首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recent DNA sequence analyses have revealed the diversity of algal partners in lichen symbioses. Although morphologically similar, different genetic lineages of photobionts are detected in wide geographic ranges of the same lichen fungal species. We studied the photobiont of the genus Trebouxia, which are known as partners of diverse lichen-forming fungal species in the Mediterranean region. We studied the phylogeny of these algae with a multilocus dataset including three loci: ITS, rbcL, and actin type I gene. The two lineages found, informally named Trebouxia sp. 1 and Trebouxia sp. 2, are related to Trebouxia arboricola/decolorans. The cultivation under axenic conditions succeeded only for one of them so far. We used light microscopy, confocal laser scanning microscopy and transmission electron microscopy for phenotypic characterisation. The ultrastructural characters currently used to describe species in the genus do not support the segregation of Trebouxia sp.1 from Trebouxia arboricola. The preferential presence in Mediterranean climates of these strains suggests eco-physiological adaptation. Despite their asexuality in long living lichen symbioses, coccoid algal lichen partners have apparently diversified genetically and physiologically.  相似文献   

2.
The bright yellow wall lichen, Xanthoria parietina , is usually inhabited by oribatid mites (Acari) which do not only find shelter, but also graze on selected areas of the thallus. As X. parietina does not produce symbiotic vegetative propagules and its compatible photobiont, unicellular green algae of the genus Trebouxia , are rare outside lichen thalli, we tested the hypothesis of dispersal of viable Trebouxia cells via acarine faeces. The lichenivorous mites, Trhypochtonius tectorum and Trichoribates trimaculatus , were isolated from thalli of X. parietina and cultured in the laboratory on a lichen diet. Light microscopic investigations of faecal pellets from mites that had been feeding on X. parietina indicated gut passage of intact ascospores and photobiont cells. In a series of experiments, viable algal and fungal cells contained in such faecal pellets were cultured. The taxonomic affiliation of these isolates was identified using molecular techniques, i.e. comparative investigations of nuclear ribosomal gene data (ITS 1 and 2, 5.8S rDNA) in the algal and fungal partners, and of the species-specific hydrophobin gene sequence in the fungal partner. Our culturing experiments demonstrated that the faecal pellets of both lichenivorous mites, upon feeding on X. parietina , contain viable ascospores and photobiont cells ( Trebouxia arboricola ) and thus might be a common and successful mode of vegetative short- and long-distance dispersal of this and numerous other lichen-forming ascomycetes and their photobionts. Future studies will have to elucidate the evolutionary significance of invertebrate interactions with lichens. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 76 , 259–268.  相似文献   

3.
The composite thalli produced by lichen fungi in symbiosis with algae often show structural convergences with plants. Similar overall thallus forms and branching patterns may arise in lichens with very different anatomical construction, indicating the autonomy of the morphological level of organization. Fungal and algal growth and division may be highly integrated within meristem-like morphogenetic zones in many lichens, whereas in others the symbionts may contribute in a less synchronized fashion to the construction of the thallus. Although thallus-level morphology and morphogenesis may be compared with those of plants, ontogeny of the lichen thallus differs fundamentally. Observations of lichen ontogeny illustrate the formation of the thallus by unification of autonomous, primary cellular elements in co-ordinated growth. In land plants and many algae, by contrast, the plant body is the primary structure, the cellular elements of which represent secondary subdivisions. The convergences in form are based on a common mode of nutrition in combination with cell-wall building materials that impart similar structural potential. The photosynthetic apparatus forming the basis of this mode of nutrition is not a convergent feature, however, but a homologous structure that originated in the cyanobacteria and subsequently passed laterally into diverse biological lineages by repeated endosymbioses. With consolidation of these symbioses as eukaryotic algae and plants, the organismal level of organization was repeatedly re-established with increasing degrees of complexity, and morphological convergences were expressed at these new levels. In lichens, by contrast, the symbiosis is not organismally consolidated; morphological expression instead emerges at the superorganismal level.  © 2006 The Linnean Society of London, Botanical Journal of the Linnean Society , 2006, 150 , 89–99.  相似文献   

