首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We evaluated the effects of physiologic increases in insulin on hepatic and peripheral glucose metabolism in nonpregnant (NP) and pregnant (P; 3rd trimester) conscious dogs (n = 9 each) using tracer and arteriovenous difference techniques during a hyperinsulinemic euglycemic clamp. Insulin was initially (-150 to 0 min) infused intraportally at a basal rate. During 0-120 min (Low Insulin), the rate was increased by 0.2 mU x kg(-1) x min(-1), and from 120 to 240 min (High Insulin) insulin was infused at 1.5 mU x kg(-1) x min(-1). Insulin concentrations were significantly higher in NP than P during all periods. Matched subsets (n = 5 NP and 6 P) were identified. In the subsets, insulin was 7 +/- 1, 9 +/- 1, and 28 +/- 3 microU/ml (basal, Low Insulin, and High Insulin, respectively) in NP, and 5 +/- 1, 7 +/- 1, and 27 +/- 3 microU/ml in P. Net hepatic glucose output was suppressed similarly in both subsets (> or =50% with Low Insulin, 100% with High Insulin), as was endogenous glucose rate of appearance. During High Insulin, NP dogs required more glucose (10.8 +/- 1.5 vs. 6.2 +/- 1.0 mg x kg(-1) x min(-1), P < 0.05), and hindlimb (primarily skeletal muscle) glucose uptake tended to be greater in NP than P (18.6 +/- 2.5 mg/min vs. 13.6 +/- 2.0 mg/min, P = 0.06). The normal canine liver remains insulin sensitive during late pregnancy. Differing insulin concentrations in pregnant and nonpregnant women and excessive insulin infusion rates may explain previous findings of hepatic insulin resistance in healthy pregnant women.  相似文献   

2.
The impact of pregnancy on the counterregulatory response to insulin-induced hypoglycemia was examined in six nonpregnant (NP) and six pregnant (P; 3rd trimester) conscious dogs by tracer and arteriovenous difference techniques. After basal sampling, insulin was infused intraportally at 30 pmol.kg(-1).min(-1) for 180 min. Insulin rose from 70 +/- 15 to 1,586 +/- 221 pmol/l and 27 +/- 4 to 1,247 +/- 61 pmol/l in the 3rd h in NP and P, respectively. Arterial glucose fell from 5.9 +/- 0.2 to 2.3 +/- 0.2 mmol/l in P. Glucose was infused in NP to equate the rate of fall of glucose and the steady-state concentrations in the groups (5.9 +/- 0.2 to 2.3 +/- 0.1 mmol/l in NP). Glucagon was 32 +/- 6, 69 +/- 11, and 48 +/- 10 ng/l (basal and 1st and 3rd h) in NP, but the response was attenuated in P (34 +/- 5, 46 +/- 6, 41 +/- 9 ng/l). Cortisol and epinephrine rose similarly in both groups, but norepinephrine rose more in NP (Delta3.01 +/- 0.46 and Delta1.31 +/- 0.13 nmol/l, P < 0.05). Net hepatic glucose output (NHGO; micromol.kg(-1).min(-1)) increased from 10.6 +/- 1.8 to 21.2 +/- 3.3 in NP (3rd h) but did not increase in P (15.1 +/- 1.5 to 15.3 +/- 2.8 micromol.kg(-1).min(-1), P < 0.05 between groups). The glycogenolytic contribution to NHGO in NP increased from 5.8 +/- 0.7 to 10.4 +/- 2.5 micromol.kg(-1).min(-1) by 90 min but steadily declined in P. The increase in glycerol levels and the gluconeogenic contribution to NHGO were 50% less in P than in NP, but ketogenesis did not differ. The glucagon and norepinephrine responses to insulin-induced hypoglycemia are blunted in late pregnancy in the dog, impacting on the magnitude of the metabolic responses to the fall in glucose.  相似文献   

