首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We used immunohistochemistry to compare the expression of estrogen receptors (ERalpha and ERbeta) in term myometria of 32 pregnant women divided in two groups. Group I comprised of 16 women in labour and group II included 16 non-laboring gravidas. We observed cytoplasmatic localization of both ER isoforms and no differences in the ER expression between the two groups of patients. The abundance and specific localization of ERs in human term myometrium seems to be independent of its contractile activity which may point to the specific role of those receptors in late pregnancy myometrium.  相似文献   

3.
Because estrogen may be involved in maternal recognition of pregnancy and embryonic migration in llamas, expression of estrogen receptor subtypes alpha (ERalpha) and beta (ERbeta) was evaluated in corpus luteum (CL), endometrium, and uterus using relative RT-PCR. Tissues were recovered from sterile-mated (SM) and pregnant (PG) females during Days 7-11 and 7-13 (Day 0 = day of mating), respectively, and follicular phase and juvenile females. Luteal expression of ERalpha and beta was similar (P > 0.10) in SM and PG females and within Days 7-11, however, expression of ERalpha in ovarian tissue from follicular phase females was greater (P < 0.05) than Days 7 and 9 CL. Uterus expressed less ERalpha and beta compared to endometrium (P = 0.07 and P < 0.01, respectively). Expression of ERalpha was greater (P < 0.05) in Day 7 and follicular phase uteri than Days 9 and 11, Day 13 PG and juvenile uteri. Uterine ERbeta expression was greater (P = 0.09) in PG versus SM females and in mated compared to follicular phase females (P < 0.05). Endometrial expression of ERalpha and beta did not differ (P > 0.10) between SM and PG females or by day. The presence of luteal ER during this period may mean a role for estradiol in maternal recognition of pregnancy. Observed increases in uterine ER expression with no changes in endometrium suggest expression increased in myometrium and/or perimetrium. Upregulation of myometrial ERbeta in PG females may be involved in supporting uterine migration of the embryo.  相似文献   

4.
5.
The uterus is an important target organ for steroid hormones. The effects of these hormones are mediated via specific receptors. The aim of this study was to compare the expression, distribution, and regulation of estrogen receptor (ER) alpha and beta in the rat uterus in order to establish possible different biological roles for the two receptor forms. Ovariectomized rats were treated with either estradiol (E(2)), progesterone (P(4)), or combinations of these for 24 or 48 h. The mRNA levels were measured by solution hybridization. Distribution of the mRNAs and receptor proteins was detected by in situ hybridization and immunohistochemistry. The results showed that ERalpha is the dominating subtype in the rat uterus. E(2) seemed to increase the ERalpha mRNA level in the glandular and luminal epithelium, but it caused a decrease of the immunostaining intensity in the glandular epithelium. P(4) reduced ERalpha expression in luminal epithelium whereas no effect was seen in the glandular epithelium. E(2) or P(4) did not alter the expression of ERbeta, on either the mRNA or protein level. In conclusion, the distribution and regulation of ERalpha and ERbeta differ in the different compartments of the rat uterus. The complex uterine responses to E(2) and P(4) are directly or indirectly mediated by differential cell-specific expression of their receptors. The low expression in the uterus and the limited regulation by gonadal steroids in this study suggest that ERbeta probably plays a minor role in the regulation of uterine physiology.  相似文献   

6.
7.
8.
Clinical and experimental studies show a modulatory role of estrogens in the brain and suggest their beneficial action in mental and neurodegenerative diseases. The estrogen receptors ER and ERβ are present in the brain and their targeting could bring selectivity and reduced risk of cancer. Implication of ERs in the effect of estradiol on dopamine, opiate and glutamate neurotransmission is reviewed. The ER agonist, PPT, is shown as estradiol to modulate hippocampal NMDA receptors and AMPA receptors in cortex and striatum of ovariectomized rats whereas the ERβ agonist DPN is inactive. Striatal DPN activity suggests implication of ERβ in estradiol modulation of D2 receptors and transporters in ovariectomized rats and is supported by the lack of effect of estradiol in ERβ knockout (ERKOβ) mice. Both ER and ERβ agonists modulate striatal preproenkephalin (PPE) gene expression in ovariectomized rats. In male mice PPT protects against MPTP toxicity to striatal dopamine; this implicates Akt/GSK3β signaling and the apoptotic regulators Bcl2 and Bad. This suggests a role for ER in striatal dopamine neuroprotection. ERKO mice are more susceptible to MPTP toxicity and not protected by estradiol; differences in ERKOβ mice are subtler. These results suggest therapeutic potential for the brain of ER specific agonists.  相似文献   

