首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electron microscopy previously revealed that Gluconobacter oxydans differentiates by forming quantities of intracytoplasmic membranes at the end of exponential growth. It was also shown that the formation of these membranes appears concurrently with an increased rate of polyol oxidation. In the present study, exponential-phase cells devoid of intracytoplasmic membranes were harvested and the quantity of free lipid was determined. This quantity was compared with that extracted from cells harvested 4 and 16 h into the stationary phase that contained intracytoplasmic membranes. Cells harvested 4 and 16 h into the stationary phase contained 58 and 43% more free lipid per 100 mg of cell weight than found in undifferentiated exponential-phase cells. These same cultures were used to compare the quantity of lipid extracted per cell. This analysis revealed 89 and 142% more lipid per cell in 4 and 16 h stationary-phase cells. Further study demonstrated that cells increased in length and decreased in density with time after they entered the stationary phase. We estimated, however, that intracytoplasmic membrane development in G. oxydans is accompanied by a 57 to 62% increase in free-lipid that cannot be attributed to a change in cell size. These results suggest that the traditional expression of extracted lipid per milligram of cellular dry weight should not be used for comparative purposes during differentiation in gram-negative bacteria, unless it is first established that both cell size and cell density remain constant throughout differentiation.  相似文献   

2.
Gluconobacter oxydans differentiates by forming quantities of intracytoplasmic membranes at the end of exponential growth, and this formation occurs concurrently with a 60% increase in cellular lipid. The present study was initiated to determine whether this newly synthesized lipid differed from that extracted before intracytoplasmic membrane synthesis. Undifferentiated exponential-phase cells were found to contain 30% phosphatidylcholine, 27.1% caridolipin, 25% phosphatidylethanolamine, 12.5% phosphatidylglycerol, 0.4% phosphatidic acid, 0.2% phosphatidylserine, and four additional unidentified lipids totaling less than 5%. The only change detected after formation of intracytoplasmic membranes was a slight decrease in phosphatidylethanolamine and a corresponding increase in phosphatidylcholine. An examination of lipid hydrolysates revealed 11 different fatty acids in the lipids from each cell type. Hexadecanoic acid and monounsaturated octadecenoic accounted for more than 75% of the total fatty acids for both cell types. Proportional changes were noted in all fatty acids except octadecenoate. Anteiso-pentadecanoate comprised less than 1% of the fatty acids from undifferentiated cells but more than 13% of the total fatty acids from cells containing intracytoplasmic membranes. These results suggest that anteiso-pentadecanoate formation closely parallels the formation of intracytoplasmic membranes. Increased concentrations of this fatty acid may contribute to the fluidity necessary for plasma membrane convolution during intracytoplasmic membrane development.  相似文献   

3.
Cytological differences were observed between stationary- and exponentialphase cells of Acetobacter suboxydans grown in a defined medium. Unstained cells observed with the light microscope just after entering the stationary phase differed from exponentially growing cells in that the former exhibited localized increases in density, particularly in the polar regions. Electron microscopy of thin sections revealed that early stationary-phase cells possessed predominantly polar complexes of intracytoplasmic membranes accompanied by polar increases in ribosomal material. When cultures were allowed to continue far into the stationary phase, cells contained extensive aggregations of membrane-like material as the predominant fine-structural feature. In contrast, thin sections of exponentially growing cells exhibited only occasional indications of intracytoplasmic membranes. Intracytoplasmic membranes heretofore have been observed only rarely in the heterotrophic Pseudomonadales.  相似文献   

4.
The development of intracytoplasmic membranes of Methanomonas margaritae cells grown under different culture conditions was studied. Growth on methane was strongly accelerated by the addition of copper ions. Acceleration by copper, however, was not observed in the case of growth on methanol. Cells grown on methane with copper possessed intracytoplasmic membranes along the cell periphery. When the organism was grown in a medium lacking copper, intracytoplasmic membranes appeared as large vesicles surrounded by a unit membrane at the periphery of the cell. The vesicles originated from paired membranes due to the absence of copper in the medium. Cells grown on methanol with or without copper possessed a number of vesicles of different sizes arranged in a chain along the cell periphery. The possible relationship between membrane arrangement and methane oxidation is discussed.  相似文献   

