal cartilage, congenital disorders, and pathologic adult cartilage.  相似文献   

5.
6.
Hedgehog signal transduction: from flies to vertebrates   总被引:3,自引:0,他引:3  
The patterning and morphogenesis of multicellular organisms require a complex interplay of inductive signals which control proliferation, growth arrest, and differentiation of different cell types. A number of such signaling molecules have been identified in vertebrates and invertebrates. The molecular dissection of these pathways demonstrated that in vertebrates, mutations or abnormals function of these signaling pathways were often associated with developmental disorders and cancer formation. The Hedgehog (Hh) family of secreted proteins provides a perfect example of such signaling proteins. In the following review, we will not discuss in detail the role of Hh as a morphogen, but rather focus on its signal transduction pathway and its role in various human disorders.  相似文献   

7.
8.
Secreted signaling molecules of the Wnt family have been found to play a central role in controlling embryonic development of a wide range of taxa from Hydra to humans. The most extensively studied Wnt signaling pathway is the canonical Wnt pathway, which controls gene expression by stabilizing β-catenin, and regulates a multitude of developmental processes. More recently, noncanonical Wnt pathways, which are β-catenin-independent, have been found to be important developmental regulators. Understanding the mechanisms of Wnt signaling is essential for the development of novel preventive and therapeutic approaches of human diseases. Limb development is a paradigm to study the principles of Wnt signaling in various developmental contexts. In the developing vertebrate limb, Wnt signaling has been shown to have important functions during limb bud initiation, limb outgrowth, early limb patterning, and later limb morphogenesis events. This review provides a brief overview on the diversity of Wnt-dependent signaling events during embryonic development of the vertebrate limb.Key words: Wnts, limb initiation, outgrowth, patterning, morphogenesis  相似文献   

9.
The superfamily of transforming growth factor-beta (TGF-beta) cytokines has been shown to have profound effects on cellular proliferation, differentiation, and growth. Recently, there have been major advances in our understanding of the signaling pathway(s) conveying TGF-beta signals to the nucleus to ultimately control gene expression. One tissue that is potently influenced by TGF-beta superfamily signaling is skeletal muscle. Skeletal muscle ontogeny and postnatal physiology have proven to be exquisitely sensitive to the TGF-beta superfamily cytokine milieu in various animal systems from mice to humans. Recently, major strides have been made in understanding the role of TGF-beta and its closely related family member, myostatin, in these processes. In this overview, we will review recent advances in our understanding of the TGF-beta and myostatin signaling pathways and, in particular, focus on the implications of this signaling pathway for skeletal muscle development, physiology, and pathology.  相似文献   

10.
Loss of mechanical loading induces rapid bone loss resulting from reduced osteoblastogenesis and decreased bone formation. The signaling mechanisms involved in this deleterious effect on skeletal metabolism remain poorly understood. We have previously shown that hindlimb suspension in rats increases osteoblast apoptosis associated with decreased phosphatidylinositol 3-kinase (PI3K) signaling. In this study, we investigated whether transforming growth factor (TGF)-beta2 may prevent the altered signaling and osteoblast apoptosis induced by skeletal unloading in vivo. Hindlimb suspension-induced decreased bone volume was associated with reduced alpha(5)beta(1)-integrin protein levels and PI3K/Akt signaling in unloaded bone. Continuous administration of TGF-beta2 using osmotic minipumps prevented the decreased alpha(5)beta(1)-integrin expression and the reduced PI3K/Akt signaling in unloaded bone, resulting in the prevention of osteoblast apoptosis. We also show that TGF-beta2 prevented the decreased Bcl-2 levels induced by unloading, which suggests that TGF-beta2 targets Bcl-2 via PI3K/Akt to prevent osteoblast apoptosis in unloaded bone. Furthermore, we show that TGF-beta2 prevented the decrease in phosphorylated Bad, the inactive form of the proapoptotic protein Bad, induced by unloading. These results identify a protective role for TGF-beta2 in osteoblast apoptosis induced by mechanical unloading via the alpha(5)beta(1)/PI3K/Akt signaling cascade and downstream Bcl-2 and phospho-Bad survival proteins. We thus propose a novel role for TGF-beta2 in protection from unloading-induced apoptosis in vivo.  相似文献   