4.
The nuclear-encoded small subunit ribosomal DNA gene of many lichen-forming green algae in the genus Trebouxia contains a group I intron at Escherichia coli genic position 1512. We studied the evolutionary history of the 1512 intron in Trebouxia spp. (Trebouxiophyceae) by analyzing intron and "host" cell phylogenies. The host trees were constructed by comparing internal transcribed spacer regions of rDNA. Maximum-likelihood, maximum-parsimony, and distance analyses suggest that the 1512 intron was present in the common ancestor of the green algal classes Trebouxiophyceae, Chlorophyceae, and Ulvophyceae. The 1512 intron, however, was laterally transferred at least three times among later-diverging Trebouxia spp. that form lichen partnerships. Intron secondary structure analyses are consistent with this result. Our results support the hypothesis that lichenization may facilitate 1512 group I intron lateral transfer through the close cell-to-cell contact that occurs between the lichen algal and fungal symbionts in the developing lichen thallus.  相似文献   

5.
Axenic cultures of lichen photobionts isolated from bark-inhabiting lichen thalli of the Physcietum adscendentis Ochsner were identified by light microscopy and sequence comparisons of internal transcribed spacer rDNAs to investigate principles of lichenization within a defined lichen sociological unit. The photobiont identity of eight lichen species is reported for the first time (photobiont species in square brackets): Lecania cyrtella (Ach.) Th. Fr. [ Trebouxia arboricola Puym.], Lecania naegelii (Hepp) Diederich & v. d. Boom [ Dictyochloropsis symbiontica Tscherm.-Woess], Candelaria concolor (Dicks) B. Stein [ Trebouxia jamesii (Hildreth & Ahmadjian) Gärtner], Candelariella cf. reflexa (Nyl.) Lettau [ T. jamesii ], Lecanora spec. [ T. arboricola ], Phaeophyscia orbicularis (Neck.) Moberg [ T. impressa Ahmadjian], Physcia adscendens (Fr.) H. Olivier [ T. impressa ] and Lecidella elaeochroma (Ach.) M. Choisy [ T. arboricola ] and could be confirmed for another two species, Physcia stellaris (L.) Nyl. [ Trebouxia impressa ] and Xanthoria parietina (L.) Th. Fr. [ Trebouxia arboricola ]. The observation that pioneer lichens without vegetative propagules, growing on smooth bark, had Trebouxia arboricola as photobiont can be explained by the assumption of a free-living population of Trebouxia arboricola . Species of photobionts from Xanthoria parietina were morphologically and genetically different from those of Physcia adscendens and Phaeophyscia orbicularis , respectively; a finding that does not support the previous assumption that Xanthoria parietina takes over its algal partner from a Physcia species, at least at the sites investigated.  相似文献   

6.

Background and Aims

The integrity and evolution of lichen symbioses depend on a fine-tuned combination of algal and fungal genotypes. Geographically widespread species complexes of lichenized fungi can occur in habitats with slightly varying ecological conditions, and it remains unclear how this variation correlates with symbiont selectivity patterns in lichens. In an attempt to address this question, >300 samples were taken of the globally distributed and ecologically variable lichen-forming species complex Tephromela atra, together with closely allied species, in order to study genetic diversity and the selectivity patterns of their photobionts.

Methods

Lichen thalli of T. atra and of closely related species T. grumosa, T. nashii and T. atrocaesia were collected from six continents, across 24 countries and 62 localities representing a wide range of habitats. Analyses of genetic diversity and phylogenetic relationships were carried out both for photobionts amplified directly from the lichen thalli and from those isolated in axenic cultures. Morphological and anatomical traits were studied with light and transmission electron microscopy in the isolated algal strains.

Key Results

Tephromela fungal species were found to associate with 12 lineages of Trebouxia. Five new clades demonstrate the still-unrecognized genetic diversity of lichen algae. Culturable, undescribed lineages were also characterized by phenotypic traits. Strong selectivity of the mycobionts for the photobionts was observed in six monophyletic Tephromela clades. Seven Trebouxia lineages were detected in the poorly resolved lineage T. atra sensu lato, where co-occurrence of multiple photobiont lineages in single thalli was repeatedly observed.

Conclusions

Low selectivity apparently allows widespread lichen-forming fungi to establish successful symbioses with locally adapted photobionts in a broader range of habitats. This flexibility might correlate with both lower phylogenetic resolution and evolutionary divergence in species complexes of crustose lichen-forming fungi.  相似文献   