5.
Escherichia coli O111a is a thermosensitive strain which, when grown at 40 C, accumulates large quantities of intracellular membranes. The ultrastructure of these membranes in cells which have been chemically fixed, embedded, and examined as thin sections has been compared with that of membranes in cells negatively stained or freeze-fractured. Results indicate that the extra membranes are present in the three types of preparations examined and, therefore, clearly are not artifacts of chemical fixation. Negative staining has proved also to be a valuable tool as a rapid means of monitoring cells for the accumulation of large amounts of extra membranes. Also, examination of thin sections has shown that distinct continuities between the plasma membrane and the extra membranes exist. In general, membrane surfaces in freeze-fractured cells containing extra membranes appear smooth and lack the particles associated with the plasma membranes of many cells.  相似文献   

6.
We have used thin section and freeze-fracture electron microscopy to study membrane changes occurring during exocytosis in rat peritoneal mast cells. By labeling degranulating mast cells with ferritin-conjugated lectins and anti-immunoglobulin antibodies, we demonstrate that these ligands do not bind to areas of plasma membrane or granule membrane which have fused with, or are interacting with, granule membrane. Moreover, intramembrane particles are also largely absent from both protoplasmic and external fracture faces of plasma and granule membranes in regions where these membranes appear to be interacting. Both the externally applied ligands and intramembrane particles are sometimes concentrated at the edges of fusion sites. The results indicate that membrane proteins are displaced laterally into adjacent membrane regions before the fusion process and that fusion occurs between protein-depleted lipid bilayers. The finding of protein-depleted blebs in regions of plasma and granule membrane interaction raises the interesting possibility that blebbing may be a process for exposing the granule contents to the extracellular space and for the elimination of excess lipid while conserving membrane proteins.  相似文献   

7.
Three rat hybridoma lines that produced monoclonal antibodies reacting with the peribacteroid membrane from Pisum sativum were isolated, and these all appeared to recognize the same antigenic structure. Using one of these monoclonal antibodies, AFRC MAC 64, electron microscopy of immunogold-stained thin sections of nodule tissue revealed that the antigen, present in the peribacteroid membrane, was also found in the plant plasma membranes and in the Golgi bodies, but not in the endoplasmic reticulum. When peribacteroid membrane proteins were separated by SDS-polyacrylamide gel electrophoresis and transferred to nitrocellulose by electro-blotting, it was found that MAC 64 bound to a series of protease-sensitive bands that migrated in the mol. wt. range 50-85 K. The epitope was sensitive to periodate oxidation and its structure may therefore involve the carbohydrate component of a membrane glycoprotein. We suggest that this structure originates in the Golgi apparatus and is subsequently transferred to the peribacteroid membranes and plasma membranes. The monoclonal antibody also reacted with peribacteroid membranes from nodules of Vicia and lupin, and with plasma membranes and Golgi membranes from uninfected plant cells, including root tip cells from onion (Allium cepa), indicating that the antigen is highly conserved in the plasma membranes of plant cells.  相似文献   

8.
Studies of intracytoplasmic membrane biogenesis utilizing synchronized cultures of Rhodobacter sphaeroides have revealed that most intracytoplasmic membrane proteins accumulate continuously throughout the cell cycle while new phospholipid appears discontinuously within the intracytoplasmic membrane. The resulting changes in the structure of the membrane lipids was proposed to influence the activities of enzymes associated with the intracytoplasmic membranes (Wraight, C.A., Leuking, D.R., Fraley, R.T. and Kaplan, S. (1978) J. Biol. Chem. 253, 465-471). We have extended the study of intracytoplasmic membrane biogenesis in R. sphaeroides to include the membrane adenosine triphosphatase. The membrane bound Mg2+-dependent, oligomycin-sensitive adenosine triphosphatase activity was measured throughout the cell cycle for steady-state synchronized cells of R. sphaeroides and found to accumulate discontinuously. Following treatment with an uncoupling reagent (2,4-dinitrophenol) the intracytoplasmic membrane associated adenosine triphosphatase activity was stimulated uniformly in membranes isolated at different stages of the cell cycle. The adenosine triphosphatase was also measured by quantitative immunoblots utilizing specific antibody to compare the enzyme activity and enzyme protein mass. Immunologic measurement of the adenosine triphosphatase in isolated membranes indicated a constant ratio of enzyme to chromatophore protein exists during the cell cycle in contrast to the discontinuous accumulation of adenosine triphosphatase activity. These results are discussed in light of the cell-cycle specific synthesis of the intracytoplasmic membrane.  相似文献   

