首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protective immunity to the parasite Trypanosoma cruzi in mice depends on a pro-inflammatory T cell response involving the production of interferon-gamma (IFN-gamma). In conjunction with interleukin-12 (IL-12), IL-18 promotes the synthesis of IFN-gamma and a T helper type 1 immune response. We investigated the requirements of IL-12 and IL-18 in murine T. cruzi infection by use of C57BL/6 mice genetically deficient in either cytokine. IL-12p40(-/-) mice succumbed to infection at doses of 100 parasites, whereas IL-18(-/-) and wild-type mice resisted infectious doses up to 1000 parasites to the same extent. Levels of parasitemia were comparable between the latter groups, as were tissue parasite burdens according to quantitative real-time PCR. In contrast, IL-12p40(-/-) mice displayed vastly increased levels of parasites both in blood and in tissue. IFN-gamma concentrations in the serum of infected mice and in supernatants of splenocytes stimulated in vitro were decreased in IL-18(-/-) mice, whereas in IL-12p40(-/-) mice, IFN-gamma was undetectable in the serum and drastically reduced in cell supernatants. Levels of IL-12 production were generally comparable between wild-type and IL-18(-/-) mice, as were levels of IL-4, IL-2 and nitric oxide. Thus, the requirement for endogenous pro-inflammatory cytokines for a protective murine immune response against T. cruzi is satisfied by the expression of IL-12, while IL-18 is dispensable.  相似文献   

2.
In order to study the role of endogenous IFN-gamma in Trypanosoma cruzi infection in mice, a potent murine IFN-gamma-specific mAb was injected i.p. on days -1, 7, and 14, relative to infection. Irrespective of the parasite inocula (100 or 25,000), groups of antibody-treated mice had significantly greater cumulative mortality rates than did appropriate controls. In antibody-treated mice, mean survival times were also significantly shorter, and maximum mean parasitemia levels were significantly higher, than in controls. Moreover, the number of amastigote nests in tissues was higher than in control mice and attained a maximum at the same time as parasitemia. As evident from kinetic studies of neutralizing activity, injected mAb were rapidly consumed in infected, but not in noninfected, mice, which is suggestive of massive IFN-gamma production during the early parasitemic phase of the disease. Nevertheless, IFN-gamma remained undetectable in the sera of infected but untreated mice. Unexpectedly, however, a peak of IFN-like antiviral activity, characterizable as a mixture of IFN-gamma and IFN-beta, appeared in mAb-treated mice that survived to infection at a time when neutralizing activity of injected mAb had drastically decreased in the circulation. We hypothesize that this high level of artificially induced endogenous IFN-gamma, not neutralized by the amounts of injected mAb, was due to the more intense parasite multiplication occurring in mAb-treated mice, which in turn may have induced an increased amount of various cytokines. TNF-alpha was not found in the serum of our mice. The humoral immune response entered its exponential phase at a time point later than that when protection by endogenous IFN-gamma was evident. Treatment with IFN-gamma-specific antibody, as applied in our study, failed to affect the level of different Ig isotypes or of T. cruzi-specific antibodies. Our study clearly indicates that IFN-gamma is produced early in acute T. cruzi infection and exerts a protective effect that is probably independent from the humoral immune response.  相似文献   

3.
Trypanosoma cruzi: Immunosuppressed response to different antigens in the infected mouse. Experimental Parasitology45, 190–199. Trypanosoma cruzi infection in mice results in functional changes in the normal immunological responses to heterologous antigens. An immunosuppression of the 19 and 7S antibody response is observed in infected animals against both a particulate antigen and against soluble antigens. Furthermore, the immune response to the soluble T-independent antigens, DNP-Ficoll and LPS, was also similarly impaired when antigen was administered to trypanosome-infected animals. The suppression of the immune response to these antigens does not seem to involve an alteration in the macrophage, as evidenced by a normal uptake and handling of soluble 131I-labeled HSA and by a normal immune response when antigen-exposed peritoneal macrophages from trypanosome-infected mice were transferred to normal mice. These data support the concept that T. cruzi induces an immunosuppression to both T-dependent and T-independent antigens and that the depression observed is not due to an alteration in macrophage function.  相似文献   