7.
R. Honegger  M. Peter  S. Scherrer 《Protoplasma》1996,190(3-4):221-232
Summary Cryotechniques, such as low temperature scanning electron microscopy (LTSEM) and freeze-substitution for transmission electron microscopy (TEM), were applied to two cyanobacterial and three green algal macrolichens in order to locate free water and to visualize drought-induced structural alterations at the mycobiont—photobiont interface. The following species were examined:Peltigera canina/Nostoc punctiforme, Sticta sylvatica/Nostoc sp. (both Peltigerales),Parmelia sulcata/Trebouxia impressa, Hypogymnia physodes/Trebouxia sp. (both Lecanorales), andXanthoria parietina/Trebouxia arboricola (Teloschistales). In all species free water was confined to the symplast and the apoplast. No intercellular water reservoirs were found in the gas-filled thallus interior. Thalline fluctuations in water content reflect fluctuations in apoplastic and symplastic water. All the taxonomically diverse lichen photobionts have access to water and dissolved nutrients via the fungal apoplast only. Drought stress (i.e., water content 20%/dw and below) caused dramatic shrinkage and deformation in all cell types. At any level of hydration the fungal and algal protoplast maintained close contact with the cell wall. This applied to the cyanobacterial photobionts and their murein sacculus and gelatinous sheath too. Although the cytoplasm of both partners was strongly condensed in desiccated lichens the cellular membrane systems, usually negatively contrasted, were very well preserved. The significance of these data is discussed with regard to the functioning of the symbiotic relationship.  相似文献   

8.
It is proposed that lichen photobionts, compared to mycobionts, have very limited capacity to evolve adaptations to lichenization, so that the symbionts in lichens do not co-evolve. This is because lichens have (a) no sequential selection of photobiont cells from one lichen into another needed for Darwinian natural selection and (b) no photobiont sexual reproduction in the thallus. Molecular studies of lichen photobionts indicate no predictable patterns of photobiont lineages that occur in lichens so supporting this proposal. Any adaptation by photobionts accumulating beneficial mutations for lichenization is probably insignificant compared to the rate of mycobiont adaptation. This proposal poses questions for research relating the photobiont sexual cycle (genetic and cellular), the fate of photobiont lineages after lichenization, whether lineages of photobionts in thalli change with time, thallus formation by from spores as well as carbohydrate movement from photobionts to mycobionts and regulation of co-development of the symbionts in the thallus.  相似文献   

9.
We tested the hypothesis that lichen species with a photosynthetic CO2-concentrating mechanism (CCM) use nitrogen more efficiently in photosynthesis than species without this mechanism. Total ribulose bisphosphate carboxylase-oxygenase (Rubisco; EC 4.1.1.39) and chitin (the nitrogenous component of fungal cell walls), were quantified and related to photosynthetic capacity in eight lichens. The species represented three modes of CO2 acquisition and two modes of nitrogen acquisition, and included one cyanobacterial ( Nostoc ) lichen with a CCM and N2 fixation, four green algal ( Trebouxia ) lichens with a CCM but without N2 fixation and three lichens with green algal primary photobionts ( Coccomyxa or Dictyochloropsis ) lacking a CCM. The latter have N2-fixing Nostoc in cephalodia. When related to thallus dry weight, total thallus nitrogen varied 20-fold, chitin 40-fold, Chl a 5-fold and Rubisco 4-fold among the species. Total nitrogen was lowest in three of the four Trebouxia lichens and highest in the bipartite cyanobacterial lichen. Lichens with the lowest nitrogen invested a larger proportion of this into photosynthetic components, while the species with high nitrogen made relatively more chitin. As a result, the potential photosynthetic nitrogen use efficiency was negatively correlated to total thallus nitrogen for this range of species. The cyanobacterial lichen had a higher photosynthetic capacity in relation to both Chl a and Rubisco compared with the green algal lichens. For the range of green algal lichens both Chl a and Rubisco contents were linearly related to photosynthetic capacity, so the data did not support the hypothesis of an enhanced photosynthetic nitrogen use efficiency in green-algal lichens with a CCM.  相似文献   

10.
Abstract: The photobiont inventory of a stand of the Acarosporetum sinopicae, a lichen community comprising saxicolous, chalcophilous lichens, has been analysed. Investigated lichen species were Acarospora rugulosa, A. sinopica, Bellemerea diamartha, Lecanora polytropa, L. subaurea, Lecidea silacea, L. lapicida, Rhizocarpon geographicum, and Umbilicaria cylindrica. For all these lichen species this is the first record of the photobionts, except for L. lapicida. The photobionts were cultured axenically and investigated using light microscopical and molecular methods (ITS-sequence analyses). Every lichen species contained only one photobiont species. All photobionts belong toTrebouxia jamesii , but two different subspecies were found with the morphological differences corresponding to molecular differences. The new subspecies T. jamesii subsp. angustilobata is described, differing from the typical T. jamesii by a crenulate chloroplast but identical to the latter taxon in respect to the pyrenoid structure in the light microscope. These results are discussed with respect to the photobiont inventory of the Physcietum adscendentis, analysed in an earlier study.  相似文献   