3.
We assessed basal glucose metabolism in 16 female nonpregnant (NP) and 16 late-pregnant (P) conscious, 18-h-fasted dogs that had catheters inserted into the hepatic and portal veins and femoral artery approximately 17 days before the experiment. Pregnancy resulted in lower arterial plasma insulin (11 +/- 1 and 4 +/- 1 microU/ml in NP and P, respectively, P < 0.05), but plasma glucose (5.9 +/- 0.1 and 5.6 +/- 0.1 mg/dl in NP and P, respectively) and glucagon (39 +/- 3 and 36 +/- 2 pg/ml in NP and P, respectively) were not different. Net hepatic glucose output was greater in pregnancy (42.1 +/- 3.1 and 56.7 +/- 4.0 micromol. 100 g liver(-1).min(-1) in NP and P, respectively, P < 0.05). Total net hepatic gluconeogenic substrate uptake (lactate, alanine, glycerol, and amino acids), a close estimate of the gluconeogenic rate, was not different between the groups (20.6 +/- 2.8 and 21.2 +/- 1.8 micromol. 100 g liver(-1). min(-1) in NP and P, respectively), indicating that the increment in net hepatic glucose output resulted from an increase in the contribution of glycogenolytically derived glucose. However, total glycogenolysis was not altered in pregnancy. Ketogenesis was enhanced nearly threefold by pregnancy (6.9 +/- 1.2 and 18.2 +/- 3.4 micromol. 100 g liver(-1).min(-1) in NP and P, respectively), despite equivalent net hepatic nonesterified fatty acid uptake. Thus late pregnancy in the dog is not accompanied by changes in the absolute rates of gluconeogenesis or glycogenolysis. Rather, repartitioning of the glucose released from glycogen is responsible for the increase in hepatic glucose production.  相似文献   

4.
Glucose metabolism was compared in dogs consuming a chow/meat diet throughout pregnancy (P group, n = 6) and dogs switched to a high-fat/high-fructose (HFF) diet during the 4th-5th gestational week (gestation ?9 wk; P-HFF group; n = 6). An oral glucose tolerance test (OGTT; 0.9 g/kg) was administered in the 6th-7th gestational week, and a hyperinsulinemic [0-120 min: 1.8 pmol·kg(-1)·min(-1) (low insulin); 120-240 min: 9 pmol·kg(-1)·min(-1) (high insulin)] euglycemic clamp was performed the following week. Nonpregnant (NP) female dogs underwent OGTTs but not clamp studies. All P-HFF dogs exhibited impaired glucose tolerance (IGT) or gestational diabetes (GDM), but only one P dog had IGT. Insulin concentrations in P and P-HFF dogs were significantly lower than in NP dogs 30 and 60 min after the OGTT. Therefore, mean islet size and area were evaluated in P and NP dogs. These values did not differ between groups, and proliferating endocrine cells were rare in pregnancy. During exposure to high insulin, glucose infusion rate and hindlimb glucose uptake were ~30% greater (P < 0.05) and net hepatic glucose output was more suppressed (-5.5 ± 6.1 vs. 7.8 ± 2.8 mg·100 g liver(-1)·min(-1), P < 0.05) in P than in P-HFF dogs. In conclusion, in the 2nd trimester the canine pancreas does not exhibit islet hypertrophy, hyperplasia, or neogenesis. Combined with the lack of pancreatic adaptation, a HFF diet during late pregnancy produces a canine model of IGT and GDM without hyperinsulinemia but exhibiting liver and muscle insulin resistance.  相似文献   

5.
Insulin resistance (IR) is a hallmark of pregnancy. Because increased visceral fat (VF) is associated with IR in nonpregnant states, we reasoned that fat accretion might be important in the development of IR during pregnancy. To determine whether VF depots increase in pregnancy and whether VF contributes to IR, we studied three groups of 6-mo-old female Sprague-Dawley rats: 1) nonpregnant sham-operated rats (Nonpreg; n = 6), 2) pregnant sham-operated rats (Preg; n = 6), and 3) pregnant rats in which VF was surgically removed 1 mo before mating (PVF-; n = 6). VF doubled by day 19 of pregnancy (Nonpreg 5.1 +/- 0.3, Preg 10.0 +/- 1.0 g, P < 0.01), and PVF- had similar amounts of VF compared with Nonpreg (PVF- 4.6 +/- 0.8 g). Insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp in late gestation in chronically catheterized unstressed rats. Glucose IR (mg.kg(-1).min(-1)) was highest in Nonpreg (19.4 +/- 2.0), lowest in Preg (11.1 +/- 1.4), and intermediate in PVF- (14.7 +/- 0.6; P < 0.001 between all groups). During the clamp, Nonpreg had greater hepatic insulin sensitivity than Preg [hepatic glucose production (HGP): Nonpreg 4.5 +/- 1.3, Preg 9.3 +/- 0.5 mg.kg(-1).min(-1); P < 0.001]. With decreased VF, hepatic insulin sensitivity was similar to nonpregnant levels in PVF- (HGP 4.9 +/- 0.8 mg.kg(-1).min(-1)). Both pregnant groups had lower peripheral glucose uptake compared with Nonpreg. In parallel with hepatic insulin sensitivity, hepatic triglyceride content was increased in pregnancy (Nonpreg 1.9 +/- 0.4 vs. Preg 3.2 +/- 0.3 mg/g) and decreased with removal of VF (PVF- 1.3 +/- 0.4 mg/g; P < 0.05). Accretion of visceral fat is an important component in the development of hepatic IR in pregnancy, and accumulation of hepatic triglycerides is a mechanism by which visceral fat may modulate insulin action in pregnancy.  相似文献   