9.
Most methanotrophic bacteria maintain intracytoplasmic membranes which house the methane-oxidizing enzyme, particulate methane monooxygenase. Previous studies have primarily used transmission electron microscopy or cryo-electron microscopy to look at the structure of these membranes or lipid extraction methods to determine the per cent of cell dry weight composed of lipids. We show an alternative approach using lipophilic membrane probes and other fluorescent dyes to assess the extent of intracytoplasmic membrane formation in living cells. This fluorescence method is sensitive enough to show not only the characteristic shift in intracytoplasmic membrane formation that is present when methanotrophs are grown with or without copper, but also differences in intracytoplasmic membrane levels at intermediate copper concentrations. This technique can also be employed to monitor dynamic intracytoplasmic membrane changes in the same cell in real time under changing growth conditions. We anticipate that this approach will be of use to researchers wishing to visualize intracytoplasmic membranes who may not have access to electron microscopes. It will also have the capability to relate membrane changes in individual living cells to other measurements by fluorescence labelling or other single-cell analysis methods.  相似文献   

10.
The results of several lines of investigation indicate that membrane growth in Bacillus subtilis does not occur at one or a small number of discrete zones. No indications of large regions of membrane conservation were observed. Kinetic labeling experiments of mesosomal and plasma membrane lipids indicate that the mesosomal lipids are not precursors of the plasma membrane lipids. Density shift experiments, in which the changes in buoyant density of membranes were studied after growth in deuterated media, showed no indication of large zones of conservation during membrane growth. Radioautography of thin sections of cells pulse labeled with tritiated glycerol showed no indication of specific zones of lipid synthesis. The consequences of these results for models of cell growth and division are discussed.  相似文献   

11.
The photosynthetic bacterium,Rhodopseudomonas sphaeroides, can be grown phototrophically (light, anaerobiosis), of chemotrophically (dark, aerobiosis). In the first case, it contains intracytoplasmic membranes with photosynthetic pigments. When shifted from phototrophy to chemotrophy these membranes disappear in an unknown fashion. In the present experiment, samples were taken for electron microscopy, cell density and bacteriochlorophyll determinations after shift from phototrophy to chemotrophy. The density of intracytoplasmic vesicles was measured on micrographs. During the first 2h growth is very slow and the ultrastructure remains unaltered. As growth resumes, the vesicles disappear at a rate which implies that they are not incorportated into the cytoplasmic membrane, nor actively digested, but remain intact and become increasingly diluted in the cytoplasm as the culture grows. The size of the vesicles was estimated to about 500 Å. The number of vesicles in phototrophically grown cells was calculated to about 575 per cell, and after 6h chemotrophic growth to about 100. The areas of the cytoplasmic and intracytoplasmic membranes are roughly calculated.Abbreviations Bchl bacteriochlorophyll - CM cytoplasmic membranes - ICM intracytoplasmic membranes  相似文献   

12.
Regions of plasma membrane of dictyostelium discoideum amoebae that contain concanavalin A (Con A)-receptor complexes are more resistant to disruption by Triton X-100. This resistance makes possible the isolation of Con A-associated membrane fragments in sufficient quantity and homogeneity to permit the direct biochemical and ultrastructural study of receptor-cytoskeletal interactions across the cell membrane. After specific binding of Con A to the cell surface, a large amount of the cell’s actin and myosin copurifies with the plasma membrane fragments. Myosin is more loosely bound to the isolated membranes that actin and is efficiently removed by treating membranes with ATP and low ionic strength. If cells are not lysed immediately after lectin binding, all of the Con A that is bound to the cell surface is swept into a cap in a process requiring metabolic energy. When cells are lysed at different stages of cap formation, the amount of actin and myosin that copurifies with the isolated membranes remains the same. Thick and thin filaments that are attached to the protoplasmic surface of the isolated membranes underlie lectin-receptor complexes during all stages of cap formation. Once the cap is complete, the amount of actin and myosin that tightly bound to the plasma membrane is concentrated into the cap along with the Con A-receptor complexes. These results suggest that the ATP-dependent sliding of membrane-associated actin and myosin filaments is responsible for the accumulation of Con A-receptor complexes into a cap on the cell surface.  相似文献   

