首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Murine teratocarcinoma cells (PCC3/A1) formed erythroid cells in the form of blood islands when they were grown in organ culture. Addition of dimethyl sulfoxide (DMSO), N′N-dimethylacetamide and erythropoietin enhanced the formation of blood islands. An additive stimulatory effect was observed when expiants were incubated with DMSO and erythropoietin. In all of these cultures, the formed erythroblasts showed the characteristics of primitive erythroid cells, regardless of the nature of treatment. Small, enucleated red cells were occasionally observed. These results are compared with the characteristics of erythropoiesis in normal adults, embryos and in murine erythroleukemia.  相似文献   

2.
The cellular control of the switch from embryonic to fetal globin formation in man was investigated with studies of globin expression in erythroid cells of 35- to 56-day-old embryos. Analyses of globins synthesized in vivo and in cultures of erythroid progenitors (burst-forming units, BFUe) showed that cells of the yolk sac (primitive) erythropoiesis, in addition to embryonic chains, produced fetal and adult globins and that cells of the definitive (liver) erythropoiesis, in addition to fetal and adult globins, produce embryonic globins. That embryonic, fetal, and adult globins were coexpressed by cells of the same lineage was documented by analysis of globin chains in single BFUe colonies: all 67 yolk sac-origin BFUe colonies and 42 of 43 liver-origin BFUe colonies synthesized epsilon-, gamma-, and beta-chains. These data showed that during the switch from embryonic to adult globin formation, embryonic and definitive globin chains are coexpressed in the primitive, as well as in the definitive, erythroid cells. Such results are compatible with the postulate that the switch from embryonic to fetal globin synthesis represents a time-dependent change in programs of progenitor cells rather than a change in hemopoietic cell lineages.  相似文献   

3.
4.
5.
6.
There are two waves of erythropoiesis, known as primitive and definitive waves in mammals and lower vertebrates including zebrafish. The founding member of the Kruppel-like factor (KLF) family of CACCC-box binding proteins, EKLF/Klf1, is essential for definitive erythropoiesis in mammals but only plays a minor role in primitive erythropoiesis. Morpholino knockdown experiments have shown a role for zebrafish klf4 in primitive erythropoiesis and hatching gland formation. In order to generate a global understanding of how klf4 might influence gene expression and differentiation, we have performed expression profiling of klf4 morphants, and then performed validation of many putative target genes by qRT-PCR and whole mount in situ hybridization. We found a critical role for klf4 in embryonic globin, heme synthesis and hatching gland gene expression. In contrast, there was an increase in expression of definitive hematopoietic specific genes such as larval globin genes, runx1 and c-myb from 24 hpf, suggesting a selective role for klf4 in primitive rather than definitive erythropoiesis. In addition, we show klf4 preferentially binds CACCC box elements in the primitive zebrafish beta-like globin gene promoters. These results have global implications for primitive erythroid gene regulation by KLF-CACCC box interactions.  相似文献   

7.
Cytokine signaling plays an important role in the survival and differentiation of vertebrate hematopoietic cells. In red blood cells, erythropoietin is a key component of the differentiation program and maintains the homeostasis of the erythroid compartment. In the adult, anemia stimulates high levels of circulating erythropoietin that drives erythropoiesis to restore normal levels of red blood cells in circulation. Erythropoietin activates the erythropoietin receptor on immature red blood cell precursors to promote their survival and differentiation. Although extensively studied in mammalian systems, a complete understanding of the function of the erythropoietin receptor during primitive erythropoiesis has been lacking. To address this problem, we have cloned the Xenopus laevis erythropoietin receptor in order to further understand the development of primitive erythropoiesis. The amphibian erythropoietin receptor shares 33% amino acid sequence identity with the mammalian erythropoietin receptors and contains the conserved extracellular ligand binding and fibronectin domains, the WSXWS motif common to cytokine receptors, and several tyrosine phosphorylation sites located on the intracellular domain of the receptor. Expression of the erythropoietin receptor is first detected by in situ hybridization in the ventral blood island during tailbud stages.  相似文献   

8.
The recently described MB-02 human cell line requires Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) for continuous growth and terminally differentiates into enucleate, hemoglobinized cells in response to erythropoietin. Here, analysis of globin production now demonstrates that uninduced MB-02 cells produce alpha globin and the fetal globin chains G gamma and A gamma in a ratio of 1:3. Addition of erythropoietin results in de novo synthesis of beta globin chains and a marked increase in total Hb/cell. Thus, the MB-02 cell line partially recapitulates the fetal to adult globin switch that occurs during erythroid and human fetal development and provides a new clonal human erythroid progenitor system for investigating the biochemical and molecular events involved in globin gene switching.  相似文献   