6.
To assess whether extrapancreatic effects of sulfonylureas in vivo are detectable in the absence of endogenous insulin secretion, insulin sensitivity was determined in six insulin-deficient type 1-diabetic subjects. Peripheral uptake and hepatic production of glucose and lipolysis were measured during hyperinsulinemia using the euglycemic clamp technique and 3-3H-glucose infusions twice, once during a period with glibornuride treatment (50 mg b.i.d.), and once without. Hepatic glucose production decreased in diabetic subjects during hyperinsulinemia (insulin infusion of 20 mU/m2 X min; plasma free insulin levels of 40 +/- 4 mU/l) from 2.9 +/- 0.6 mg/kg min to 0.2 +/- 0.1 mg/kg X min after 120 min, and plasma free fatty acid (FFA) concentrations decreased from 1.33 +/- 0.29 to 0.38 +/- 0.08 mmol/l. Hepatic production, peripheral uptake of glucose and plasma FFA concentrations before and during hyperinsulinemia were not influenced by pretreatment with glibornuride. Compared to 8 non-diabetic subjects, type 1-diabetics demonstrated a diminished effect of hyperinsulinemia on peripheral glucose clearance (2.4 +/- 0.04 vs 4.2 +/- 0.5 ml/kg X min, P less than 0.01), whereas hepatic glucose production and plasma FFA levels were similarly suppressed by insulin. The data indicate that sulfonylurea treatment did not improve the diminished insulin sensitivity of peripheral glucose clearance in type 1-diabetic subjects; insulin action on hepatic glucose production and lipolysis was unimpaired in diabetics and remained uninfluenced by glibornuride. Thus, extrapancreatic effects of sulfonylureas in vivo are dependent on the presence of functioning beta-cells.  相似文献   

7.
We previously reported that infection decreases hepatic glucose uptake when glucose is given as a constant peripheral glucose infusion (8 mg. kg(-1) x min(-1)). This impairment persisted despite greater hyperinsulinemia in the infected group. In a normal setting, hepatic glucose uptake can be further enhanced if glucose is given gastrointestinally. Thus the aim of this study was to determine whether hepatic glucose uptake is impaired during an infection when glucose is given gastrointestinally. Thirty-six hours before study, a sham (SH, n = 7) or Escherichia coli-containing (2 x 10(9) organisms/kg; INF; n = 7) fibrin clot was placed in the peritoneal cavity of chronically catheterized dogs. After the 36 h, a glucose bolus (150 mg/kg) followed by a continuous infusion (8 mg. kg(-1). min(-1)) of glucose was given intraduodenally to conscious dogs for 240 min. Tracer ([3-(3)H]glucose and [U-(14)C]glucose) and arterial-venous difference techniques were used to assess hepatic and intestinal glucose metabolism. Infection increased hepatic blood flow (35 +/- 5 vs. 47+/-3 ml x g(-1) x min(-1); SH vs. INF) and basal glucose rate of appearance (2.1+/-0.2 vs. 3.3+/-0.1 mg x kg(-1) x min(-1)). Arterial insulin concentrations increased similarly in SH and INF during the last hour of glucose infusion (38+/-8 vs. 46+/-20 microU/ml), and arterial glucagon concentrations fell (62+/-14 to 30+/-3 vs. 624+/-191 to 208+/-97 pg/ml). Net intestinal glucose absorption was decreased in INF, attenuating the increase in blood glucose caused by the glucose load. Despite this, net hepatic glucose uptake (1.6+/-0.8 vs. 2.4+/- 0.9 mg x kg(-1) x min(-1); SH vs. INF) and consequently tracer-determined glycogen synthesis (1.3+/-0.3 vs. 1.0+/-0.3 mg. kg(-1) x min(-1)) were similar between groups. In summary, infection impairs net glucose absorption, but not net hepatic glucose uptake or glycogen deposition, when glucose is given intraduodenally.  相似文献   

