首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The GTPase-activating protein RasGAP functions as both a negative regulator and an effector of Ras proteins. In tumor cells, RasGAP is no longer able to deactivate oncogenic Ras proteins, and its effector function becomes predominant. As RasGAP itself has no obvious enzymatic function that may explain this effector function, we looked for downstream RasGAP effectors that could fulfill this role. We looked for the existence of RasGAP Src homology 3 (SH3) domain partners as this domain is involved in the regulation of cell proliferation and has an anti-apoptotic effect. We report here the identification of a new RasGAP SH3 domain-binding protein, named Aurora. This Drosophila melanogaster Ser/Thr kinase has three human orthologs called Aurora/Ipl1-related kinase or HsAIRK-1, -2, and -3. Coimmunoprecipitation experiments in COS cells confirmed that HsAIRK-1 and HsAIRK-2 both interact with RasGAP. RasGAP pull-down experiments showed that it interacts with HsAIRK-1 in G(2)/M HeLa cells. We also demonstrated that RasGAP binds to the kinase domain of Aurora and that this interaction inhibits the kinase activity of HsAIRK-1 and HsAIRK-2. Finally we showed that RasGAP forms a ternary complex with HsAIRK and survivin. This complex may be involved in the regulation of the balance between cell division and apoptosis.  相似文献   

2.
Cbl is an adaptor protein and ubiquitin ligase that binds and is phosphorylated by the nonreceptor tyrosine kinase Src. We previously showed that the primary interaction between Src and Cbl is mediated by the Src homology domain 3 (SH3) of Src binding to proline-rich sequences of Cbl. The peptide Cbl RDLPPPPPPDRP(540-551), which corresponds to residues 540-551 of Cbl, inhibited the binding of a GST-Src SH3 fusion protein to Cbl, whereas RDLAPPAPPPDR(540-551) did not, suggesting that Src binds to this site on Cbl in a class I orientation. Mutating prolines 543-548 reduced Src binding to the Cbl 479-636 fragment significantly more than mutating the prolines in the PPVPPR(494-499) motif, which was previously reported to bind Src SH3. Mutating Cbl prolines 543-548 to alanines substantially reduced Src binding to Cbl, Src-induced phosphorylation of Cbl, and the inhibition of Src kinase activity by Cbl. Expressing the mutated Cbl in osteoclasts induced a moderate reduction in bone-resorbing activity and increased amounts of Src protein. In contrast, disabling the tyrosine kinase-binding domain of full-length Cbl by mutating glycine 306 to glutamic acid, and thereby preventing the previously described binding of the tyrosine kinase-binding domain to the Src phosphotyrosine 416, had no effect on Cbl phosphorylation, the inhibition of Src activity by full-length Cbl, or bone resorption. These data indicate that the Cbl RDLPPPP(540-546) sequence is a functionally important binding site for Src.  相似文献   

3.
The yeast protein Bem1p, which bears two src homology region 3 (SH3) domains, is involved in cell polarization. A Rho-type GTPase, Rho3p, is involved in the maintenance of cell polarity for bud formation, and the rho3 defect is suppressed by a high dose of BEM1. Mutational analysis revealed that the second SH3 domain from the NH2 terminus (SH3-2) of Bem1p is important for the functions of Bem1p in bud formation and in the suppression of the rho3 defect. Boi2p, which bound to SH3-2 Bem1p, was identified using the two-hybrid system. Boi2p has a proline-rich sequence that is critical for displaying the Boi2p-Bem1p two-hybrid interaction, an SH3 domain in its NH2-terminal half, and a pleckstrin homology domain in its COOH-terminal half. A BOI2 homologue, BOI1, was identified as a gene whose overexpression inhibited cell growth. Cells overexpressing either BOI1 or BOI2 were arrested as large, round, and unbudded cells, indicating that the Boi proteins affect cell polarization. Genetic analysis revealed that BOI1 and BOI2 are functionally redundant and important for cell growth. delta boi1 delta boi2 cells became large round cells or lysed with buds, displaying defects in bud formation and in the maintenance of cell polarity. Analysis using several truncated versions of BOI2 revealed that the COOH-terminal half, which contains the pleckstrin homology domain is essential for the function of Boi2p in cell growth, while the NH2- terminal half is not, and the NH2-terminal half might be required for modulating the function of Bem1p. Overproduction of either Rho3p or the Rho3p-related GTPase Rho4p suppressed the boi defect. These results demonstrate that Rho3p GTPases and Boi proteins function in the maintenance of cell polarity for bud formation.  相似文献   