11.
During the past years, major advances have been made in understanding the sequential events involved in neural plate patterning. Positional information is already conferred to cells of the neural plate at the time of its induction in the ectoderm. The interplay between the BMP- and the Fgf- signaling pathways leads to the induction of neural cell fates. Thus, neural induction and neural plate patterning are overlapping processes. Later, at the end of gastrulation, positional cell identities within the neural plate are refined and maintained by the action of several neural plate organizers. By locally emitting signaling molecules, they influence the fate of the developing nervous system with high regional specificity. Recent advances have been made both in understanding the mechanisms that dictate the relative position of these organizers and in how signaling molecules spread from them with high spatial and temporal resolution.  相似文献   

12.
《Organogenesis》2013,9(2):109-115
Secreted signaling molecules of the Wnt family have been found to play a central role in controlling embryonic development of a wide range of taxa from Hydra to humans. The most extensively studied Wnt signaling pathway is the canonical Wnt pathway, which controls gene expression by stabilizing β-catenin, and regulates a multitude of developmental processes. More recently, noncanonical Wnt pathways, which are β-catenin-independent, have been found to be important developmental regulators. Understanding the mechanisms of Wnt signaling is essential for the development of novel preventive and therapeutic approaches of human diseases. Limb development is a paradigm to study the principles of Wnt signaling in various developmental contexts. In the developing vertebrate limb, Wnt signaling has been shown to have important functions during limb bud initiation, limb outgrowth, early limb patterning, and later limb morphogenesis events. This review provides a brief overview on the diversity of Wnt-dependent signaling events during embryonic development of the vertebrate limb.  相似文献   

13.
Fibrillin-rich microfibrils are specialized extracellular matrix assemblies that endow connective tissues with mechanical stability and elastic properties, and that participate in the regulation of organ formation, growth and homeostasis. Their physiological importance is underscored by the complex spectrum of clinical manifestations associated with mutations of fibrillin-1 and fibrillin-2 in Marfan syndrome (MFS) and congenital contractural arachnodactyly, respectively. Early evidence suggested that fibrillin-1 mutations in MFS lead to loss of tissue integrity by perturbing microfibril assembly and function. Recent studies in genetically targeted mice have however revealed that fibrillin-1 and fibrillin-2 mutations perturb signaling events mediated by TGF-beta superfamily members. As such, these studies have established a new biological paradigm whereby fibrillin-rich microfibrils are structural networks that specify the local concentration and timely release of signaling molecules during morphogenesis and tissue remodeling. This review summarizes our current understanding of the role of fibrillin-rich microfibrils in development and disease, as well as exciting new applications in the clinical management of MFS and related connective tissue disorders.  相似文献   

14.
Because vertebrate jaw evolution involved modification of the anteriormost pharyngeal arch, it is important to understand the skeletal patterning of the lamprey pharyngeal arch. In this study, we visualized mucocartilage, which constitutes most of the skeletal elements in the anterior pharyngeal arches of the lamprey, and traced the development of these skeletal elements. We found that the basic framework of the mucocartilage skeletal elements is established in stage-30 larvae (about 1-month-old at 16 °C) and that the expression pattern of the SoxE homolog, LjSoxE3, prefigures the development of the skeletal elements in the craniofacial region. This enabled us to trace the developmental pattern of the anterior pharyngeal arch skeletal elements. We obtained evidence that endothelin signaling is involved in development of the ventral element of the first pharyngeal arch. These results suggest that endothelin signaling was already involved in the specification for the ventral skeleton and that the gnathostome jaw innovation must have been achieved by modifying downstream regulatory systems.  相似文献   