8.
Portal glucose delivery enhances net hepatic glucose uptake (NHGU) relative to peripheral glucose delivery. We hypothesize that the sympathetic nervous system normally restrains NHGU, and portal glucose delivery relieves the inhibition. Two groups of 42-h-fasted conscious dogs were studied using arteriovenous difference techniques. Denervated dogs (DEN; n=10) underwent selective sympathetic denervation by cutting the nerves at the celiac nerve bundle near the common hepatic artery; control dogs (CON; n=10) underwent a sham procedure. After a 140-min basal period, somatostatin was given along with basal intraportal infusions of insulin and glucagon. Glucose was infused peripherally to double the hepatic glucose load (HGL) for 90 min (P1). In P2, glucose was infused intraportally (3-4 mg.kg(-1).min(-1)), and the peripheral glucose infusion was reduced to maintain the HGL for 90 min. This was followed by 90 min (P3) in which portal glucose infusion was terminated and peripheral glucose infusion was increased to maintain the HGL. P1 and P3 were averaged as the peripheral glucose infusion period (PE). The average HGLs (mg.kg(-1).min(-1)) in CON and DEN were 55+/-3 and 54+/-4 in the peripheral periods and 55+/-3 and 55+/-4 in P2, respectively. The arterial insulin and glucagon levels remained basal in both groups. NHGU (mg.kg(-1).min(-1)) in CON averaged 1.7+/-0.3 during PE and increased to 2.9+/-0.3 during P2. NHGU (mg.kg(-1).min(-1)) was greater in DEN than CON (P<0.05) during PE (2.9+/-0.4) and failed to increase significantly (3.2+/-0.2) during P2 (not significant vs. CON). Selective sympathetic denervation increased NHGU during hyperglycemia but significantly blunted the response to portal glucose delivery.  相似文献   

9.
To determine the effects of an increase in lipolysis on the glycogenolytic effect of epinephrine (EPI), the catecholamine was infused portally into 18-h-fasted conscious dogs maintained on a pancreatic clamp in the presence [portal (Po)-EPI+FFA, n = 6] and absence (Po-EPI+SAL, n = 6) of peripheral Intralipid infusion. Control groups with high glucose (70% increase) and free fatty acid (FFA; 200% increase; HG+FFA, n = 6) and high glucose alone (HG+SAL, n = 6) were also included. Hepatic sinusoidal EPI levels were elevated (Delta 568 +/- 77 and Delta 527 +/- 37 pg/ml, respectively) in Po-EPI+SAL and EPI+FFA but remained basal in HG+FFA and HG+SAL. Arterial plasma FFA increased from 613 +/- 73 to 1,633 +/- 101 and 746 +/- 112 to 1,898 +/- 237 micromol/l in Po-EPI+FFA and HG+FFA but did not change in EPI+SAL or HG+SAL. Net hepatic glycogenolysis increased from 1.5 +/- 0.3 to 3.1 +/- 0.4 mg x kg(-1) x min(-1) (P < 0.05) by 30 min in response to portal EPI but did not rise (1.8 +/- 0.2 to 2.1 +/- 0.3 mg x kg(-1) x min(-1)) in response to Po-EPI+FFA. Net hepatic glycogenolysis decreased from 1.7 +/- 0.2 to 0.9 +/- 0.2 and 1.6 +/- 0.2 to 0.7 +/- 0.2 mg x kg(-1) x min(-1) by 30 min in HG+FFA and HG+SAL. Hepatic gluconeogenic flux to glucose 6-phosphate increased from 0.6 +/- 0.1 to 1.2 +/- 0.1 mg x kg(-1) x min(-1) (P < 0.05; by 3 h) and 0.7 +/- 0.1 to 1.6 +/- 0.1 mg x kg(-1) x min(-1) (P < 0.05; at 90 min) in HG+FFA and Po-EPI+FFA. The gluconeogenic parameters remained unchanged in the Po-EPI+SAL and HG+SAL groups. In conclusion, increased FFA markedly changed the mechanism by which EPI stimulated hepatic glucose production, suggesting that its overall lipolytic effect may be important in determining its effect on the liver.  相似文献   

10.
This study aimed to test whether stimulation of net hepatic glucose output (NHGO) by increased concentrations of the AMP analog, 5-aminoimidazole-4-carboxamide-1-beta-d-ribosyl-5-monophosphate, can be suppressed by pharmacological insulin levels. Dogs had sampling (artery, portal vein, hepatic vein) and infusion (vena cava, portal vein) catheters and flow probes (hepatic artery, portal vein) implanted >16 days before study. Protocols consisted of equilibration (-130 to -30 min), basal (-30 to 0 min), and hyperinsulinemic-euglycemic (0-150 min) periods. At time (t) = 0 min, somatostatin was infused, and basal glucagon was replaced via the portal vein. Insulin was infused in the portal vein at either 2 (INS2) or 5 (INS5) mU.kg(-1).min(-1). At t = 60 min, 1 mg.kg(-1).min(-1) portal venous 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) infusion was initiated. Arterial insulin rose approximately 9- and approximately 27-fold in INS2 and INS5, respectively. Glucagon, catecholamines, and cortisol did not change throughout the study. NHGO was completely suppressed before t = 60 min. Intraportal AICAR stimulated NHGO by 1.9 +/- 0.5 and 2.0 +/- 0.5 mg.kg(-1).min(-1) in INS2 and INS5, respectively. AICAR stimulated tracer-determined endogenous glucose production similarly in both groups. Intraportal AICAR infusion significantly increased hepatic acetyl-CoA carboxylase (ACC, Ser(79)) phosphorylation in INS2. Hepatic ACC (Ser(79)) phosphorylation, however, was not increased in INS5. Thus intraportal AICAR infusion renders hepatic glucose output insensitive to pharmacological insulin. The effectiveness of AICAR in countering the suppressive effect of pharmacological insulin on NHGO occurs even though AICAR-stimulated ACC phosphorylation is completely blocked.  相似文献   

