首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 5 毫秒
1.
Purification to homogeneity of the N-acetylmuramoyl-L-alanine amidase (mucopeptide amidohydrolase, EC 3.5.1.28) from human serum has been achieved with a high yield. By molecular sieving chromatography, a molecular weight of 120,000-130,000 has been found for the native enzyme. Polyacrylamide gel electrophoresis under native conditions gave a unique band of Mr = 125,000. The same technique performed under denaturing conditions revealed that the protein is a dimer composed of one subunit of Mr = 57,000 and another of Mr = 70,000. In isoelectrofocalization assays, the amidase behaved as an acidic protein. Ethylenediaminetetraacetate inhibited the enzyme activity; the Mg2+ requirement was confirmed. The simultaneous presence of sulfhydryl groups and disulfide bonds in the protein was evidenced by the inhibitions produced by different thiol-blocking reagents and by several thiol-bearing substances. Direct measurements established the presence of two accessible thiol groups and the occurrence of nine disulfide bonds per protein molecule. Studies of substrate hydrolyzing capacities showed a marked preference for the muramoyl tripeptide derived from the Escherichia coli or Bacillus cereus mureins, the disaccharide tetrapeptide and the bis disaccharide tetra-tetrapeptide from E. coli were also good substrates. Activities on small muropeptides of other composition are also reported. Whole (insoluble) peptidoglycans representing the main bacterial chemotypes were submitted to the enzyme action; although with weak specific activities, the human amidase was nevertheless able to release soluble peptides from some of them. A bacteriolytic capacity on some microorganisms cannot be excluded. Results are discussed and the human enzyme is compared to presently known microbial muramoyl amidases.  相似文献   

2.
The D-glucose/D-xylose isomerase was purified from a thermophilic bacterium, Geobacillus thermodenitrificans TH2, by precipitating with heat shock and using Q-Sepharose ion exchange column chromatography, and then characterized. The purified enzyme had a single band having molecular weight of 49 kDa on SDS-PAGE. In the presence of D-glucose as a substrate, the optimum temperature and pH of the enzyme were found to be 80°C and 7.5, respectively. The purified xylose isomerase of G. thermodenitrificans TH2 was extremely stable at pH 7.5 after 96 h incubation at 4°C and 50°C. When the thermal stability profile was analyzed, it was determined that the purified enzyme was extremely stable during incubation periods of 4 months and 4 days at 4°C and 50°C, respectively. The K m and V max values of the purified xylose isomerase from G. thermodenitrificans TH2 were calculated as 32 mM and 4.68 μmol/min per mg of protein, respectively. Additionally, it was detected that some metal ions affected the enzyme activity at different ratios. The enzyme was active and stable at high temperatures and nearly neutral pHs which are desirable for the usage in the food and ethanol industry.  相似文献   

3.
A microbial peptide amidase was found in a limited screening and purified about 500-fold from Stenotrophomonas maltophilia. The native enzyme has a molecular mass of 38 kDa (gel filtration). The sequence of the first 16 amino acids was determined by Edman degradation. The isoelectric point was found to be around 5.8. The peptide amidase exhibited a pH optimum of 6.0 and a temperature optimum of about 39–45°C. The enzyme is stable in 50 mM TRIS/HCl, pH 7.5, at 30°C, and the residual activity was found to be above 90% after 1 week of incubation. The biocatalyst is not inhibited by potential inhibitors like Hg2+, EDTA, d-cycloserine or dithiothreitol and only weakly influenced by inhibitors of serine proteases. The peptide amidase deamidates selectively C-terminal amide groups in peptide amides without hydrolysing internal peptide bonds or amide functions in the side-chain of glutamine or asparagine. Unprotected amino acid amides are not hydrolysed. The enzyme is stereoselective with regard to l-enantiomers in the C-terminal position.  相似文献   