11.
Symbiosis is a major theme in the history of life and can be an important force driving evolution. However, across symbioses, it is difficult to tease apart the mechanisms that structure the interactions among potential partners. We used genetic similarity and frequency-based methods to qualitatively and quantitatively examine the patterns of association among several co-occurring Cladonia lichen fungi and their algal photobionts in six disjunct Florida scrub sites. The patterns of association were described by the degree of specificity, i.e. the phylogenetic range of associated partners, and of selectivity, i.e. the frequency of association among partners. Six fungal species associated with only one algal internal transcribed spacer clade, with the remaining two fungi being associated with two algal clades. In all cases, the fungi associated in unequal frequencies with the observed algal photobiont genotypes within those clades--suggesting that both specificity and selectivity were higher than expected. Fungal species can be grouped into three significantly different specificity classes: photobiont specialists, intermediates and generalists. In contrast to the pronounced specificity for photobionts among fungal species, the different Florida scrub sites do not harbour distinct photobiont pools, and differential photobiont availability cannot explain the patterning of lichen associations at this spatial scale. Therefore, we conclude that fungal specificity and selectivity for algal photobionts are major factors in determining the local composition of symbiotic partnerships.  相似文献   

12.
The Opegrapha species with 3-septate ascospores growing on Pertusaria and Ochrolechia are revised. Two species are recognized: Opegrapha anomea (of which O. pertusariae , O. quaternella , O. wetmorei and possibly Leciographa weissii are considered to be synonyms), and O. blakii Ertz & Diederich sp. nov. described from a sterile lichen with an Ochrolechia -like thallus, known from Ecuador and Venezuela. Opegrapha anomea and several related lichenicolous species with roundish or irregular, often multilocular ascomata are morphologically intermediate between Opegrapha and Plectocarpon , and might represent a distinct genus.  © 2004 The Linnean Society of London, Botanical Journal of the Linnean Society , 2004, 144, 235−241.  相似文献   

13.
A light microscopic and molecular analysis of photobionts in Ramalina and Cladonia from coastal habitats of Brazil is presented. A Bayesian phylogenetic analysis of ITS rDNA sequences suggests a Trebouxia lineage which is preferentially tropical in geographic distribution. This highly diverse clade also includes the morphological similar species Trebouxia higginsiae and galapagensis. Within the predominantly tropical clade of Trebouxia we distinguish several subclades, three of which are represented in our samples of Ramalina species. Since sexuality has not been recognized in coccal lichenised photobionts until recently, we cannot apply a biological species concept, but when compared with the sequence diversity between known species we conclude that several new species need to be described in this clade. The mutually exclusive presence of other Trebouxia lineages in temperate samples of Ramalina suggests an evolution towards higher selectivity in this genus. A strictly tropical lineage is not conspicuous in the photobionts of the genus Asterochloris sampled from Cladonia so far.  相似文献   

14.
Abstract: Lichen-forming ascomycetes and their green algal photobionts completely die off within approximately 3 years of storage at room temperature. Macroscopically this is recognizable as a colour change, the green shades of the chlorophylls being lost. In fluorescent light microscopy preparations an increase in fungal autofluorescence and a significant decrease in chlorophyll autofluorescence in the Trebouxia cells was observed. In transmission electron microscopy preparations of Xanthoria parietina and its green algal photobiont, Trebouxia arboricola, the fungal membrane systems were found to be largely broken down whereas the shrivelled algal protoplast failed to rehydrate after storage at room temperature. When stored in the desiccated state at - 20 °C, both partners of the symbiosis stayed fully viable for up to 13 years, their colouration and chlorophyll fluorescence being unchanged. Viability was measured as ascospore ejection and germination rates in Xanthoria parietina, soredium germination rates in Xanthoria fallax, Hypogymnia physodes and Parmelia sulcata, and autospore formation rate in Trebouxia cells (green algal photobiont), which had been isolated from the thalli after rehydration. Thallus fragments of Xanthoria parietina were shown to grow normally after one week of storage in LN2 without any cryoprotectant. In the desiccated state deep-frozen samples can be repeatedly brought to room temperature and back to - 20 °C without any loss of viability. Cryopreservation is therefore a suitable mode of long-term storage of viable lichen thalli for experimental studies or transplant experiments.  相似文献   