4.
The extent of parasite proliferation following completion of the first cycle of intracellular replication was significantly higher in CD-1 nu/nu mice and in irradiated mice compared to other, including highly susceptible, mouse strains. A control of parasite proliferation thus occurs in normal mice as early as the first cycle of intracellular replication. The thymus dependency and radiation sensitivity of the early control of proliferation of Trypanosoma cruzi suggest that an immune response to the parasite is involved in the early control of proliferation. The BXH-2 recombinant inbred strain demonstrated an inability to control early proliferation and, 4-5 days after infection, had parasitemias several times higher than those observed in susceptible mouse strains. The BXH-2 strain appears to lack the early control mechanism. When the extent of proliferation of T. cruzi at completion of the first cycle of intracellular replication was compared in inbred strains of mice having varying levels of resistance to the parasite, the extent of proliferation correlated with host resistance, being lowest in the most resistant strains (C57BL/6, SJL) and highest in the most susceptible strains (C3H, A). It is suggested that the mechanism(s) controlling early parasite proliferation may be of primary importance as the basis for host resistance.  相似文献   

5.
Trypanosoma cruzi phosphodiesterase C (TcrPDEC) is a potential new drug target for the treatment of Chagas disease but has not been well studied. This study reports the enzymatic properties of various kinetoplastid PDECs and the crystal structures of the unliganded TcrPDEC1 catalytic domain and its complex with an inhibitor. Mutations of PDEC during the course of evolution led to inactivation of PDEC in Trypanosoma brucei/Trypanosoma evansi/Trypanosoma congolense, whereas the enzyme is active in all other kinetoplastids. The TcrPDEC1 catalytic domain hydrolyzes both cAMP and cGMP with a K(m) of 23.8 μm and a k(cat) of 31 s(-1) for cAMP and a K(m) of 99.1 μm and a k(cat) of 17 s(-1) for cGMP, thus confirming its dual specificity. The crystal structures show that the N-terminal fragment wraps around the TcrPDEC catalytic domain and may thus regulate its enzymatic activity via direct interactions with the active site residues. A PDE5 selective inhibitor that has an IC(50) of 230 nm for TcrPDEC1 binds to TcrPDEC1 in an orientation opposite to that of sildenafil. This observation, together with the screen of the inhibitory potency of human PDE inhibitors against TcrPDEC, implies that the scaffold of some human PDE inhibitors might be used as the starting model for design of parasite PDE inhibitors. The structural study also identified a unique parasite pocket that neighbors the active site and may thus be valuable for the design of parasite-specific inhibitors.  相似文献   

6.
The homocytotropic antibody response to unrelated antigens of mice with acute or chronic infection with Trypanosoma cruzi was studied. The production of IgG1 and IgE antibodies was observed in animals immunized with ovalbumin. The levels of IgG1 and IgE antibody were determined by passive cutaneous anaphylaxis. There was a depression in both IgG1 and IgE when infection and immunization were simultaneous. This depression was more intense when the animals were immunized 3 days after infection. A depression of IgG1 but not of IgE was observed in the animals with chronic infection and in the animals infected during the course of the humoral antibody response (12 days after immunization). It is suggested that a loss of T-cell regulatory mechanism may explain these results.  相似文献   