4.
A novel bacteriolytic enzyme CwhA (cell wall hydrolytic amidase) was purified by ion exchange and gel-filtration chromatographies from a commercial bacteriolytic preparation from Achromobacter lyticus. CwhA exhibited optimal pH at 8.5 and lysed CHCl(3)-treated Escherichia coli more efficiently than Micrococcus luteus, Staphylococcus aureus, Enterococcus faecalis, and Pediococcus acidilactici. The enzyme was inhibited by 1,10-phenanthroline strongly and by EDTA to a lesser extent, suggesting that it is probably a metalloenzyme. Amino acid composition and mass spectrometric analyses for the CwhA-derived M. luteus muropeptides revealed that CwhA is N-acetylmuramoyl-L-alanine amidase [EC 3.5.1. 28]. The complete amino acid sequence of CwhA was established by a combination of Edman degradation and mass spectrometry for peptides obtained by Achromobacter protease I (API) digestion and cyanogen bromide (CNBr) cleavage. The enzyme consists of a single polypeptide chain of 177 amino acid residues with one disulfide bond, Cys114-Cys121. CwhA was found to be homologous to N-acetylmuramoyl-L-alanine amidase from bacteriophage T7 (BPT7). Its sequence identity with BPT7 is 35%, but the amino acid residues functioning as zinc ligands in BPT7 are absent in CwhA. These results suggest that CwhA is a new type of N-acetylmuramoyl-L-alanine amidase.  相似文献   

5.
A constitutively expressed aliphatic amidase from a Rhodococcus sp. catalyzing acrylamide deamination was purified to electrophoretic homogeneity. The molecular weight of the native enzyme was estimated to be 360,000. Upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the purified preparation yielded a homogeneous protein band having an apparent molecular weight of about 44,500. The amidase had pH and temperature optima of 8.5 and 40 degrees C, respectively, and its isoelectric point was pH 4.0. The amidase had apparent K(m) values of 1.2, 2.6, 3.0, 2.7, and 5.0 mM for acrylamide, acetamide, butyramide, propionamide, and isobutyramide, respectively. Inductively coupled plasma-atomic emission spectometry analysis indicated that the enzyme contains 8 mol of iron per mol of the native enzyme. No labile sulfide was detected. The amidase activity was enhanced by, but not dependent on Fe(2+), Ba(2+), and Cr(2+). However, the enzyme activity was partially inhibited by Mg(2+) and totally inhibited in the presence of Ni(2+), Hg(2+), Cu(2+), Co(2+), specific iron chelators, and thiol blocking reagents. The NH2-terminal sequence of the first 18 amino acids displayed 88% homology to the aliphatic amidase of Brevibacterium sp. strain R312.  相似文献   

6.
A thermophilic bacterium, which we designated as Geobacillus thermoleovorans 47b was isolated from a hot spring in Beppu, Oita Prefecture, Japan, on the basis of its ability to grow on bitter peptides as a sole carbon and nitrogen source. The cell-free extract from G. thermoleovorans 47b contained leucine aminopeptidase (LAP; EC 3.4.11.10), which was purified 164-fold to homogeneity in seven steps, using ammonium sulfate fractionation followed by the column chromatography using DEAE-Toyopearl, hydroxyapatite, MonoQ and Superdex 200 PC gel filtration, followed again by MonoQ and hydroxyapatite. The enzyme was a single polypeptide with a molecular mass of 42,977.2 Da, as determined by matrix-assisted laser desorption ionization and time-of-flight mass spectrometry, and was found to be thermostable at 90°C for up to 1 h. Its optimal pH and temperature were observed to be 7.6–7.8 and 60°C, respectively, and it had high activity towards the substrates Leu-p-nitroanilide (p-NA)(100%), Arg-p-NA (56.3%) and LeuGlyGly (486%). The Km and Vmax values for Leu-p-NA and LeuGlyGly were 0.658 mM and 25.0 mM and 236.2 mol min–1 mg–1 protein and 1,149 mol min–1 mg–1 protein, respectively. The turnover rate (kcat) and catalytic efficiency (kcat/ Km) for Leu-p-NA and LeuGlyGly were 10,179 s–1 and 49,543 s–1 and 15,470 mM–1 s–1 and 1981.7 mM–1 s–1, respectively. The enzyme was strongly inhibited by EDTA, 1,10-phenanthroline, dithiothreitol, -mercaptoethanol, iodoacetate and bestatin; and its apoenzyme was found to be reactivated by Co2+ .  相似文献   

7.
beta-Agarase was purified from the culture fluid of a porphyran-decomposing marine bacterium (strain AP-2) by ammonium sulfate precipitation, successive column chromatography and DNase and RNase treatment. The final enzyme preparation appeared to be homogeneous on polyacrylamide gel electrophoresis. The enzyme had a molecular mass of 20 kDa, a pH optimum of 5.5, and was stable in the pH region 4.0-9.0 and at temperatures below 45 degrees C. The beta-agarase was a novel endo-type enzyme which hydrolyzed neoagarotetraose, larger neoagarooligosaccharides and agar to give neoagarobiose [3,6-anhydro-alpha-L-galactopyranosyl-(1----3)-D-galactose] as the predominant product. The enzyme did not act on kappa-carrageenan. According to the criteria of Bergey's Manual of Systematic Bacteriology, the strain was assigned to the genus Vibrio.  相似文献   