11.
Portal glucose delivery in the conscious dog augments net hepatic glucose uptake (NHGU). To investigate the possible role of altered autonomic nervous activity in the effect of portal glucose delivery, the effects of adrenergic blockade and acetylcholine (ACh) on hepatic glucose metabolism were examined in 42-h-fasted conscious dogs. Each study consisted of an equilibration (-120 to -20 min), a control (-20 to 0 min), and a hyperglycemic-hyperinsulinemic period (0 to 300 min). During the last period, somatostatin (0.8 microg. kg(-1). min(-1)) was infused along with intraportal insulin (1.2 mU. kg(-1). min(-1)) and glucagon (0.5 ng. kg(-1). min(-1)). Hepatic sinusoidal insulin was four times basal (73 +/- 7 microU/ml) and glucagon was basal (55 +/- 7 pg/ml). Glucose was infused peripherally (0-300 min) to create hyperglycemia (220 mg/dl). In test protocol, phentolamine and propranolol were infused intraportally at 0.2 microg and 0.1 microg. kg(-1). min(-1) from 120 min on. ACh was infused intraportally at 3 microg. kg(-1). min(-1) from 210 min on. In control protocol, saline was given in place of the blockers and ACh. Hyperglycemia-hyperinsulinemia switched the net hepatic glucose balance (mg. kg(-1). min(-1)) from output (2.1 +/- 0.3 and 1.1 +/- 0.2) to uptake (2.8 +/- 0.9 and 2.6 +/- 0.6) and lactate balance (micromol. kg(-1). min(-1)) from uptake (7.5 +/- 2.2 and 6.7 +/- 1.6) to output (3.7 +/- 2.6 and 3.9 +/- 1.6) by 120 min in the control and test protocols, respectively. Thereafter, in the control protocol, NHGU tended to increase slightly (3.0 +/- 0.6 mg. kg(-1). min(-1) by 300 min). In the test protocol, adrenergic blockade did not alter NHGU, but ACh infusion increased it to 4.4 +/- 0.6 and 4.6 +/- 0.6 mg. kg(-1). min(-1) by 220 and 300 min, respectively. These data are consistent with the hypothesis that alterations in nerve activity contribute to the increase in NHGU seen after portal glucose delivery.  相似文献   

12.
Insulin resistance in acromegaly causes glucose intolerance and diabetes, but it is unknown whether it involves protein metabolism, since both insulin and growth hormone promote protein accretion. The effects of acromegaly and of its surgical cure on the insulin sensitivity of glucose and amino acid/protein metabolism were evaluated by infusing [6,6-(2)H(2)]glucose, [1-(13)C]leucine, and [2-(15)N]glutamine during a euglycemic insulin (1 mU x kg(-1) x min(-1)) clamp in 12 acromegalic patients, six studied again 6 mo after successful adenomectomy, and eight healthy controls. Acromegalic patients, compared with postsurgical and control subjects, had higher postabsorptive glucose concentration (5.5 +/- 0.3 vs. 4.9 +/- 0.2 micromol/l, P < 0.05, and 5.1 +/- 0.1 micromol/l) and flux (2.7 +/- 0.1 vs. 2.0 +/- 0.2 micromol x kg(-1) x min(-1), P < 0.01, and 2.2 +/- 0.1 micromol x kg(-1) x min(-1), P < 0.05) and reduced insulin-stimulated glucose disposal (+15 +/- 9 vs. +151 +/- 18%, P < 0.01, and 219 +/- 58%, P < 0.001 from basal). Postabsorptive leucine metabolism was similar among groups. In acromegalic and postsurgical subjects, insulin suppressed less than in controls the endogenous leucine flux (-9 +/- 1 and -12 +/- 2 vs. -18 +/- 2%, P < 0.001 and P < 0.05), the nonoxidative leucine disposal (-4 +/- 3 and -1 +/- 3 vs. -18 +/- 2%, P < 0.01 and P < 0.05), respectively, indexes of proteolysis and protein synthesis, and leucine oxidation (-17 +/- 6% in postsurgical patients vs. -26 +/- 6% in controls, P < 0.05). Within 6 mo, surgery reverses insulin resistance for glucose but not for protein metabolism. After adenomectomy, more leucine is oxidized during hyperinsulinemia.  相似文献   