15.
Abstract: In contrast to green algal lichens, cyanobacterial species of different families, growth forms and habitats proved to be unable to attain positive net CO2 assimilation when the dry thalli were treated with air of high relative humidity; they needed liquid water for the reactivation of their photosynthetic apparatus. Identical behaviour is shown by all of the 47 lichen species with cyanobacterial photobionts, from six different genera, studied so far. This suggests a widely distributed, if not general, characteristic of cyanobacterial lichens. The difference in performance between both groups of photobionts was maintained when the lichen thallus was macerated. Furthermore, cultures of Chroococcidiopsis were unable to make use of water vapour hydration for positive net photosynthesis, and were similar in this respect to some free-living aerophilic cyanohacteria tested earlier. Possible physiological implications as well as ecological consequences for water-relation-dependent habitat selection of green-algal and cyanobacterial lichens are discussed.  相似文献   

16.
Abstract:The identity of photobionts from 20 species of the Physciaceae from different habitats and geographical regions has been determined by ITS rDNA sequence comparisons in order to estimate the diversity of photobionts within that lichen group, to detect patterns of specificity of mycobionts towards their photobionts and as a part of an ongoing study to investigate possible parallel cladogenesis of both symbionts. Algal-specific PCR primers have been used to determine the ITS rDNA sequences from DNA extractions of dried lichens that were up to 5 years old. Direct comparisons and phylogenetic analyses allowed the assignment of Physciaceae photobionts to four distinct clades in the photobiont ITS rDNA phylogeny. The results indicate a diversity within the genus Trebouxia Puymaly and Physciaceae photobionts that is higher than expected on the basis of morphology alone. Physciaceae photobionts belonged to 12 different ITS lineages of which nine could unambiguously be assigned to six morphospecies of Trebouxia. The identity of the remaining three sequences was not clarified; they may represent new species. Specificity at the generic level was low as a whole range of photobiont species were found within a genus of Physciaceae and different ranges were detected. The photobionts ofPhyscia (Schreb.) Michaux were closely related and represented one morphospecies of Trebouxia, whereas the algal partners of Buellia De Not and Rinodina (Ach.) S. Gray were in distant lineages of the ITS phylogeny and from several Trebouxia morphospecies. Photobiont variation within a genus of Physciaceae may be due to phylogeny, geographical distance or because photobionts from neighbouring lichens were taken (‘algal sharing’). At the species level Physciaceae mycobionts seem to be rather selective and contained photobionts that were very closely related within one morphospecies of Trebouxia.  相似文献   

17.
Aerial green algae of Trentepohliaceae can form conspicuous free-living colonies, be parasites of plants or photobionts of lichen-forming ascomycetes. So far, their diversity in temperate regions is still poorly known as it has been mostly studied by phenotypic approaches only. We present new insights in the phylogenetic relationships of lichenized representatives from temperate and Mediterranean parts of Europe by analysis of 18S rRNA and rbcL gene fragments, and nuclear ITS sequence data. For this purpose we isolated the trentepohlialean photobionts from lichens representing different genera. Algal cultures from lichenized and free-living Trentepohliaceae were used to design new primers for amplification of the marker loci. We constructed a phylogenetic hypothesis to reveal the phylogenetic placements of lichenized lineages with 18S rRNA and rbcL sequences. ITS variation among the clades was substantial and did not allow including them in the general phylogenetic assessment, yet ITS appears to be a promising marker for DNA-barcoding approaches. Specific algae were found in particular lichen but the overall diversity of photobionts was limited. The multilocus tree does not support the current morphological classification of genera in Trentepohliaceae, suggesting that morphology is more variable than previously thought in this group of algae.  相似文献   