8.
Amidases catalyze the hydrolysis of amides to free carboxylic acids and ammonia. Hyperthermophilic archaea are a natural reservoir of various types of thermostable enzymes. Here, we report the purification and characterization of an amidase from Pyrococcus yayanosii CH1, the first representative of a strict-piezophilic hyperthermophilic archaeon that originated from a deep-sea hydrothermal vent. An open reading frame that encoded a putative member of the nitrilase protein superfamily was identified. We cloned and overexpressed amiE in Escherichia coli C41 (DE3). The purified AmiE enzyme displayed maximal activity at 85 °C and pH 6.0 (NaH2PO4–Na2HPO4) with acetamide as the substrate and showed activity over the pH range of 4–8 and the temperature range of 4–95 °C. AmiE is a dimer and active on many aliphatic amide substrates, such as formamide, acetamide, hexanamide, acrylamide, and l-glutamine. Enzyme activity was induced by 1 mM Ca2+, 1 mM Al3+, and 1–10 mM Mg2+, but strongly inhibited by Zn2+, Cu2+, Ni2+, and Fe3+. The presence of acetone and ethanol significantly decreased the enzymatic activity. Neither 5 % methanol nor 5 % isopropanol had any significant effect on AmiE activity (99 and 96 % retained, respectively). AmiE displayed amidase activity although it showed high sequence homology (78 % identity) with the known nitrilase from Pyrococcus abyssi. AmiE is the most characterized archaeal thermostable amidase in the nitrilase superfamily. The thermostability and pH-stability of AmiE will attract further studies on its potential industrial applications.  相似文献   

9.
We previously identified a strong haemagglutination activity in the freshwater unicellular green alga, Chlorella pyrenoidosa. Here, we sought to purify and characterize the haemagglutinin associated with this activity. Ammonium sulfate precipitation, gel filtration on sephacryl S-200 and DEAE-Sepharose ion-exchange chromatography were used to purify the haemagglutinin, which was designated CPH (Chlorella pyrenoidosa haemagglutinin). The molecular weight of CPH was estimated as 58 kDa by SDS-PAGE and 60 kDa by gel filtration of the native protein, indicating that this haemagglutinin exists as a monomer. The haemagglutinin activity of CPH was inhibited by glycoproteins, especially yeast mannan, but not by monosaccharides or disaccharides, indicating that CPH is carbohydrate-specific. In addition to the composition of CPH shown to be rich in glycine and acidic amino acids, heamagglutinating activity of CPH was insensitive to variations in pH or the presence of divalent cations, and atomic force microscopy revealed that the protein is rod-shaped. These results indicate that the characteristics of CPH are consistent with its identification as a haemagglutinin, and suggest that CPH may be a viable candidate for applications in a variety of biomedical fields.  相似文献   

10.
A novel lactonohydrolase, catalyzing the stereospecific hydrolysis of L-pantoyl lactone to L-pantoic acid, was purified 2,400-fold to apparent homogeneity with a 1.96% overall recovery from Agrobacterium tumefaciens AKU 316 through a purification procedure including ammonium sulfate fractionation, and column chromatographies on DEAE-Sephacel, phenyl-Sepharose CL-4B, Sephacryl S-200, Mono-Q and alkyl-Superose. The relative molecular mass of the native enzyme estimated on high-pressure gel permeation chromatography was 62,000 Da, and the subunit molecular mass was estimated to 26,500 Da on SDS-polyacrylamide gel electrophoresis. The enzyme hydrolyzes several aromatic lactones, such as 3,4-dihydrocoumarin and homogentisic acid lactone, other than L-pantoyl lactone. The Km and Vmax for L-pantoyl lactone were 3.59 mM and 13.7micromol/min/mg, respectively. The enzymatic activity was inhibited by several chelating reagents, Fe2+, Sn2+, Pb2+, and Fe3+.  相似文献   