13.
During chronic total parenteral nutrition (TPN), net hepatic glucose uptake (NHGU) is markedly elevated. However, NHGU is reduced by the presence of an infection. We recently demonstrated that a small, acute (3-h) intraportal fructose infusion can correct the infection-induced impairment in NHGU. The aim of this study was to determine whether the addition of fructose to the TPN persistently enhances NHGU in the presence of an infection. TPN was infused continuously into the inferior vena cava of chronically catheterized dogs for 5 days. On day 3, a bacterial clot was implanted in the peritoneal cavity, and either saline (CON, n = 5) or fructose (+FRUC, 1.0 mg. kg(-1). min(-1), n = 6) infusion was included with the TPN. Forty-two hours after the infection was induced, hepatic glucose metabolism was assessed in conscious dogs with arteriovenous and tracer methods. Arterial plasma glucose concentration was lower with chronic fructose infusion (120 +/- 4 vs. 131 +/- 3 mg/dl, +FRUC vs. CON, P < 0.05); however, NHGU was not enhanced (2.2 +/- 0.5 vs. 2.8 +/- 0.4 mg. kg(-1). min(-1)). Acute removal of the fructose infusion dramatically decreased NHGU (2.2 +/- 0.5 to -0.2 +/- 0.5 mg. kg(-1). min(-1)), and net hepatic lactate release also fell (1.6 +/- 0.3 to 0.5 +/- 0.3 mg. kg(-1). min(-1)). This led to an increase in the arterial plasma glucose (Delta13 +/- 3 mg/dl, P < 0.05) and insulin (Delta5 +/- 2 micro U/ml) concentrations and to a decrease in glucagon (Delta-11 +/- 3 pg/ml) concentration. In conclusion, the addition of chronic fructose infusion to TPN during infection does not lead to a persistent augmentation of NHGU.  相似文献   

14.
The glycemic and hormonal responses and net hepatic and nonhepatic glucose uptakes were quantified in conscious 42-h-fasted dogs during a 180-min infusion of glucose at 10 mg. kg(-1). min(-1) via a peripheral (Pe10, n = 5) or the portal (Po10, n = 6) vein. Arterial plasma insulin concentrations were not different during the glucose infusion in Pe10 and Po10 (37 +/- 6 and 43 +/- 12 microU/ml, respectively), and glucagon concentrations declined similarly throughout the two studies. Arterial blood glucose concentrations during glucose infusion were not different between groups (125 +/- 13 and 120 +/- 6 mg/dl in Pe10 and Po10, respectively). Portal glucose delivery made the hepatic glucose load significantly greater (36 +/- 3 vs. 46 +/- 5 mg. kg(-1). min(-1) in Pe10 vs. Po10, respectively, P < 0.05). Net hepatic glucose uptake (NHGU; 1.1 +/- 0. 4 vs. 3.1 +/- 0.4 mg. kg(-1). min(-1)) and fractional extraction (0. 03 +/- 0.01 vs. 0.07 +/- 0.01) were smaller (P < 0.05) in Pe10 than in Po10. Nonhepatic (primarily muscle) glucose uptake was correspondingly increased in Pe10 compared with Po10 (8.9 +/- 0.4 vs. 6.9 +/- 0.4 mg. kg(-1). min(-1), P < 0.05). Approximately one-half of the difference in NHGU between groups could be accounted for by the difference in hepatic glucose load, with the remainder attributable to the effect of the portal signal itself. Even in the absence of somatostatin and fixed hormone concentrations, the portal signal acts to alter partitioning of a glucose load among the tissues, stimulating NHGU and reducing peripheral glucose uptake.  相似文献   

15.
In response to chronic (5 days) TPN, the liver becomes a major site of glucose disposal, removing approximately 45% (4.5 mg.kg(-1).min(-1)) of exogenous glucose. Moreover, approximately 70% of glucose is not stored but released as lactate. We aimed to determine in chronically catheterized conscious dogs the time course of adaptation to TPN and the glycogen depletion impact on early time course. After an 18-h (n = 5) fast, TPN was infused into the inferior vena cava for 8 (n = 5) or 24 h (n = 6). A third group, of 42-h-fasted animals (n = 6), was infused with TPN for 8 h. TPN was infused at a rate designed to match the dog's calculated basal energy and nitrogen requirements. NHGU (-2.3 +/- 0.1 to 2.2 +/- 0.7 to 3.9 +/- 0.6 vs. -1.7 +/- 0.3 to 1.1 +/- 0.5 to 2.9 +/- 0.4 mg.kg(-1).min(-1), basal to 4 to 8 h, 18 vs. 42 h) and net hepatic lactate release (0.7 +/- 0.3 to 0.6 +/- 0.1 to 1.4 +/- 0.2 vs. -0.6 +/- 0.1 to 0.1 +/- 0.1 to 0.8 +/- 0.1 mg.kg(-1).min(-1), basal to 4 to 8 h) increased progressively. Net hepatic glycogen repletion and tracer determined that glycogen syntheses were similar. After 24 h of TPN, NHGU (5.4 +/- 0.6 mg.kg(-1).min(-1)) and net hepatic lactate release (2.6 +/- 0.4 mg.kg(-1).min(-1)) increased further. In summary, 1) most hepatic adaptation to TPN occurs within 24 h after initiation of TPN, and 2) prior glycogen depletion does not augment hepatic adaptation rate.  相似文献   