9.
The association of estrogen receptors with non-nuclear/cytoplasmic compartments in target tissues has been documented. However, limited information is available on the distribution of estrogen receptor isoforms, specially with regard to the newly described beta isotype. The subcellular localization of estrogen receptor alpha and beta isoforms was investigated in rabbit uterus and ovary. Native alpha and beta subtypes were immunodetected using specific antibodies after subjecting the tissue to fractionation by differential centrifugation. The ovary expressed alpha and beta estrogen receptors in predominant association to cytosolic components. However, in the uterus, a substantial proportion of the total estrogen binding capacity and coexpression of the two isoforms was detected in mitochondria and microsomes. The mitochondrial-enriched subfraction represented an important source of 17beta-estradiol binding, where the steroid was recognized in a stereospecific and high affinity manner. The existence of mitochondrial and membrane estrogen binding sites correlated with the presence of estrogen receptor alpha but mainly with estrogen receptor beta proteins. Using macromolecular 17beta-estradiol derivatives in Ligand Blot studies, we could confirm that both alpha and beta isoforms were expressed as the major estrogen binding proteins in the uterus, while estrogen receptor alpha was clearly the dominant isoform in the ovary. Other low molecular weight estrogen receptor alpha-like proteins were found to represent an independent subpopulation of uterine binding sites, expressed to a lesser extent. This differential cellular partitioning of estrogen receptor alpha and beta forms may contribute to the known diversity of 17beta-estradiol effects in target organs. Both estrogen receptor alpha and beta expression levels and cellular localization patterns among tissues, add complexity to the whole estrogen signaling system, in which membrane and mitochondrial events could also be implicated.  相似文献   

10.
The interactions of human estrogen receptor subtypes ERalpha and ERbeta with DNA and a 210 amino acid residue fragment of the coactivator protein SRC-1 bearing three nuclear receptor interaction motifs were investigated quantitatively using fluorescence anisotropy in the presence of agonist and antagonist ligands. ERalpha and ERbeta were found to bind in a similar manner to DNA, and both salt and temperature affected the affinity and/or stoichiometry of these interactions. The agonist ligands estradiol, estrone and estriol did not modify the binding of ERalpha to the fluorescein-labeled target estrogen response element. However, in the case of ERbeta, these ligands led to the formation of some higher-order protein-DNA complexes and a small decrease in affinity. The partial agonist 4-hydroxytamoxifen had little effect on either ER subtype, whereas the pure antagonist ICI 182,780 led to the cooperative formation of protein-DNA complexes of higher order than dimer, as further demonstrated by competition experiments and gel mobility-shift assays. In addition to DNA binding, the interaction of both ER subtypes with the Alexa488-labeled SRC-1 coactivator fragment was investigated by fluorescence anisotropy. The agonist ligands estrone, estradiol, estriol, genistein and ethynyl estradiol exhibited distinct capacities for inducing the recruitment of SRC-1 that were not correlated with their affinity for the receptor. Moreover, estrone and genistein exhibited subtype specificity in that they induced SRC-1 recruitment to ERbeta with much higher efficiency than in the case of ERalpha. The differential coactivator recruitment capacities of the ER agonists and their receptor subtype coactivator recruitment specificity may be linked to the molecular structure of the agonists with respect to their interactions with a specific histidine residue located at the back of the ligand-binding pocket. Altogether, these quantitative in vitro studies of ER interactions reveal the complex energetic and stoichiometric consequences of changes in the chemical structures of these proteins and their ligands.  相似文献   

11.
Expression of estrogen receptor alpha and beta during mouse embryogenesis.   总被引:2,自引:0,他引:2  
In adult mammals numerous target tissues and organs for estrogens exist. Little is known about possible target organs during embryogenesis other than the reproductive tract and the gonads. This is the first report on the expression of estrogen receptor beta (ERbeta) in comparison with ERalpha mRNA during mouse embryogenesis. We found expression of estrogen receptor mRNA in the reproductive tract, but also in the atrial wall, brain, kidney, urethra, bladder neck, mammary gland primordium, midgut, cartilage primordia and perichondria.  相似文献   