13.
扁豆成熟胚囊的超微结构   总被引:7,自引:1,他引:7  
本文对扁豆(Dolichos lablab)成熟胚囊的超微结构进行了研究,在成熟胚囊中,卵细胞和助细胞仅在珠孔端1/3有细胞壁,靠近合点端,卵细胞一助细胞,卵细胞-中央细胞,助细胞-中央细胞之间没有细胞壁存在,相邻细胞的质膜靠在一起,在卵细胞和中央细胞的质膜间,有些地方存在中等电子密度的物质,卵细胞的细胞质中含有很多的线粒体和质体,内质网和高尔基体较少,助细胞的珠孔端有一复杂的丝状器,靠近珠孔端的细胞质中有很多管状的内质网,表明助细胞可能具有分泌功能,在助细胞的合点端,含有丰富的粗糙内质网,助细胞和卵细胞的质膜之间有很多囊泡状的结构,中央细胞内含有丰富的线粒体,高尔基体和内质网,中央细胞的壁向内形成突起,在周缘细胞质中含有丰富的脂滴。  相似文献   

14.
Cells of Chondrococcus columnaris were sectioned and examined in the electron microscope after fixation by two different methods. After fixation with osmium tetroxide alone, the surface layers of the cells consisted of a plasma membrane, a dense layer (mucopeptide layer), and an outer unit membrane. The outer membrane appeared distorted and was widely separated from the rest of the cell. The intracytoplasmic membranes (mesosomes) appeared as convoluted tubules packaged up within the cytoplasm by a unit membrane. The unit membrane surrounding the tubules was continuous with the plasma membrane. When the cells were fixed with glutaraldehyde prior to fixation with osmium tetroxide, the outer membrane was not distorted and separated from the rest of the cell, structural elements (peripheral fibrils) were seen situated between the outer membrane and dense layer, and the mesosomes appeared as highly organized structures produced by the invagination and proliferation of the plasma membrane. The mesosomes were made up of a series of compound membranes bounded by unit membranes. The compound membranes were formed by the union of two unit membranes along their cytoplasmic surfaces.  相似文献   

15.
We investigated the effects of the interaction between flavanols and related procyanidins (dimer to hexamer) with both cell and synthetic membranes, on bilayer fluidity and susceptibility to oxidation. Cocoa derived dimers (0.05 to 1 microg/ml) protected Jurkat T cells from AMVN-mediated oxidation and increased plasma membrane fluidity. These effects occurred in a concentration- and chain length-dependent manner. In liposomes, procyanidins prevented the Fe2+ -induced permeabilization of the membrane. Together, these results support the hypothesis that procyanidins could interact with the polar headgroup of lipids, increasing membrane fluidity and also, preventing the access of molecules that could affect membrane integrity.  相似文献   

16.
Summary In nongrowing secretory cells of plants, large quantities of membrane are transferred from the Golgi apparatus to the plasma membrane without a corresponding increase in cell surface area or accumulation of internal membranes. Movement and/or redistribution of membrane occurs also in trans Golgi apparatus cisternae which disappear after being sloughed from the dictyosome, and in secretory vesicles which lose much of their membrane in transit to the cell surface. These processes have been visualized in freeze-substituted corn rootcap cells and a structural basis for membrane loss during trafficking is seen. It involves three forms of coated membranes associated with the trans parts of the Golgi apparatus, with cisternae and secretory vesicles, and with plasma membranes. The coated regions of the plasma membrane were predominantly located at sites of recent fusion of secretory vesicles suggesting a vesicular mechanism of membrane removal. The two other forms of coated vesicles were associated with the trans cisternae, with secretory vesicles, and with a post Golgi apparatus tubular/vesicular network not unlike the TGN of animal cells. However, the trans Golgi network in plants, unlike that in animals, appears to derive directly from the trans cisternae and then vesiculate. The magnitude of the coated membrane-mediated contribution of the endocytic pathway to the formation of the TGN in rootcap cells is unknown. Continued formation of new Golgi apparatus cisternae would be required to maintain the relatively constant form of the Golgi apparatus and TGN, as is observed during periods of active secretion.  相似文献   