4.
The nonreceptor tyrosine kinase c-Abl is tightly regulated in vivo, but the mechanisms that normally repress its activity are not well understood. We find that a construct encoding the first two Src homology 3 (SH3) domains of the Src homology 2/SH3 adaptor protein Nck can activate c-Abl in human 293T cells. A myristoylated Nck SH3 domain construct, which is expected to localize to membranes, potently activated Abl when expressed at low levels. An unmyristoylated Nck SH3 domain construct, which localizes to the cytosol and nucleus, also activated Abl but only at high levels of expression. Activation by both myristoylated and unmyristoylated Nck constructs required the C terminus of Abl; a C-terminally truncated form of Abl was not activated, although this construct could still be activated by deletion of its SH3 domain. Activation did not require the major binding sites in the Abl C terminus for Nck SH3 domains, however, suggesting that the mechanism of activation does not require direct binding to the C terminus. Activation of c-Abl by Nck SH3 domains provides a robust experimental system for analyzing the mechanisms that normally repress Abl activity and how that normal regulation can be perturbed.  相似文献   

5.
Young meristematic plant cells contain a large number of small vacuoles, while the largest part of the vacuome in mature cells is composed by a large central vacuole, occupying 80% to 90% of the cell volume. Thus far, only a limited number of vacuolar membrane proteins have been identified and characterized. The proteomic approach is a powerful tool to identify new vacuolar membrane proteins. To analyze vacuoles from growing tissues we isolated vacuoles from cauliflower (Brassica oleracea) buds, which are constituted by a large amount of small cells but also contain cells in expansion as well as fully expanded cells. Here we show that using purified cauliflower vacuoles and different extraction procedures such as saline, NaOH, acetone, and chloroform/methanol and analyzing the data against the Arabidopsis (Arabidopsis thaliana) database 102 cauliflower integral proteins and 214 peripheral proteins could be identified. The vacuolar pyrophosphatase was the most prominent protein. From the 102 identified proteins 45 proteins were already described. Nine of these, corresponding to 46% of peptides detected, are known vacuolar proteins. We identified 57 proteins (55.9%) containing at least one membrane spanning domain with unknown subcellular localization. A comparison of the newly identified proteins with expression profiles from in silico data revealed that most of them are highly expressed in young, developing tissues. To verify whether the newly identified proteins were indeed localized in the vacuole we constructed and expressed green fluorescence protein fusion proteins for five putative vacuolar membrane proteins exhibiting three to 11 transmembrane domains. Four of them, a putative organic cation transporter, a nodulin N21 family protein, a membrane protein of unknown function, and a senescence related membrane protein were localized in the vacuolar membrane, while a white-brown ATP-binding cassette transporter homolog was shown to reside in the plasma membrane. These results demonstrate that proteomic analysis of highly purified vacuoles from specific tissues allows the identification of new vacuolar proteins and provides an additional view of tonoplastic proteins.  相似文献   

6.
The adaptor protein Grb2 links cell-surface receptors, such as Her2, to the multisite docking proteins Gab1 and 2, leading to cell growth and proliferation in breast and other cancers. Gab2 interacts with the C-terminal SH3 domain (SH3C) of Grb2 through atypical RxxK motifs within polyproline II or 310 helices. A virtual screen was conducted for putative binders of the Grb2 SH3C domain. Of the top hits, 34 were validated experimentally by surface plasmon resonance spectroscopy and isothermal titration calorimetry. A subset of these molecules was found to inhibit the Grb2–Gab2 interaction in a competition assay, with moderate to low affinities (5: IC50 320 μM). The most promising binders were based on a dihydro-s-triazine scaffold, and are the first small molecules reported to target the Grb2 SH3C protein-interaction surface.  相似文献   

7.
The regulatory fragment of Src kinases, comprising Src homology (SH) 3 and SH2 domains, is responsible for controlled repression of kinase activity. We have used a multidisciplinary approach involving crystallography, NMR, and isothermal titration calorimetry to study the regulatory fragment of Fyn (FynSH32) and its interaction with a physiological activator: a fragment of focal adhesion kinase that contains both phosphotyrosine and polyproline motifs. Although flexible, the preferred disposition of SH3 and SH2 domains in FynSH32 resembles the inactive forms of Hck and Src, differing significantly from LckSH32. This difference, which results from variation in the SH3-SH2 linker sequences, will affect the potential of the regulatory fragments to repress kinase activity. This surprising result implies that the mechanism of repression of Src family members may vary, explaining functional distinctions between Fyn and Lck. The interaction between FynSH32 and focal adhesion kinase is restricted to the canonical SH3 and SH2 binding sites and does not affect the dynamic independence of the two domains. Consequently, the interaction shows no enhancement by an avidity effect. Such an interaction may have evolved to gain specificity through an extended recognition site while maintaining rapid dissociation after signaling.  相似文献   