18.
Domestication of algae by lichen‐forming fungi describes the symbiotic relationship between the photosynthetic (green alga or cyanobacterium; photobiont) and fungal (mycobiont) partnership in lichen associations ( Goward 1992 ). The algal domestication implies that the mycobiont cultivates the alga as a monoculture within its thallus, analogous to a farmer cultivating a food crop. However, the initial photobiont ‘selection’ by the mycobiont may be predetermined by the habitat rather than by the farmer. When the mycobiont selects a photobiont from the available photobionts within a habitat, the mycobiont may influence photobiont growth and reproduction ( Ahmadjian & Jacobs 1981 ) only after the interaction has been initiated. The theory of ecological guilds ( Rikkinen et al. 2002 ) proposes that habitat limits the variety of photobionts available to the fungal partner. While some studies provide evidence to support the theory of ecological guilds in cyanobacterial lichens ( Rikkinen et al. 2002 ), other studies propose models to explain variation in symbiont combinations in green algal lichens ( Ohmura et al. 2006 ; Piercey‐Normore 2006 ; Yahr et al. 2006 ) hypothesizing the existence of such guilds. In this issue of Molecular Ecology, Peksa & ?kaloud (2011) test the theory of ecological guilds and suggest a relationship between algal habitat requirements and lichen adaptation in green algal lichens of the genus Lepraria. The environmental parameters examined in this study, exposure to rainfall, altitude and substratum type, are integral to lichen biology. Lichens have a poikilohydric nature, relying on the availability of atmospheric moisture for metabolic processes. Having no known active mechanism to preserve metabolic thallus moisture in times of drought, one would expect a strong influence of the environment on symbiont adaptation to specific habitats. Adaptation to changes in substrata and its properties would be expected with the intimate contact between crustose lichens in the genus Lepraria. Altitude has been suggested to influence species distributions in a wide range of taxonomic groups. This is one of the first studies to illustrate an ecological guild, mainly for exposure to rainfall (ombrophiles and ombrophobes), with green algal lichens.  相似文献   

19.
Unicellular algae of genus Trebouxia are the most frequent symbiotic photobionts found in lichen species adapted to extreme environments. When lichenised, they cope well with freezing temperature of polar regions, high-mountains environments and were successfully tested in open-space experiments. Trebouxia sp. is considered potential model species for exobiological experiments. The aim of this paper is to evaluate cryoresistence of Trebouxia sp. when isolated from lichen thalli and cultivated on media. In our study, six algal strains were exposed to repeated freezing/thawing cycles. The strains of Trebouxia sp. (freshly isolated from lichen Lasallia pustulata), Trebouxia erici, Trebouxia asymmetrica, Trebouxia glomerata, Trebouxia irregularis, and Trebouxia jamesii from culture collection were cooled from 25 to -40 °C at two different rates. The strains were also shock frozen in liquid nitrogen. After repeated treatment, the strains were inoculated and cultivated on a BBM agar for 7 days. Then, cell viability was assessed as relative share of living cells. Potential quantum yield of photochemical reactions in PS II (F(V)/F(M)), and effective quantum yield of photochemical reactions in PS II (Φ(PSII)) were measured. While the slow cooling rate (0.5 °C min(-1)) did not cause any change in viability, F(V)/F(M), and Φ(PSII), the fast cooling rate (6.0 °C min(-1)) caused species-specific decrease in all parameters. The most pronounced interspecific differences in cryoresistance were found after shock freezing and consequent cultivation. While T. asymmetrica and T. jamesii exhibited low viability of living cells (18.9% and 34.7%) and full suppression of photosynthetic processes, the other strains had viability over 60%, and unaffected values of F(V)/F(M), and Φ(PSII). This indicated a high degree of cryoresistance of T. glomerata, T. erici, T. irregularis and Trebouxia sp. strains. These strains could be used for detailed investigation of underlying physiological mechanisms and as models for astrobiological tests taken in the Earth facilities.  相似文献   

20.
Lipid metabolism was studied in different photobiont species from lichens by following incorporation of radiolabel from [1-14C]acetate. In four algal photobionts, Coccomyxa mucigena, C. peltigera variolosae, Trebouxia aggregata, T. erici, polar lipids were mainly (73-90%) labelled while triacylglycerols were the most highly labelled non-polar lipid class. A rhamnose-containing lipid was found in two Coccomyxa species, representing about 11% of the polar lipids of C. mucigena. All the major algal glycosyl- and phospho-glycerides were labelled with monogalactosyldiacylglycerol and phosphatidylglycerol, respectively, being the main labelled lipids in the polar lipid classes. The photobionts were grown in media differing in their phosphate content by one hundred-fold. Low phosphate levels caused only a small decrease in the proportion of phosphoglyceride labelling--mainly in phosphatidylglycerol. However, total lipid labelling was reduced (by 83.3 and 76.6% in two Coccomyxa spp. and 62.1 and 27% in two Trebouxia spp.) for the green algae. By comparison, variations in phosphate availability had no significant effect on a Nostoc sp. Examination of the algal species by electron microscopy revealed phosphorus-containing granules. This reserve of phosphorus explains why the algal photobionts were able to maintain the proportion of phosphoglyceride labelling well and may be an important adaptive mechanism for lichens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号