15.
BMP signaling is one of the key pathways regulating craniofacial development. It is involved in the early patterning of the head, the development of cranial neural crest cells, and facial patterning. It regulates development of its mineralized structures, such as cranial bones, maxilla, mandible, palate, and teeth. Targeted mutations in the mouse have been instrumental to delineate the functional involvement of this signaling network in different aspects of craniofacial development. Gene polymorphisms and mutations in BMP pathway genes have been associated with various non-syndromic and syndromic human craniofacial malformations. The identification of intricate cellular interactions and underlying molecular pathways illustrate the importance of local fine-regulation of Bmp signaling to control proliferation, apoptosis, epithelial-mesenchymal interactions, and stem/progenitor differentiation during craniofacial development. Thus, BMP signaling contributes both to shape and functionality of our facial features. BMP signaling also regulates postnatal craniofacial growth and is associated with dental structures life-long. A more detailed understanding of BMP function in growth, homeostasis, and repair of postnatal craniofacial tissues will contribute to our ability to rationally manipulate this signaling network in the context of tissue engineering.  相似文献   

16.
17.
Molecular signaling in bone fracture healing and distraction osteogenesis   总被引:11,自引:0,他引:11  
The process of fracture healing has been described in detail in many histological studies. Recent work has focused on the mechanisms by which growth and differentiation factors regulate the fracture healing process. Rapid progress in skeletal cellular and molecular biology has led to the identification of many signaling molecules associated with the formation of skeletal tissues, including members of the transforming growth factor-beta (TGF-beta) superfamily and the insulin-like growth factor (IGF) family. Increasing evidence indicates that they are critical regulators of cellular proliferation, differentiation, extracellular matrix biosynthesis and mineralization. Limb lengthening procedure (distraction osteogenesis) is a relevant model to investigate the in vivo correlation between mechanical stimulation and biological responses as the callus is stretched by a proper rate and rhythm of mechanical strain. This model also provides additional insights into the molecular and cellular events during bone fracture repair. TGF-beta 1 was significantly increased in both the distracted callus and the fracture callus. The increased level of TGF-beta 1, together with a low concentration of calcium and an enhanced level of collagen synthesis, was maintained in the distracted callus as long as mechanical strain was applied. Less mineralization is also associated with a low level of osteocalcin production. These observations provide further insights into the molecular basis for the cellular events during distraction osteogenesis.  相似文献   

18.
19.
Liu W  Rui H  Wang J  Lin S  He Y  Chen M  Li Q  Ye Z  Zhang S  Chan SC  Chen YG  Han J  Lin SC 《The EMBO journal》2006,25(8):1646-1658
TGF-beta signaling involves a wide array of signaling molecules and multiple controlling events. Scaffold proteins create a functional proximity of signaling molecules and control the specificity of signal transduction. While many components involved in the TGF-beta pathway have been elucidated, little is known about how those components are coordinated by scaffold proteins. Here, we show that Axin activates TGF-beta signaling by forming a multimeric complex consisting of Smad7 and ubiquitin E3 ligase Arkadia. Axin depends on Arkadia to facilitate TGF-beta signaling, as their small interfering RNAs reciprocally abolished the stimulatory effect on TGF-beta signaling. Specific knockdown of Axin or Arkadia revealed that Axin and Arkadia cooperate with each other in promoting Smad7 ubiquitination. Pulse-chase experiments further illustrated that Axin significantly decreased the half-life of Smad7. Axin also induces nuclear export of Smad7. Interestingly, Axin associates with Arkadia and Smad7 independently of TGF-beta signal, in contrast to its transient association with inactive Smad3. However, coexpression of Wnt-1 reduced Smad7 ubiquitination by downregulating Axin levels, underscoring the importance of Axin as an intrinsic regulator in TGF-beta signaling.  相似文献   

20.
Frost HM 《Hormone research》2000,54(Z1):36-43
Multidisciplinary advances in skeletal physiology offer a new paradigm for the effects of growth hormone (GH) and other agents on bone and osteoporosis. The still-evolving Utah paradigm of skeletal physiology supplements earlier ideas with later discovered roles of the skeleton's tissue-level 'nephron equivalents' and muscle strength in skeletal development, physiology and disorders. This article summarizes how these factors could influence the effects of GH on bone strength and bone 'mass', and the use of GH in the treatment of osteoporoses. Although the cellular and molecular biological mechanisms involved remain obscure, the associated cascades of cellular, genetic and biochemical processes and molecules should offer many opportunities to find or design agents that have medically useful effects on bone and muscle without giving rise to unwanted side-effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号