16.
In phenotype experiments in mice, determination of dynamic insulin sensitivity often uses the insulin tolerance test. However, the interpretation of this test is complicated by the counterregulation occurring at low glucose. To overcome this problem, we determined the dynamic insulin sensitivity after inhibition of endogenous insulin secretion by diazoxide (25 mg/kg) in association with intravenous administration of glucose plus insulin (the DSGIT technique). Estimation of insulin sensitivity index (SI) by this technique showed good correlation to SI from a regular intravenous glucose tolerance test (r = 0.87; P < 0.001; n = 15). With DSGIT, we evaluated dynamic insulin sensitivity in mice with a rat insulin promoter (beta-cell-targeted) dominant-negative mutation of hepatic nuclear factor (HNF)-1alpha [RIP-DN HNF-1alpha (Tg) mice]. When insulin was administered exogenously at the same dose in Tg and wild-type (WT) mice, plasma insulin levels were higher in WT, indicating an increased insulin clearance in Tg mice. When the diazoxide test was used, different doses of insulin were therefore administered (0.1 and 0.15 U/kg in WT and 0.2 and 0.25 U/kg in Tg) to achieve similar insulin levels in the groups. Minimal model analysis showed that SI was the same in the two groups (0.78 +/- 0.21 x 10(-4) min.pmol(-1).l(-1) in WT vs. 0.60 +/- 0.11 in Tg; P = 0.45) as was the glucose elimination rate (P = 0.27). We conclude that 1) the DSGIT technique determines the in vivo dynamic insulin action in mice, 2) insulin clearance is increased in Tg mice, and 3) chronic islet dysfunction in RIP-DN HNF-1alpha mice is not compensated with increased insulin sensitivity.  相似文献   

17.
We examined whether intraportal delivery of neuropeptide Y (NPY) affects glucose metabolism in 42-h-fasted conscious dogs using arteriovenous difference methodology. The experimental period was divided into three subperiods (P1, P2, and P3). During all subperiods, the dogs received infusions of somatostatin, intraportal insulin (threefold basal), intraportal glucagon (basal), and peripheral intravenous glucose to increase the hepatic glucose load twofold basal. Following P1, in the NPY group (n = 7), NPY was infused intraportally at 0.2 and 5.1 pmol.kg(-1).min(-1) during P2 and P3, respectively. The control group (n = 7) received intraportal saline infusion without NPY. There were no significant changes in hepatic blood flow in NPY vs. control. The lower infusion rate of NPY (P2) did not enhance net hepatic glucose uptake. During P3, the increment in net hepatic glucose uptake (compared with P1) was 4 +/- 1 and 10 +/- 2 micromol.kg(-1).min(-1) in control and NPY, respectively (P < 0.05). The increment in net hepatic fractional glucose extraction during P3 was 0.015 +/- 0.005 and 0.039 +/- 0.008 in control and NPY, respectively (P < 0.05). Net hepatic carbon retention was enhanced in NPY vs. control (22 +/- 2 vs. 14 +/- 2 micromol.kg(-1).min(-1), P < 0.05). There were no significant differences between groups in the total glucose infusion rate. Thus, intraportal NPY stimulates net hepatic glucose uptake without significantly altering whole body glucose disposal in dogs.  相似文献   