12.
13.
14.
15.
To better understand the role of estradiol-17β in fetal ovarian development, presence and localization of cytochrome P450 aromatase (P450arom) and estrogen receptors alpha (ERα) and beta (ERβ) proteins were characterized in fetal ovaries of cattle using immunohistochemistry. Fetal cattle ovaries were collected from an abattoir and sorted into fetal age groups (days 110, 130, 150, 170, 190, 210, 230, 250+) based on crown-rump length. In addition to immunohistochemistry, morphological analysis of ovarian and follicular formation was made. Ovaries appeared lobular at day 110, but by the end of gestation (day 250+) ovaries were oval-shaped similar to those found in adult animals. Ovarian structures within different lobes appeared to be at different developmental stages. At day 110, oocytes and pre-granulosa cells were observed in ovigerous cords that were still open to the surface epithelium. Most ovigerous cords appeared to be closed to the surface epithelium on day 130, all closed by day 150 and were no longer present at day 210. Ovarian follicles were classified as follows: Type 1(primordial): single layer of flattened granulosa cells, Type 1a (transitory): single layer of mixed flattened and cuboidal granulosa cells, Type 2 (primary): at least one but less than two layers of cuboidal granulosa cells, Type 3 (small preantral): two to three layers of granulosa cells, Type 4 (large preantral): four to six layers of granulosa, and the theca layer is forming around the follicle, Type 5 (antral): contain greater than six layers of granulosa cells, several layers of theca cells and the antrum has formed. Type 1 follicles were observed in day 110 ovaries. Follicle Types 1a and 2 were first observed on day 130. Type 3 follicles were first observed on day 150 and Types 4 and 5 were first observed on day 170. P450arom protein was localized in granulosa cells of follicle Types 2–5 and cells of rete tubules throughout the experimental period. There was punctate expression within stroma and rete masses. There was ERα protein localization in pre-granulosa cells and germ cells of ovigerous cords and all surface epithelial cells. There was also localization in granulosa cells and oocytes of all follicle types and cells of rete tubules. There was punctate ERα protein expression in stroma and rete masses. ERβ protein was localized in pre-granulosa cells and germ cells of ovigerous cords. Expression was also localized to granulosa cells of all follicle types and cells of rete tubules. ERβ protein was punctate in oocytes of follicles, surface epithelial cells, stroma and rete masses. Thus, the fetal ovary of cattle has the steroidogenic enzyme (P450arom) to convert androgens to estradiol-17β, and estrogen receptors α and β to facilitate an estrogen response within the fetal ovary.  相似文献   

16.
Harris HA  Bapat AR  Gonder DS  Frail DE 《Steroids》2002,67(5):379-384
Estrogens and selective estrogen receptor modulators are used for the treatment and prevention of conditions resulting from menopause. Since estrogens exert their activity by binding to nuclear receptors, there is intense interest in developing new ligands for the two known estrogen receptor subtypes, ER-alpha and ER-beta. Characterization assays used to profile new estrogen receptor ligands often utilize receptors from different species, with the assumption that they behave identically. To test this belief, we have profiled a number of estrogens, other steroids, phytoestrogens and selective estrogen receptor modulators in a solid phase radioligand binding assay using recombinant protein for human, rat, and mouse ER-alpha and ER-beta. Certain compounds show species dependent binding preferences for ER-alpha or ER-beta, leading to differences in receptor subtype selectivity. The amino acids identified by crystallography as lining the ligand binding cavity are the same among the three species, suggesting that as yet unidentified amino acids contribute to the structure of the binding site. We conclude from this analysis that the ability of a compound to selectively bind to a particular ER subtype can be species dependent.  相似文献   