9.
Hb switching in chickens   总被引:51,自引:0,他引:51  
We have taken advantage of the preferential digestion of active genes by DNAase I to investigate the chromosomal structure of embryonic and adult β-globin genes during erythropoiesis in chick embryos, and in particular to examine the question of hemoglobin switching during development. DNA in isolated red cell nuclei was mildly digested with DNAase I to about 10–15 kb, purified and restricted with a variety of restriction enzymes. The DNA was then separated on agarose gels, transferred to nitrocellulose filters and hybridized with an adult-specific β-globin cDNA clone or a genomic clone containing the genes coding for both an embryonic and an adult β-globin chain. Preferential sensitivity of the respective globin genes was monitored by the disappearance of specific restriction bands after DNAase I digestion of nuclei. In embryonic red cells, both adult and embryonic β-globin genes are very sensitive to DNAase I; however, in adult erythroid lines, the embryonic β-globin gene becomes relatively more resistant but the adult gene remains highly sensitive. Controls showed that all globin genes were resistant to DNAase I in brain nuclei and nuclei from lymphoid cells. Thus the switch from embryonic to adult globin expression is associated with an apparent change in the chromosome structure of the embryonic globin gene as reflected in the gene becoming less accessible to DNAase I in adult red cell nuclei. Our results also show that the chromosomal structure of both adult and embryonic genes is altered in embryonic red cell nuclei; thus the nonexpressed globin gene (that is, the adult gene in embryonic red cells) has already been “recognized” to some degree and marked by the erythroid compartment. The sensitivity of the adult globin gene in embryonic cells may represent a “pre-activation” state of the chromosome.  相似文献   

10.
A culture method is proposed for the in vitro development of chicken erythrocytic progenitors. When grown with avian erythropoietin, Colony Forming Unit Erythrocytic (CFU-E) and Burst Forming Unit-Erythrocytic (BFU-E) give rise respectively to erythrocytic colonies and bursts within 3 and 6 days. BFU-E development is greatly enhanced by pokeweed-mitogen-spleen-cell-conditioned medium and requires higher erythropoietin concentrations than for CFU-E. An antigen specific to immature red cells can be detected on CFU-E but not on BFU-E, showing that both progenitors represent distinct entities. BFU-E and CFU-E are found in embryonic marrow and yolk sac. In the young blastoderm BFU-E becomes detectable at the primitive streak stage.  相似文献   

11.
Characterization of embryonic globin genes of the zebrafish   总被引:7,自引:0,他引:7  
Hemoglobin switching is a complex process by which distinct globin chains are produced during stages of development. In an effort to characterize the process of hemoglobin switching in the zebrafish model system, we have isolated and characterized several embryonic globin genes. The embryonic and adult globin genes are found in clusters in a head-to-head configuration. One cluster of embryonic and adult genes is localized to linkage group 3, whereas another embryonic cluster is localized on linkage group 12. Several embryonic globin genes demonstrate an erythroid-specific pattern of expression early during embryogenesis and later are downregulated as definitive hematopoiesis occurs. We utilized electrospray mass spectroscopy to correlate globin genes and protein expression in developing embryonic red cells. The mutation, zinfandel, has a hypochromic microcytic anemia as an embryo, but later recovers in adulthood. The zinfandel gene maps to linkage group 3 near the major globin gene locus, strongly suggesting that zinfandel represents an embryonic globin defect. Our studies are the first to systematically evaluate the embryonic globins in the zebrafish and will ultimately be useful in evaluating zebrafish mutants with defects in hemoglobin production and switching.  相似文献   

12.
13.
Examination of the growth requirements of murine embryonal carcinoma cells (EC cells) or embryonic stem cells (ES cells) in serum-free medium revealed that PCC3 EC cells required activin A to grow and/or survive in such medium. In the absence of activin A, PCC3 cells began to disintegrate within 3 days under any serum-free conditions examined. P19 and AT805 EC cells grew even in serum-free medium without activin A but their growth rates were slightly facilitated by its addition. F9 EC cells also grew in the medium without activin A and its addition somewhat inhibited their growth rate. Three independently isolated ES cell lines and feeder-dependent PSA-1 EC cells also grew in serum-free medium without activin A if leukemia inhibitory factor (LIF) was supplemented. The addition of activin A had little effect on their growth rates. These findings suggest that PCC3 EC cells are a sort of nutritional mutant requiring activin A, thus making them useful in stidies on the growth regulatory mechanisms of EC/ES cells and/or the action of activin on EC/ES cells.  相似文献   