11.
An alpha-mannosidase differing from 1,2-alpha-mannosidase was found to occur in Aspergillus saitoi. By a series of column chromatographies the enzyme was purified up to 1,000-fold, and its properties were studied in detail. The enzyme preparation, which was practically free from other exoglycosidases, showed a pH optimum of 5.0. In contrast to 1,2-alpha-mannosidase, the enzyme was strongly activated by Ca2+ ions. p-Nitrophenyl alpha-mannopyranoside was not hydrolyzed by the enzyme. Accordingly, the substrate specificity of the new alpha-mannosidase was studied by using a variety of tritium-labeled oligosaccharides. Studies with linear oligosaccharides revealed that the enzyme cleaves the Man alpha 1----3Man linkage more than 10 times faster than the Man alpha 1----6Man and the Man alpha 1----2Man linkages. Furthermore, it cleaves the Man alpha 1----6Man linkage of the Man alpha 1----6(Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4GlcNAcOT only after its Man alpha 1----3 residue is removed. Because of this specificity, the enzyme can be used as an effective reagent to discriminate R----Man alpha 1----6(Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4(+/- Fuc alpha 1----6)GlcNAcOT from its isomeric counterparts, Man alpha 1----6(R----Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4(+/- Fuc alpha 1----6)GlcNAcOT, in which R represents sugars.  相似文献   

12.
An enzyme catalyzing the methylation of phenolic hydroxyl groups in polyphenols was identified from mycelial cultures of edible mushrooms to synthesize O-methylated polyphenols. Enzyme activity was measured to assess whether methyl groups were introduced into (?)-epigallocatechin-3-O-gallate (EGCG) using SAM as a methyl donor, and (?)-epigallocatechin-3-O-(3-O-methyl)-gallate (EGCG3″Me), (?)-epigallocatechin-3-O-(4-O-methyl)-gallate (EGCG4″Me), and (?)-epigallocatechin-3-O-(3,5-O-dimethyl)-gallate (EGCG3″,5″diMe) peaks were detected using crude enzyme preparations from mycelial cultures of Flammulina velutipes. The enzyme was purified using chromatographic and two-dimensional electrophoresis. The purified enzyme was subsequently analyzed on the basis of the partial amino acid sequence using LC–MS/MS. Partial amino acid sequencing identified the 17 and 12 amino acid sequences, VLEVGTLGGYSTTWLAR and TGGIIIVDNVVR. In database searches, these sequences showed high identity with O-methyltransferases from other mushroom species and completely matched 11 of 17 and 9 of 12 amino acids from five other mushroom O-methyltransferases.  相似文献   

13.
A novel aminoacylase was purified to homogeneity from culture broth of Streptomyces mobaraensis, as evidenced by SDS-polyacrylamide gel electrophoresis (PAGE). The enzyme was a monomer with an approximate molecular mass of 100 kDa. The purified enzyme was inhibited by the presence of 1,10-phenanthroline and activated by the addition of Co2+. It was stable at temperatures of up to 60 degrees C for 1 h at pH 7.2. It showed broad substrate specificity to N-acetylated L-amino acids. It catalyzed the hydrolysis of the amide bonds of various N-acetylated L-amino acids, except for Nepsilon-acetyl-L-lysine and N-acetyl-L-proline. Hydrolysis of N-acetyl-L-methionine and N-acetyl-L-histidine followed Michaelis-Menten kinetics with K(m) values of 1.3+/-0.1 mM and 2.7+/-0.1 mM respectively. The enzyme also catalyzed the deacetylation of 7-aminocephalosporanic acid (7-ACA) and cephalosporin C. Moreover, feruloylamino acids and L-lysine derivatives of ferulic acid derivatives were synthesized in an aqueous buffer using the enzyme.  相似文献   

14.
The filamentous fungus Trichoderma sp. GL2 produces an extracellular glucuronan lyase (GL) when grown on glucuronan as the sole carbon source. In this paper, we report the purification to electrophoretical homogeneity of this polysaccharide lyase by size exclusion chromatography and anion exchange chromatography. The purified GL, classified as an endopolyglucuronate lyase, is a monomer with an apparent molecular weight of 27 kDa and an isoelectric point of 6.95. Despite an inhibition of the activity when polysaccharide substrates were substituted by acetates, the enzyme was active toward glucuronans (acetylated or not) and ulvan, leading to various (4,5)-unsaturated products as oligoglucuronans (acetylated or deacetylated), highly acetylated low-molecular-weight (LMW) glucuronans, and LMW ulvans.  相似文献   