8.
The essential enzyme thymidylate synthase-dihydrofolate reductase (TS-DHFR) is a validated drug target for many pathogens, but has been elusive in Cryptosporidium hominis, as active site inhibitors of the enzymes from related parasitic protozoa show decreased potency and lack of species specificity over the human enzymes. As a rational approach to discover novel inhibitors, we conducted a virtual screen of a non-active site pocket in the DHFR linker region. From this screen, we have identified and characterized a noncompetitive inhibitor, flavin mononucleotide (FMN), with micromolar potency that is selective for ChTS-DHFR versus the human enzymes. These results describe a novel allosteric pocket amenable to inhibitor targeting, and a lead compound with which to move towards potent, selective inhibitors of ChTS-DHFR.  相似文献   

9.
Mixed lineage kinase 3 (MLK3) is a serine/threonine protein kinase that functions as a mitogen-activated protein kinase kinase kinase to activate the c-Jun NH(2)-terminal kinase pathway. MLK3 has also been implicated as an I kappa B kinase kinase in the activation of NF-kappa B. Amino-terminal to its catalytic domain, MLK3 contains a Src homology 3 (SH3) domain. SH3 domains harbor three highly conserved aromatic amino acids that are important for ligand binding. In this study, we mutated one of these corresponding residues within MLK3 to deliberately disrupt the function of its SH3 domain. This SH3-defective mutant of MLK3 exhibited increased catalytic activity compared with wild type MLK3 suggesting that the SH3 domain negatively regulates MLK3 activity. We report herein that the SH3 domain of MLK3 interacts with full-length MLK3, and we have mapped the site of interaction to a region between the zipper and the Cdc42/Rac interactive binding motif. Interestingly, the SH3-binding region contains not a proline-rich sequence but, rather, a single proline residue. Mutation of this sole proline abrogates SH3 binding and increases MLK3 catalytic activity. Taken together, these data demonstrate that MLK3 is autoinhibited through its SH3 domain. The critical proline residue in the SH3-binding site of MLK3 is conserved in the closely related family members, MLK1 and MLK2, suggesting a common autoinhibitory mechanism among these kinases. Our study has revealed the first example of SH3 domain-mediated autoinhibition of a serine/threonine kinase and provides insight into the regulation of the mixed lineage family of protein kinases.  相似文献   

10.
The serine-threonine kinase Akt regulates mesangial cell apoptosis, proliferation, and hypertrophy. To define Akt signaling pathways in mesangial cells, we performed a functional proteomic screen for rat mesangial cell proteins phosphorylated by Akt. A group of chaperone proteins, heat shock protein (Hsp) 70, Hsp90alpha, Hsp90beta, Glucose-regulated protein (Grp) Grp78, Grp94, and protein disulfide isomerase (PDI) were identified as potential Akt substrates by two techniques: (a) in vitro phosphorylation of mesangial cell lysate by recombinant active Akt followed by protein separation by SDS-PAGE or 2-DE and phosphoprotein identification by peptide mass fingerprinting using MALDI-MS, or (b) immunoblot analysis of proteins from PDGF-stimulated mesangial cells using an anti-Akt phospho-motif antibody. In vitro kinase reactions using recombinant proteins confirmed that Akt phosphorylates Hsp70, Hsp90alpha and beta, Grp94, and PDI. Immunoprecipitation of Akt from mesangial cell lysate coprecipitated Grp78 and Hsp70. PDGF stimulation of mesangial cells caused an acidic shift in the isoelectric point of Hsp70, Hsp90, and PDI that was dependent on PI-3K activity for Hsp70 and Hsp90. The data suggest that Akt-mediated phosphorylation of stress-induced chaperones represents a mechanism for regulation of chaperone function during mesangial cell responses to physiologic and pathologic stimuli.  相似文献   

