首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cyclin D1 gene encodes the regulatory subunit of a holoenzyme that phosphorylates and inactivates the pRB tumor suppressor protein. Cyclin D1 is overexpressed in 20-30% of human breast tumors and is induced both by oncogenes including those for Ras, Neu, and Src, and by the beta-catenin/lymphoid enhancer factor (LEF)/T cell factor (TCF) pathway. The ankyrin repeat containing serine-threonine protein kinase, integrin-linked kinase (ILK), binds to the cytoplasmic domain of beta(1) and beta(3) integrin subunits and promotes anchorage-independent growth. We show here that ILK overexpression elevates cyclin D1 protein levels and directly induces the cyclin D1 gene in mammary epithelial cells. ILK activation of the cyclin D1 promoter was abolished by point mutation of a cAMP-responsive element-binding protein (CREB)/ATF-2 binding site at nucleotide -54 in the cyclin D1 promoter, and by overexpression of either glycogen synthase kinase-3beta (GSK-3beta) or dominant negative mutants of CREB or ATF-2. Inhibition of the PI 3-kinase and AKT/protein kinase B, but not of the p38, ERK, or JNK signaling pathways, reduced ILK induction of cyclin D1 expression. ILK induced CREB transactivation and CREB binding to the cyclin D1 promoter CRE. Wnt-1 overexpression in mammary epithelial cells induced cyclin D1 mRNA and targeted overexpression of Wnt-1 in the mammary gland of transgenic mice increased both ILK activity and cyclin D1 levels. We conclude that the cyclin D1 gene is regulated by the Wnt-1 and ILK signaling pathways and that ILK induction of cyclin D1 involves the CREB signaling pathway in mammary epithelial cells.  相似文献   

2.

Background  

Large conductance calcium- and voltage activated potassium (BK) channels are important determinants of neuronal excitability through effects on action potential duration, frequency and synaptic efficacy. The pore- forming subunits are encoded by a single gene, KCNMA1, which undergoes extensive alternative pre mRNA splicing. Different splice variants can confer distinct properties on BK channels. For example, insertion of the 58 amino acid stress-regulated exon (STREX) insert, that is conserved throughout vertebrate evolution, encodes channels with distinct calcium sensitivity and regulation by diverse signalling pathways compared to the insertless (ZERO) variant. Thus, expression of distinct splice variants may allow cells to differentially shape their electrical properties during development. However, whether differential splicing of BK channel variants occurs during development of the mammalian CNS has not been examined.  相似文献   

3.
Xie J  Jan C  Stoilov P  Park J  Black DL 《RNA (New York, N.Y.)》2005,11(12):1825-1834
Neurons make extensive use of alternative pre-mRNA splicing to regulate gene expression and diversify physiological responses. We showed previously in a pituitary cell line that the Ca(++)/calmodulin-dependent protein kinase CaMK IV specifically repressed splicing of the BK channel STREX exon. This repression is dependent on a CaMK IV-responsive RNA element (CaRRE) within the STREX 3' splice site. Here, we report that similar Ca(++) regulation of splicing, mediated by L-type calcium channels and CaM kinase IV, occurs in cultured neurons and in the brain. We identify a critical CaRRE motif (CACATNRTTAT) that is essential for conferring CaMK IV repression on an otherwise constitutive exon. Additional Ca(++)-regulated exons that carry this consensus sequence are also identified in the human genome. Thus, the Ca(++)/CaMK IV pathway in neurons controls the alternative splicing of a group of exons through this short CaRRE consensus sequence. The functions of some of these exons imply that splicing control through the CaMK IV pathway will alter neuronal activity.  相似文献   

4.
5.
The importance of well characterized calcium/calmodulin-dependent protein kinase (CaMK) II in hippocampal long term potentiation (LTP) is widely well established; however, several CaMKs other than CaMKII are not yet clearly characterized and understood. Here we report the activation of CaMKIV, which is phosphorylated by CaMK kinase and localized predominantly in neuronal nuclei, and its functional role as a cyclic AMP-responsive element-binding protein (CREB) kinase in high frequency stimulation (HFS)-induced LTP in the rat hippocampal CA1 region. CaMKIV was transiently activated in neuronal nuclei after HFS, and the activation returned to the basal level within 30 min. Phosphorylation of CREB, which is a CaMKIV substrate, and expression of c-Fos protein, which is regulated by CREB, increased during LTP. This increase was inhibited mainly by CaMK inhibitors and also by an inhibitor for mitogen-activated protein kinase cascade, although to a lesser extent. Our results suggest that CaMKIV functions as a CREB kinase and controls CREB-regulated gene expression during HFS-induced LTP in the rat hippocampal CA1 region.  相似文献   