15.
Purification and characterization of a novel heparinase   总被引:2,自引:0,他引:2  
A unique heparinase was isolated from a recently discovered Gram-negative soil bacterium. The enzyme (heparinase III) was purified by hydroxylapatite chromatography, chromatofocusing, and gel permeation chromatography. The enrichment was 48x, and the specific activity of catalytically pure heparinase was 127 IU/mg of protein. Similar to the heparinase I from Flavobacterium heparinum, heparinase III also degrades heparin to mainly disaccharide fragments. It is specific for heparin and also breaks down heparan sulfate, but not hyaluronic acid and chondroitin sulfate. Heparinase III, however, differs markedly from heparinase I in several other aspects: it has a higher molecular mass (94 versus 43 kDa), pI (9.2 versus 8.5), its Km and kcat are different, and it has a higher energy of activation (15.6 versus 6.3 kcal/mol). Optimal activity was also found at higher pH (7.6 versus 6.5) and temperature (45 versus 37 degrees C). Furthermore, the amino acid composition of heparinase III is quite different from that of heparinase I.  相似文献   

16.
Alcaligenes species CF8 isolated from surface water of a lake produced a novel serine type metallo-caffeine oxidase. The optimal medium for caffeine oxidase production by this strain was (w/v) NaNO(3), 0.4%; KH(2)PO(4), 0.15%; Na(2)HPO(4), 0.05%; FeCl(3).6H(2)O, 0.0005%; CaCl(2).2H(2)O, 0.001%; MgSO(4).7H(2)O, 0.02%; glucose, 0.2%; caffeine, 0.05%, pH 7.5. The enzyme was purified to 63-fold by using ammonium sulfate precipitation, dialysis, ion exchange (diethylaminoethyl-cellulose) and gel filtration (Sephadex G-100) chromatographic techniques. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the purified caffeine oxidase was monomeric with a molecular mass of 65 kDa. The purified caffeine oxidase with a half-life of 20 min at 50 degrees C had maximal activity at pH 7.5 and 35 degrees C. The purified caffeine oxidase had strict substrate specificity towards caffeine (K(m) 8.94 microM and V(max) 47.62 U mg protein(-1)) and was not able to oxidize xanthine and hypoxanthine. The enzyme activity was not inhibited by para-chloromercuribenzoic acid, iodoacetamide, n-methylmaleimide, salicylic acid and sodium arsenite indicating the enzyme did not belong to xanthine oxidase family. The enzyme was not affected by Ca(+2), Mg(+2) and Na(+), but was completely inhibited by Co(+2), Cu(+2) and Mn(+2) at 1mM level. The novel caffeine oxidase isolated here from Alcaligenes species CF8 may be useful in biotechnological processes including waste treatment and biosensor development.  相似文献   

17.
Mannitol 2-dehydrogenase (MDH) catalyzes the pyridine nucleotide dependent reduction of fructose to mannitol. Lactobacillus intermedius (NRRL B-3693), a heterofermentative lactic acid bacterium (LAB), was found to be an excellent producer of mannitol. The MDH from this bacterium was purified from the cell extract to homogeneity by DEAE Bio-Gel column chromatography, gel filtration on Bio-Gel A-0.5m gel, octyl-Sepharose hydrophobic interaction chromatography, and Bio-Gel Hydroxyapatite HTP column chromatography. The purified enzyme (specific activity, 331 U/mg protein) was a heterotetrameric protein with a native molecular weight (MW) of about 170 000 and subunit MWs of 43 000 and 34 500. The isoelectric point of the enzyme was at pH 4.7. Both subunits had the same N-terminal amino acid sequence. The optimum temperature for the reductive action of the purified MDH was at 35 degrees C with 44% activity at 50 degrees C and only 15% activity at 60 degrees C. The enzyme was optimally active at pH 5.5 with 50% activity at pH 6.5 and only 35% activity at pH 5.0 for reduction of fructose. The optimum pH for the oxidation of mannitol to fructose was 7.0. The purified enzyme was quite stable at pH 4.5-8.0 and temperature up to 35 degrees C. The K(m) and V(max) values of the enzyme for the reduction of fructose to mannitol were 20 mM and 396 micromol/min/mg protein, respectively. It did not have any reductive activity on glucose, xylose, and arabinose. The activity of the enzyme on fructose was 4.27 times greater with NADPH than NADH as cofactor. This is the first highly NADPH-dependent MDH (EC 1.1.1.138) from a LAB. Comparative properties of the enzyme with other microbial MDHs are presented.  相似文献   