11.
Specificity of the binding of synapsin I to Src homology 3 domains   总被引:3,自引:0,他引:3  
Synapsins are synaptic vesicle-associated phosphoproteins involved in synapse formation and regulation of neurotransmitter release. Recently, synapsin I has been found to bind the Src homology 3 (SH3) domains of Grb2 and c-Src. In this work we have analyzed the interactions between synapsins and an array of SH3 domains belonging to proteins involved in signal transduction, cytoskeleton assembly, or endocytosis. The binding of synapsin I was specific for a subset of SH3 domains. The highest binding was observed with SH3 domains of c-Src, phospholipase C-gamma, p85 subunit of phosphatidylinositol 3-kinase, full-length and NH(2)-terminal Grb2, whereas binding was moderate with the SH3 domains of amphiphysins I/II, Crk, alpha-spectrin, and NADPH oxidase factor p47(phox) and negligible with the SH3 domains of p21(ras) GTPase-activating protein and COOH-terminal Grb2. Distinct sites in the proline-rich COOH-terminal region of synapsin I were found to be involved in binding to the various SH3 domains. Synapsin II also interacted with SH3 domains with a partly distinct binding pattern. Phosphorylation of synapsin I in the COOH-terminal region by Ca(2+)/calmodulin-dependent protein kinase II or mitogen-activated protein kinase modulated the binding to the SH3 domains of amphiphysins I/II, Crk, and alpha-spectrin without affecting the high affinity interactions. The SH3-mediated interaction of synapsin I with amphiphysins affected the ability of synapsin I to interact with actin and synaptic vesicles, and pools of synapsin I and amphiphysin I were shown to associate in isolated nerve terminals. The ability to bind multiple SH3 domains further implicates the synapsins in signal transduction and protein-protein interactions at the nerve terminal level.  相似文献   

12.
The NHE2 isoform of the Na+/H+ exchanger (NHE) displays two proline-rich sequences in its C-terminal region that resemble SH3 (Src homology 3)-binding domains. We investigated whether these regions (743PPSVTPAP750, termed Pro-1, and 786VPPKPPP792, termed Pro-2) can bind to SH3 domains and whether they are essential for NHE2 function and targeting. A fusion protein containing the Pro-1 region showed promiscuous binding to SH3 domains of several proteins in vitro, whereas a Pro-2 fusion bound preferentially to domains derived from kinases. In contrast, cytoplasmic regions of NHE1, NHE3, or NHE4 failed to interact. When expressed in antiporter-deficient cells, truncated NHE2 lacking both Pro-rich regions catalyzed Na+/H+ exchange, retained sensitivity to intracellular ATP, and was activated by hyperosmolarity, resembling full-length NHE2. The role of the Pro-rich regions in subcellular targeting was examined by transfection of epitope-tagged forms of NHE2 in porcine renal epithelial LLC-PK1 cells. Both full-length and Pro-2-truncated NHE2 localized almost exclusively to the apical membrane. By contrast, a mutant devoid of both Pro-1 and Pro-2 was preferentially sorted to the basolateral surface but also accumulated intracellularly. These observations indicate that the region encompassing Pro-1 is essential for appropriate subcellular targeting of NHE2.  相似文献   

13.
14.
The richness of proline sequences in titins qualifies these giant proteins as the largest source of intrinsically disordered structures in nature. An extensive search and analysis for Src homology domain 3 (SH3) ligand motifs revealed a myriad of broadly distributed SH3 ligand motifs, with the highest density in the PEVK segments of human titin. Besides the canonical class I and II motifs with opposite orientations, novel overlapping motifs consisting of one or more of each canonical motif are abundant. Experimentally, the binding affinity and critical residues of these putative titin-based SH3 ligands toward nebulin SH3 and other SH3-containing proteins in muscle and non-muscle cell extracts were validated with peptide array technology and by the sarcomere distribution of SH3-containing proteins. A 28-mer overlapping motif-containing PEVK module binds to nebulin SH3 in and around the canonical cleft, especially to the acidic residues in the loops, as revealed by NMR titration. Molecular dynamics and molecular docking studies indicated that the overlapping motif can bind in opposite orientations with comparable energy and contact areas and predicts correctly orientation-specific contacts in NMR data. We propose that the overlap ligand motifs are a new class of ligands with innate ability to dictate SH3 domain orientation and to facilitate the rate, strength, and stereospecificity of receptor interactions. Proline-rich sequences of titins are candidates as major hubs of SH3-dependent signaling pathways. The interplay of elasticity and dense clustering of mixed receptor orientations in titin PEVK segment have important implications for the mechanical sensing, force sensitivity, and inter-adapter interactions in signaling pathways.  相似文献   

15.
Chromosomal nonhistone proteins have important roles in mitotic chromosome formation and dynamics. In order to identify novel abundant proteins with a potential involvement in these processes, we initiated a proteomic screen of the chromosome scaffold fraction. This screen identified 79 proteins, 30 of which had not previously been described as components of mitotic chromosomes. Furthermore, half of these proteins had no documented function. We analyzed the cell-cycle dependent distribution of three uncharacterized proteins by expressing them as green fluorescent protein (GFP) fusions and showed that they associate with mitotic chromosomes in vivo. One of the proteins, nuclear protein p30, is a novel component of the inner centromere. Over-expression experiments indicated that p30 may have an active role in the formation of centromeric heterochromatin.  相似文献   