6.
cAMP应答元件结合蛋白(cAMP response element binding protein,CREB)在神经元生成、突触可塑性及学习记忆等方面都具有重要的调节作用,这使得与CREB信号通路相关的分子成为较受关注的神经系统疾病干预的药物靶点.本文概述了CREB的基本构成、相关信号通路、其目的基因表达调控及其在阿尔茨海默病(Alzheimer’s disease,AD)中的作用.  相似文献   

7.
8.
Alternative splicing controls the activity of many proteins important for neuronal excitation, but the signal-transduction pathways that affect spliced isoform expression are not well understood. One particularly interesting system of alternative splicing is exon 21 (E21) of the NMDA receptor 1 (NMDAR1 E21), which controls the trafficking of NMDA receptors to the plasma membrane and is repressed by Ca++/calmodulin-dependent protein kinase (CaMK) IV signaling. Here, we characterize the splicing of NMDAR1 E21. We find that E21 splicing is reversibly repressed by neuronal depolarization, and we identify two RNA elements within the exon that function together to mediate the inducible repression. One of these exonic elements is similar to an intronic CaMK IV–responsive RNA element (CaRRE) originally identified in the 3′ splice site of the BK channel STREX exon, but not previously observed within an exon. The other element is a new RNA motif. Introduction of either of these two motifs, called CaRRE type 1 and CaRRE type 2, into a heterologous constitutive exon can confer CaMK IV–dependent repression on the new exon. Thus, either exonic CaRRE can be sufficient for CaMK IV–induced repression. Single nucleotide scanning mutagenesis defined consensus sequences for these two CaRRE motifs. A genome-wide motif search and subsequent RT-PCR validation identified a group of depolarization-regulated alternative exons carrying CaRRE consensus sequences. Many of these exons are likely to alter neuronal function. Thus, these two RNA elements define a group of co-regulated splicing events that respond to a common stimulus in neurons to alter their activity.  相似文献   

9.
Soluble mitogens and adhesion-dependent organization of the actin cytoskeleton are required for cells to enter S phase in fibroblasts. The induction of cyclin A is also required for S-phase entry, and we now report that distinct effects of mitogens and the actin cytoskeleton on the phosphorylation of CREB and pocket proteins regulate the extent and timing of cyclin A promoter activity, respectively. First, we show that CREB phosphorylation and binding to the cyclic AMP response element (CRE) determines the extent, but not the timing, of cyclin A promoter activity. Second, we show that pocket protein inactivation regulates the timing, but not the extent, of cyclin A promoter activity. CREB phosphorylation and CRE occupancy are regulated by soluble mitogens alone, while the phosphorylation of pocket proteins requires both mitogens and the organized actin cytoskeleton. Mechanistically, cytoskeletal integrity controls pocket protein phosphorylation by allowing for sustained ERK signaling and, thereby, the expression of cyclin D1. Our results lead to a model of cyclin A gene regulation in which mitogens play a permissive role by stimulating early G(1)-phase phosphorylation of CREB and a distinct regulatory role by cooperating with the organized actin cytoskeleton to regulate the duration of ERK signaling, the expression of cyclin D1, and the timing of pocket protein phosphorylation.  相似文献   

10.
LF Lin  SP Chiu  MJ Wu  PY Chen  JH Yen 《PloS one》2012,7(8):e43304
Luteolin (3',4',5,7-tetrahydroxyflavone), a food-derived flavonoid, has been reported to exert neurotrophic properties that are associated with its capacity to promote neuronal survival and neurite outgrowth. In this study, we report for the first time that luteolin induces the persistent expression of microRNA-132 (miR-132) in PC12 cells. The correlation between miR-132 knockdown and a decrease in luteolin-mediated neurite outgrowth may indicate a mechanistic link by which miR-132 functions as a mediator for neuritogenesis. Furthermore, we find that luteolin led to the phosphorylation and activation of cAMP response element binding protein (CREB), which is associated with the up-regulation of miR-132 and neurite outgrowth. Moreover, luteolin-induced CREB activation, miR-132 expression and neurite outgrowth were inhibited by adenylate cyclase, protein kinase A (PKA) and MAPK/ERK kinase 1/2 (MEK1/2) inhibitors but not by protein kinase C (PKC) or calcium/calmodulin-dependent protein kinase II (CaMK II) inhibitors. Consistently, we find that luteolin treatment increases ERK phosphorylation and PKA activity in PC12 cells. These results show that luteolin induces the up-regulation of miR-132, which serves as an important regulator for neurotrophic actions, mainly acting through the activation of cAMP/PKA- and ERK-dependent CREB signaling pathways in PC12 cells.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号