17.
Developmental regulation of baboon fetal ovarian maturation by estrogen   总被引:1,自引:0,他引:1  
Ovarian function in adult human and nonhuman primates is dependent on events that take place during fetal development, including the envelopment of oocytes by granulosa (i.e., folliculogenesis). However, our understanding of fetal ovarian folliculogenesis is incomplete. During baboon pregnancy, placental production and secretion of estradiol into the fetus increases with advancing gestation, and the fetal ovary expresses estrogen receptors alpha and beta in mesenchymal-epithelial cells (i.e., pregranulosa) as early as midgestation. Therefore, the current study determined whether estrogen regulates fetal ovarian follicular development. Pregnant baboons were untreated or treated with the aromatase inhibitor CGS 20267, or with CGS 20267 plus estradiol benzoate administered s.c. to the mother on Days 100-164 (term = Day 184). On Day 165, baboon fetuses were delivered by cesarean section and the number of total follicles and interfollicular nests consisting of oocytes and mesenchymal-epithelial cells in areas (0.33 mm(2)) of the outer and inner cortices of each fetal ovary were quantified using image analysis. Maternal and umbilical serum estradiol levels were decreased by >95% with CGS 20267. Treatment with CGS 20267 and estrogen restored maternal estradiol to normal and fetal estradiol to 30% of normal. Although fetal ovarian weight was unaltered, the mean number of follicles +/- SEM/0.33 mm(2) in the inner (59.0 +/- 1.7) and outer (95.3 +/- 2.4) cortical regions of fetal ovaries in untreated animals was 35%-50% lower (P < 0.01) in estrogen-depleted baboons (25.9 +/- 1.4, inner cortex; 62.5 +/- 2.7, outer cortex) and was restored to normal by treatment with CGS 20267 and estrogen. In contrast, the number of interfollicular nests was 2-fold greater (P < 0.01) in fetal ovaries of estrogen-suppressed animals, a change that was prevented by treatment with estrogen. In summary, fetal ovarian follicular development was significantly altered in baboons in which estrogen was depleted during the second half of gestation and restored to normal by estradiol. We propose that estrogen plays an integral role in regulating, and perhaps programming, primate fetal ovarian development.  相似文献   

18.
Although a clear role for estrogen receptor (ER) alpha has been established, the contribution of ERbeta in estrogen-dependent development, growth and functions of the myometrium is not understood. As a first step towards understanding the role of ERbeta, we have examined the expression of ERalpha and ERbeta in the human myometrium. With competitive RT-PCR assays, the level of ERbeta mRNA was 10-200 times lower than that of ERalpha mRNA in both premenopausal and postmenopausal myometrium. In premenopausal myometrium, the expression pattern of ERbeta mRNA during the menstrual cycle was similar to that of ERalpha mRNA, with highest levels in peri-ovulatory phase. In postmenopausal myometrium, ERbeta mRNA was significantly higher than it was in premenopausal myometrium, while the level of ERalpha mRNA was lower. The net result was a change in the ratio of ERbeta to ERalpha mRNA expression. The ratio changed from 0.6-1.5 in premenopausal to 2.5-7.6 in postmenopausal myometrium. In premenopausal women, the gonadotropin releasing hormone analogue, leuprorelin acetate, elicited a decrease in ERalpha and an increase in ERbeta mRNA expression to cause a postmenopausal receptor phenotype. Estradiol, on the other hand, reversed ERalpha and ERbeta mRNA expression and their ratio in postmenopausal myometrium to those of premenopausal myometrium. Immunohistochemical staining and Western blot analysis of ERalpha and ERbeta with semiquantitative analysis showed good agreement between mRNA and protein levels. The data indicate that coordinated expression of ERalpha and ERbeta might be necessary for normal estrogen action in myometrium. Furthermore, estrogen appears a dominant regulator of both receptors in the myometrium.  相似文献   

19.
20.
The estrogenic activity of ginseng has been the subject of conflicting reports. Cell proliferation, induction of estrogen-responsive genes, and isolated cases of adverse reactions such as postmenopausal vaginal bleeding and gynecomastia have been reported after ginseng treatment. Other studies report antiproliferative effects with no induction of estrogen-responsive genes. We developed estrogen receptor (ER) alpha and ER alpha competitive binding assays using recombinant receptors and [(3)H]-17 alpha-estradiol to detect phytoestrogens in extracts of Asian ginseng root (Panax ginseng C. A. Meyer) and American ginseng root (Panax quinquefolius L.). Root extracts contained substances that bound both receptor isoforms. These substances had a two to three times greater affinity for ER alpha. Significantly higher binding was found in methanol extracts than in hot water extracts. Subsequent analysis of the extracts revealed significant ER binding attributable to zearalenone, the estrogenic mycotoxin produced by several Fusarium species. The ER showed no binding affinity for Rb1 and Rg1, the major ginsenosides found in P. quinquefolius and P. ginseng, respectively. Thus, ginseng extraction methods, plant species tested, and mycotoxin contaminants may help to explain the disparate literature reports. The prevalence and health significance of fungal contamination in herbal products used for medicinal purposes should be further investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号