14.
Mature human embryonic erythrocytes (hemoglobin is ≥ 90% of the cellular protein) contained at least 20 times as much ferritin as human adult erythrocytes, suggesting the possibility that the embryonic red cells participate in iron storage as they do in other embryonic or larval vertebrates. The ferritin content of mature red cells in the circulation declined when fetal red cells replaced embryonic red cells; the cell replacement was monitored by the disappearance of embryonic ε-chains and the appearance of the fetal globin chains, γA and γG. A constant ratio of 0.67 was obtained for γGγA + γG from the first detectable appearance (4 weeks after conception) until 13 weeks, a value which is similar to the value previously obtained at 20 weeks gestation and birth but higher than that observable in adults; thus, both γG and γA chains are produced in similar amounts throughout gestation. The high levels of ferritin in normal human embryonic erythrocytes emphasize the similarity of erythropoiesis in human embryos and other vertebrates. In addition, the results show that red cell ferritin can be used as a marker for studying the mechanism of induction of embryonic erythropoiesis in cultured cell lines, such as K562 from human chronic myelocytic leukemia, and that ferritin content may also serve as a marker for cellular transformations involving reversions to embryonic erythropoiesis.  相似文献   

15.
16.
The CCAAT box is one of the conserved motifs found in globin promoters. It binds the CP1 protein. We noticed that the CCAAT-box region of embryonic/fetal, but not adult, globin promoters also contains one or two direct repeats of a short motif analogous to DR-1 binding sites for non-steroid nuclear hormone receptors. We show that a complex previously named NF-E3 binds to these repeats. In transgenic mice, destruction of the CCAAT motif within the human epsilon-globin promoter leads to substantial reduction in epsilon expression in embryonic erythroid cells, indicating that CP1 activates epsilon expression; in contrast, destruction of the DR-1 elements yields striking epsilon expression in definitive erythropoiesis, indicating that the NF-E3 complex acts as a developmental repressor of the epsilon gene. We also show that NF-E3 is immunologically related to COUP-TF orphan nuclear receptors. One of these, COUP-TF II, is expressed in embryonic/fetal erythroid cell lines, murine yolk sac, intra-embryonic splanchnopleura and fetal liver. In addition, the structure and abundance of NF-E3/COUP-TF complexes vary during fetal liver development. These results elucidate the structure as well as the role of NF-E3 in globin gene expression and provide evidence that nuclear hormone receptors are involved in the control of globin gene switching.  相似文献   

17.
18.
19.
Clonal culture of PCC3/A/1 teratocarcinoma stem cells in serum-free medium has been achieved with feeder layers. Under this culture condition, stem cells effectively differentiated into various types of somatic cells, in particular chondrocytes and adipocytes. Myotubes and neuron-like cells also appeared, but infrequently. Embryonic endoderm cells were rarely observed. There appeared to be two stages in the differentiation process; In the early stage, only fibroblastic cells were found with the undifferentiated stem cells. In the later stage, chondrocytes and adipocytes predominated. Chondro-adipocyte differentiation occurred only after fibroblastic cell differentiation, an indication that fibroblastic cells may have an important function in chondro-adipocyte differentiation. Thus, the serum-free culture of PCC3/A/1 cells provides a suitable system with which to study the cell lineages and regulatory mechanisms of chondro-adipocyte differentiation.  相似文献   

20.
The Krüppel-like factor 1 (KLF1) and KLF2 positively regulate embryonic β-globin expression and have additional overlapping roles in embryonic (primitive) erythropoiesis. KLF1(-/-) KLF2(-/-) double knockout mice are anemic at embryonic day 10.5 (E10.5) and die by E11.5, in contrast to single knockouts. To investigate the combined roles of KLF1 and KLF2 in primitive erythropoiesis, expression profiling of E9.5 erythroid cells was performed. A limited number of genes had a significantly decreasing trend of expression in wild-type, KLF1(-/-), and KLF1(-/-) KLF2(-/-) mice. Among these, the gene for Myc (c-Myc) emerged as a central node in the most significant gene network. The expression of the Myc gene is synergistically regulated by KLF1 and KLF2, and both factors bind the Myc promoters. To characterize the role of Myc in primitive erythropoiesis, ablation was performed specifically in mouse embryonic proerythroblast cells. After E9.5, these embryos exhibit an arrest in the normal expansion of circulating red cells and develop anemia, analogous to KLF1(-/-) KLF2(-/-) embryos. In the absence of Myc, circulating erythroid cells do not show the normal increase in α- and β-like globin gene expression but, interestingly, have accelerated erythroid cell maturation between E9.5 and E11.5. This study reveals a novel regulatory network by which KLF1 and KLF2 regulate Myc to control the primitive erythropoietic program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号