18.
Total parenteral nutrition (TPN) markedly augments net hepatic glucose uptake (NHGU) and hepatic glycolysis in the presence of mild hyperglycemia and hyperinsulinemia. This increase is impaired by an infection. We determined whether the adaptation to TPN alters the responsiveness of the liver to insulin and whether infection impairs that response. Chronically catheterized dogs received TPN for 5 days. On day 3 of TPN, either a nonlethal hypermetabolic infection was induced (INF, n = 5) or a sham surgery was performed (SHAM, n = 5). Forty-two hours after clot implantation, somatostatin and glucagon (34 +/- 3 vs. 84 +/- 11 pg/ml in artery, SHAM vs. INF) were infused, and a three-step (120 min each) isoglycemic (approximately 120 mg/dl) hyperinsulinemic (approximately 12, 25, and 50 microU/ml) clamp was performed to simulate levels seen in normal, infected, and exogenous insulin treatment states. In SHAM, NHGU (3.5 +/- 0.2 to 4.2 +/- 0.4 to 4.6 +/- 0.5 mg x kg(-1) x min(-1)) modestly increased. In INF, NHGU was consistently lower at each insulin step (1.1 +/- 0.5 to 2.6 +/- 0.5 to 2.8 +/- 0.7 mg x kg(-1) x min(-1)). Although NHGU increased from the first to the second step in INF, it did not increase further with the highest dose of insulin. Despite increases in NHGU, net hepatic lactate release did not increase in SHAM and fell in INF. In summary, in the TPN-adapted state, liver glucose uptake is unresponsive to increases in insulin above the basal level. Although the infection-induced increase in insulin sustains NHGU, further increments in insulin enhance neither NHGU nor glycolysis.  相似文献   

19.
We examined the extent to which priming the liver with a pulse of Humulin or the insulin analog hexyl-insulin monoconjugate 2 (HIM2) reduces postprandial hyperglycemia. Somatostatin (0.5 microg.kg(-1).min(-1)) was given with basal intraportal insulin and glucagon for 4.5 h into three groups of 42-h-fasted conscious dogs. From 0-5 min, group 1 (BI, n = 6) received saline, group 2 (HI, n = 6) received a Humulin pulse (10 mU.kg(-1).min(-1)), and group 3 (HIM2, n = 6) received a HIM2 pulse (10 mU.kg(-1).min(-1)). Duodenal glucose was infused (5.0 mg.kg(-1).min(-1)) from 15 to 270 min. Arterial insulin in BI remained basal (6 +/- 1 microU/ml) and peaked at 52 +/- 15 (HI) and 164 +/- 44 microU/ml (HIM2) and returned to baseline by 30 and 60 min, respectively. Arterial plasma glucose plateaued at 265 +/- 20, 214 +/- 15, and 193 +/- 14 mg/dl in BI, HI, and HIM2. Glucose absorption was similar in all groups. Significant net hepatic glucose uptake occurred at 85, 55, and 25 min in BI, HI, and HIM2, respectively. Nonhepatic glucose clearance at 270 min differed among groups (BI, HI, HIM2): 0.62 +/- 0.11, 0.76 +/- 0.26, and 1.61 +/- 0.29 ml.kg(-1).min(-1) (P < 0.05). A brief (5-min) insulin pulse improved postprandial glycemia, stimulating hepatic glucose uptake and prolonging enhancement of nonhepatic glucose clearance. HIM2 was more effective than Humulin, perhaps because its lowered clearance caused higher levels at the liver and periphery and its biological activity was not reduced proportionally to its decreased clearance.  相似文献   

20.
We examined the role of efferent neural signaling in regulation of net hepatic glucose uptake (NHGU) in two groups of conscious dogs with hollow perfusable coils around their vagus nerves, using tracer and arteriovenous difference techniques. Somatostatin, intraportal insulin and glucagon at fourfold basal and basal rates, and intraportal glucose at 3.8 mg.kg(-1).min(-1) were infused continuously. From 0 to 90 min [period 1 (P1)], the coils were perfused with a 37 degrees C solution. During period 2 [P2; 90-150 min in group 1 (n = 3); 90-180 min in group 2 (n = 6)], the coils were perfused with -15 degrees C solution to eliminate vagal signaling, and the coils were subsequently perfused with 37 degrees C solution during period 3 (P3). In addition, group 2 received an intraportal infusion of norepinephrine at 16 ng.kg(-1).min(-1) during P2. The effectiveness of vagal suppression was demonstrated by the increase in heart rate during P2 (111 +/- 17, 167 +/- 16, and 105 +/- 13 beats/min in group 1 and 71 +/- 6, 200 +/- 11, and 76 +/- 6 beats/min in group 2 during P1-P3, respectively) and by prolapse of the third eyelid during P2. Arterial plasma glucose, insulin, and glucagon concentrations; hepatic blood flow; and hepatic glucose load did not change significantly during P1-P3. NHGU during P1-P3 was 2.7 +/- 0.4, 4.1 +/- 0.6, and 4.0 +/- 1.2 mg.kg(-1).min(-1) in group 1 and 5.0 +/- 0.9, 5.6 +/- 0.7, and 6.1 +/- 0.9 mg.kg(-1).min(-1) in group 2 (not significant among periods). Interruption of vagal signaling with or without intraportal infusion of norepinephrine to augment sympathetic tone did not suppress NHGU during portal glucose delivery, suggesting the portal signal stimulates NHGU independently of vagal efferent flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号