7.
Chagas' disease, caused by Trypanosoma cruzi, is associated with myocarditis and expression of myocardial cytokines and inducible nitric oxide synthase (NOS2). To assess the functional significance of NOS2 in murine Chagas' disease, we infected NOS2 knockout (NOS2(-/-)) and C57BL/6x129sv (wild type) mice with the Tulahuen strain of T. cruzi. Serial transthoracic echocardiography was performed to assess the progression of left and right ventricular dysfunction in infected mice. Uninfected wild type and NOS2(-/-) mice served as controls. At day 10 post-infection (p.i.), infected wild type mice had larger left ventricular end-diastolic diameter (2.52+/-0.14-vs-2.11+/-0.06 mm, P<0.02) and right ventricle (0.6+/-0.2-vs-0 visual grade, P<0.02) as compared with uninfected wild type mice. At day 19 p.i., compared with uninfected controls, infected wild type mice had larger left ventricular end-diastolic diameter (3.30+/-0.29-vs-2.11+/-0.07 mm), left ventricular end-systolic diameter (1.86+/-0.29-vs-0.88+/-0.05 mm), right ventricle (1.6+/-0.2-vs-0 visual grade), lower heart rate (413+/-27-vs-557+/-25 beats per min), left ventricular relative wall thickness (0.44+/-0.05-vs-0.64+/-0.03) and fractional shortening (45+/-4-vs-57+/-2%) [P<0.05 for all]. In contrast, no differences in left ventricular end-diastolic diameter or fractional shortening were noted among infected and uninfected NOS2(-/-) mice at day 19 p.i. Compared with uninfected controls, infected NOS2(-/-) mice had significantly lower heart rate (272+/-23-vs-512+/-31 beats per min, P<0.01) and larger right ventricle (0.6+/-0.2-vs-0, P<0.05 visual grade). The magnitude of right ventricular dilation in NOS2(-/-) mice was less than that observed in infected wild type mice. At necropsy, the heart weight was greater (129+/-16-vs-109+/-7 mg, P=0.02) and myocardial inflammation more severe in infected wild type compared with infected NOS2(-/-) mice. Myocardial interleukin (IL)-1beta, IL-6, tumour necrosis factor-alpha, and interferon-gamma were induced in all infected mice. These data indicate that nitric oxide derived from NOS2 plays an important role in the development and progression of ventricular dilation and systolic dysfunction in acute murine chagasic myocarditis caused by infection with the Tulahuen strain.  相似文献   

8.
9.
L-Arginine plays an essential role in the energetic metabolism of Trypanosoma cruzi. In this work we propose a relationship between L-arginine uptake, arginine kinase activity and the parasite replication ability. In epimastigote cultures L-arginine uptake decreases continuously accompanying a cell replication rate reduction. The use of conditioned or fresh medium mimics uptake variations. Interestingly, in non-replicative trypomastigote cells, L-arginine uptake was undetectable. The association between L-arginine uptake and cell replication was demonstrated using the antimitotic agent hydroxyurea. Arginine kinase, the enzyme responsible for phosphoarginine and ATP synthesis, also shows a differential activity in epimastigote and trypomastigote parasite stages.  相似文献   

10.
The protozoan parasite Trypanosoma cruzi is the etiologic agent of Chagas disease, a neglected tropical infection that affects millions of people in the Americas. Current chemotherapy relies on only two drugs that have limited efficacy and considerable side effects. Therefore, the development of new and more effective drugs is of paramount importance. Although some host cellular factors that play a role in T. cruzi infection have been uncovered, the molecular requirements for intracellular parasite growth and persistence are still not well understood. To further study these host-parasite interactions and identify human host factors required for T. cruzi infection, we performed a genome-wide RNAi screen using cellular microarrays of a printed siRNA library that spanned the whole human genome. The screening was reproduced 6 times and a customized algorithm was used to select as hits those genes whose silencing visually impaired parasite infection. The 162 strongest hits were subjected to a secondary screening and subsequently validated in two different cell lines. Among the fourteen hits confirmed, we recognized some cellular membrane proteins that might function as cell receptors for parasite entry and others that may be related to calcium release triggered by parasites during cell invasion. In addition, two of the hits are related to the TGF-beta signaling pathway, whose inhibition is already known to diminish levels of T. cruzi infection. This study represents a significant step toward unveiling the key molecular requirements for host cell invasion and revealing new potential targets for antiparasitic therapy.  相似文献   

11.
The trypanocidal activity of catechins on Trypanosoma cruzi bloodstream trypomastigotes has been previously reported. Herein, we present the effect of epigallocatechin gallate (EGCg) on parasitemia and survival in a murine model of acute Chagas' disease as well as on the epimastigote form of the parasite. Upon intraperitoneal administration of daily doses of 0.8 mg/kg/day of EGCg for 45 days, mice survival rates increased from 11% to 60%, while parasitemia diminished to 50%. No side effects were observed in EGCg-treated animals. Fifty percent inhibition of epimastigotes growth was achieved with 311 microM EGCg 120 h after drug addition. No lysis, total culture growth inhibition or morphological changes were observed upon addition of 1-3mM EGCg at 24 h. This treatment also produced oligosomal fragmentation of epimastigotes DNA, suggesting a programmed cell death (PCD)-like process. All these findings point out EGCg as a potential new lead compound for chemotherapy of Chagas' disease.  相似文献   