18.
A thermostable lipase from Bacillus sp. has been purified to homogeneity as judged by disc-PAGE, SDS-PAGE, and isoelectric focusing. The purification included ammonium sulfate fractionation, treatment with acrinol, and sequential column chromatographies on DEAE-Sephadex A-50, Toyopearl HW-55F, and Butyl Toyopearl 650M. The purified enzyme was found to be a monomeric protein with Mr of 22,000, and pI of 5.1. The optimal pH at 30 degrees C, and optimal temperature at pH 5.6 were 5.5-7.2, and 60 degrees C, respectively, when olive oil was used as the substrate. The substrate specificity towards simple triglycerides was broad and 1- and 3-positioned ester bonds were hydrolyzed in preference to a 2-positioned ester bond. The addition of acetone to the assay mixture in the range of 0-60% (v/v) stimulated the enzyme remarkably, whereas n-hexane had an inhibitory effect.  相似文献   

19.
A novel calcium-dependent protein kinase (CDPK) previously reported to be activated by the direct binding of Ca2+, and requiring neither calmodulin nor phospholipids for activity [Harmon, A.C., Putnam-Evans, C.L., & Cormier, M.J. (1987) Plant Physiol. 83, 830-837], was purified to greater than 95% homogeneity from suspension-cultured soybean cells (Glycine max, L. Wayne). Purification was achieved by chromatography on DEAE-cellulose, phenyl-Sepharose, Sephadex G-100, and Blue Sepharose. The purified enzyme (native molecular mass = 52,200 Da) resolved into two immunologically related protein bands of 52 and 55 kDa on 10% SDS gels. Enzyme activity was stimulated 40-100-fold by micromolar amounts of free calcium (K0.5 = 1.5 microM free calcium) and was dependent upon millimolar Mg2+. CDPK phosphorylated lysine-rich histone III-S and chicken gizzard myosin light chains but did not phosphorylate arginine-rich histone, phosvitin, casein, protamine, or Kemptide. Phosphorylation of histone III-S, but not autophosphorylation, was inhibited by KCl. CDPK displayed a broad pH optimum (pH 7-9), and kinetic studies revealed a Km for Mg2(+)-ATP of 8 microM and a Vmax of 1.7 mumol min-1 mg-1 with histone III-S (Km = 0.13 mg/mL) as substrate. Unlike many other protein kinases, CDPK was able to utilize Mg2(+)-GTP, in addition to Mg2(+)-ATP, as phosphate donor. The enzyme phosphorylated histone III-S exclusively on serine; however, CDPK autophosphorylated on both serine and threonine residues. These properties demonstrate that CDPK belongs to a new class of protein kinase.  相似文献   

20.
Erythritol biosynthesis is catalyzed by erythrose reductase, which converts erythrose to erythritol. Erythrose reductase, however, has never been characterized in terms of amino acid sequence and kinetics. In this study, NAD(P)H-dependent erythrose reductase was purified to homogeneity from Candida magnoliae KFCC 11023 by ion exchange, gel filtration, affinity chromatography, and preparative electrophoresis. The molecular weights of erythrose reductase determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration chromatography were 38,800 and 79,000, respectively, suggesting that the enzyme is homodimeric. Partial amino acid sequence analysis indicates that the enzyme is closely related to other yeast aldose reductases. C. magnoliae erythrose reductase catalyzes the reduction of various aldehydes. Among aldoses, erythrose was the preferred substrate (K(m) = 7.9 mM; k(cat)/K(m) = 0.73 mM(-1) s(-1)). This enzyme had a dual coenzyme specificity with greater catalytic efficiency with NADH (k(cat)/K(m) = 450 mM(-1) s(-1)) than with NADPH (k(cat)/K(m) = 5.5 mM(-1) s(-1)), unlike previously characterized aldose reductases, and is specific for transferring the 4-pro-R hydrogen of NADH, which is typical of members of the aldo/keto reductase superfamily. Initial velocity and product inhibition studies are consistent with the hypothesis that the reduction proceeds via a sequential ordered mechanism. The enzyme required sulfhydryl compounds for optimal activity and was strongly inhibited by Cu(2+) and quercetin, a strong aldose reductase inhibitor, but was not inhibited by aldehyde reductase inhibitors and did not catalyze the reduction of the substrates for carbonyl reductase. These data indicate that the C. magnoliae erythrose reductase is an NAD(P)H-dependent homodimeric aldose reductase with an unusual dual coenzyme specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号