16.
The active site for uteroglobin inhibition of phospholipase A2 has been localized to a nonapeptide (P1) which is partially homologous to a nonapeptide (P2) in lipocortin, which also inhibits phospholipase A2. P1 and P2 share an identical tetrapeptide (P4) which is required for inhibition, although P4 alone does not inhibit this enzyme. We found the mechanism of inhibition of platelet aggregation and secretion by the nonapeptides and P4 varied depending on whether platelets were thrombin- or ADP-activated. All three peptides decrease thrombin esterolytic activity and thereby inhibit thrombin-induced platelet activation. P1 decreases ADP-induced aggregation and serotonin secretion by inhibiting phospholipase A2 whereas P4 decreases only aggregation by blocking fibrinogen binding to activated platelets. The P4 sequence in P1 may affect the interaction of P1 with platelets since the presence of P4 potentiates P1 inhibition of platelet activation.  相似文献   

17.
Amyotrophic Lateral Sclerosis (ALS) is a late-onset, progressive neurodegenerative disease affecting motor neurons in the brain stem and spinal cord leading to loss of voluntary muscular function and ultimately, death due to respiratory failure. A subset of ALS cases are familial and associated with mutations in superoxide dismutase 1 (SOD1) that destabilize the protein and predispose it to aggregation. In spite of the fact that sporadic and familial forms of ALS share many common patho-physiological features, the mechanistic relationship between SOD1-associated and sporadic forms of the disease if any, is not well understood. To better understand any molecular connections, a cell-based protein folding assay was employed to screen a whole genome RNAi library for genes that regulate levels of soluble SOD1. Statistically significant hits that modulate SOD1 levels, when analyzed by pathway analysis revealed a highly ranked network containing TAR DNA binging protein (TDP-43), a major component of aggregates characteristic of sporadic ALS. Biochemical experiments confirmed the action of TDP-43 on SOD1. These results highlight an unexpected relationship between TDP-43 and SOD1 which may have implications in disease pathogenesis.  相似文献   

18.
Two rounds of chromosome segregation after only a single round of DNA replication enable the production of haploid gametes from diploid precursors during meiosis. To identify genes involved in meiotic chromosome segregation, we developed an efficient strategy to knock out genes in the fission yeast on a large scale. We used this technique to delete 180 functionally uncharacterized genes whose expression is upregulated during meiosis. Deletion of two genes, sgo1 and mde2, caused massive chromosome missegregation. sgo1 is required for retention of centromeric sister-chromatid cohesion after anaphase I. We show here that mde2 is required for formation of the double-strand breaks necessary for meiotic recombination.  相似文献   

19.
20.
Kuntz DA  Tarling CA  Withers SG  Rose DR 《Biochemistry》2008,47(38):10058-10068
The N-glycosylation pathway is a target for pharmaceutical intervention in a number of pathological conditions including cancer. Golgi alpha-mannosidase II (GMII) is the final glycoside hydrolase in the pathway and has been the target for a number of synthetic efforts aimed at providing more selective and effective inhibitors. Drosophila GMII (dGMII) has been extensively studied due to the ease of obtaining high resolution structural data, allowing the observation of substrate distortion upon binding and after formation of a trapped covalent reaction intermediate. However, attempts to find new inhibitor leads by high-throughput screening of large commercial libraries or through in silico docking were unsuccessful. In this paper we provide a kinetic and structural analysis of five inhibitors derived from a small glycosidase-focused library. Surprisingly, four of these were known inhibitors of beta-glucosidases. X-ray crystallographic analysis of the dGMII:inhibitor complexes highlights the ability of the zinc-containing GMII active site to deform compounds, even ones designed as conformationally restricted transition-state mimics of beta-glucosidases, into binding entities that have inhibitory activity. Although these deformed conformations do not appear to be on the expected conformational itinerary of the enzyme, and are thus not transition-state mimics of GMII, they allow positioning of the three vicinal hydroxyls of the bound gluco-inhibitors into similar locations to those found with mannose-containing substrates, underlining the importance of these hydrogen bonds for binding. Further, these studies show the utility of targeting the acid-base catalyst using appropriately positioned positively charged nitrogen atoms, as well as the challenges associated with aglycon substitutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号