17.
Electron microscope autoradiography was used to detect the incorporation of 3H-fucose into glycoproteins of toad bladder epithelial cells. After short exposure to 3H-fucose, without a chase period, the Golgi regions of all four cell types were labeled. When exposure to 3H-fucose was followed by chase periods (1,3,4 and 6 hours) the apical and basal-lateral plasma membranes of granular cells were heavily labeled. Apical granules and the cytoplasm of granular cells were also labeled, suggesting that they both provide the means for glycoprotein transfer from the Golgi to the plasma membranes. The heaviest labeling in mitochondria-rich cells, after the 1- and 3-hour chase periods, was over the apical tubules, although the apical and basal-lateral plasma membranes were also heavily labeled. After 4- and 6-hour chases, the labeling of the apical tubules decreased, whereas the labeling of the plasma membranes increased, strongly suggesting that in these cells apical tubules play a major role in the transfer of glycoproteins from the Golgi to the plasma membrane. Our results demonstrate that the route of 3H-fucose incorporation into plasma membrane glycoproteins and the rate of glycoprotein synthesis and breakdown are not the same in the two major epithelial cell types in toad bladder.  相似文献   

18.
Cultured chick fibroblasts supplemented with stearic acid in the absence of serum at 37 degrees C degenerate and die in contrast to cells grown at 41 degrees C which appear normal in comparison with controls. These degenerative effects at 37 degrees C are alleviated by addition to stearate-containing media of fatty acids known to fluidize bilayers. These observations suggest that cell degeneration at 37 degrees C may involve alterations in the physical state of the membrane. Fatty acid analysis of plasma membrane obtained from stearate-supplemented cells clearly demonstrates the enrichment of this fatty acid species into bilayer phospholipids. Moreover, the extent of enrichment is similar in cells grown at both 37 and 41 degrees C. Stearate enrichment at either temperature does not appear to alter significantly membrane cholesterol or polar lipid content. Fluorescence anisotropy measurements for perylene and diphenylhexatriene incorporated into stearate-enriched membranes reveals changes suggestive of decreased bilayer fluidity. Moreover, analysis of temperature dependence of probe anisotropy indicates that a similarity in bilayer fluidity exists between stearate-enriched membranes at 41 degrees C and control membranes at 37 degrees C. Calorimetric data from liposomes prepared from polar lipids isolated from these membranes show similar melting profiles, consistent with the above lipid and fluorescence analyses. Arrhenius plot of stearate-enriched membrane glucose transporter function reveals breaks which coincide with the main endotherm of the pure phospholipid phase transition, indicating the sensitivity of the transporter to this transition which is undetectable in these native bilayers. These data suggest the existence of regions of bilayer lipid microheterogeneity which affect integral enzyme function, cell homeostasis and viability.  相似文献   

19.
Electron microscopy revealed multi-layered membranes within the cytoplasmic inclusion (accumulation of nucleocapsids) produced by rabies virus. When infected BHK cells were maintained at 31 C, an enhancement in production of these membranes occurred in approximately 60% of inclusion-containing cells. Multi-layered membranes were composed of an alternate array of two different layers; an electron-dense, thin membrane and a less dense layer which was thicker. SDS-polyacrylamide gel electrophoresis and immune electron microscopy of isolated multi-layered membrane preparations demonstrated that the structures contained viral G and M2 polypeptides. Our observations suggest that these membranous structures are not a degenerative product of rabies virus infection but rather are related to the replication of viral envelope constituents, although they represent themselves to be an abortive form of viral assembly.  相似文献   

20.
Chains of vesicles are prominent near the plasma membranes of both the neurons and satellite cells of osmium-fixed toad spinal ganglia. In permanganate-fixed specimens, however, such vesicles are absent, and in their place are continuous invaginations of the plasma membranes of these cells. The discrepancy suggests that the serried vesicles seen in osmium-fixed preparations arise through disintegration of plasma membrane invaginations, and do not represent active pinocytosis, as has been suggested previously. A second difference between ganglia fixed by these two methods is that rows of small, disconnected cytoplasmic globules occur in the sheaths of permanganate-fixed ganglia, but not in osmium-fixed samples. It is suggested that these globules arise from the breakdown of thin sheets of satellite cell cytoplasm which occur as continuous lamellae in osmium-fixed specimens. Possible mechanisms of these membrane reorganizations, and the relevance of these findings to other tissues, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号