12.
A set of monoclonal antibodies against the purified surface gp 83 of T. cruzi trypomastigotes was produced and the ability of these monoclonals to inhibit the attachment of trypomastigotes to heart myoblasts was investigated. Western blots of solubilized trypomastigotes, epimastigotes or amastigotes probed with this set of monoclonal antibodies show that the gp 83 is present in invasive trypomastigotes, but not in non-invasive epimastigotes or amastigotes. One monoclonal antibody (Mab 4A4) from this set inhibits the attachment of trypomastigotes to heart myoblasts, whereas the others (MAbs 2H6, 4B9, 2D11) do not. These results show that the Mab 4A4 recognizes an epitope on the gp 83 of invasive trypomastigotes required for parasite binding to host cells.  相似文献   

13.
14.
Inbred mice were infected with cloned populations of Trypanosoma brucei brucei Lister S42 under carefully controlled conditions. The course of infection was found to depend both on host strain and the antigenic type of the infecting organisms. The two antigenic types used, “NIM2” and “NIM6” had differing virulence for (CBA/H × C57BL/6)F1 mice, and when mice were infected with parasites of one clone, trypanosomes of the other type frequently appeared after the initial population had been eliminated. Different mouse strains had varying susceptibility to clone NIM6. In most cases there was an inverse relation between the survival time and the parasite load during the first peak of parasitemia. The differences in resistance to T. brucei were unrelated to H-2 haplotype: C57BL/6 and (CBA/H × C57BL/6)F1 were most resistant, CBA/H, BALB/c and DBA/2 less so, and C3H/He most susceptible.  相似文献   

15.
Verapamil has been shown to attenuate the extent of myocardial injury in murine models of chronic Trypanosoma cruzi infection. Infected mice treated with verapamil have significantly lower myocardial expression of inducible nitric oxide synthase and cytokines and substantially less inflammatory infiltrate and myocyte necrosis at necropsy. In the present study, we examined the cardiac structural and functional correlates of verapamil treatment in CD1 mice infected with the Brazil strain of T. cruzi using serial transthoracic echocardiography. There were four groups: uninfected- untreated control, uninfected-verapamil-treated, infected-untreated control, and infected-verapamil-treated. Verapamil was given in drinking water (1 gm/l) continuously from the day of infection for a total of 120 days. Mice were evaluated at baseline, 40 and 150 days p.i. Mice in the untreated-infected group compared with the mice in the infected-verapamil-treated group showed thinning of the left ventricular wall (0.84 +/- 0.02-vs-0.92 +/- 0.04, P<0.05 mm), increase in the left ventricular end-diastolic diameter (3.27 +/- 0.15-vs-2.74 +/- 0.05 mm, P<0.05) and reduction in percent fractional shortening (37 +/- 2-vs-53 +/- 4%, P<0.05). No differences in these parameters were noted among mice in the uninfected-untreated and uninfected-verapamil-treated groups. Furthermore, right ventricular dilation was more severe in mice from the infected-untreated group as compared with those in the infected- verapamil-treated group (visual grade 1.9 +/- 0.4-vs-1.0 +/- 0.2, P<0.05). At necropsy, the extent of myocardial injury, as determined histologically, was significantly greater in the infected-untreated mice. These data provide cardiac structural and functional correlates for the previously observed cardioprotective effects of verapamil in chronic chagasic cardiomyopathy.  相似文献   

16.
Phenothiazines were observed to have a direct effect on Trypanosoma cruzi and on its in vitro interaction with host cells. They caused lysis of trypomastigotes (50 uM/24 h) and, in axenic medium, dose-dependent inhibition of amastigote and, to a lesser extent, epimastigote proliferation. Treatment of infected peritoneal macrophages with 12.5 uM chlorpromazine or triflupromazine inhibited the infection; this effect was found to be partially reversible if the drugs were removed after 24 h of treatment. At 60 uM, the drugs caused damage to amastigotes interiorized in heart muscle cells. However, the narrow margin of toxicity between antitrypanosomal activity and damage to host cells mitigates against in vivo investigation at the present time. Possible hypotheses for the mechanism of action of phenothiazines are discussed.  相似文献   

17.
18.
A dense glycocalix covers the surface of Trypanosoma cruzi, the agent of Chagas disease. Sialic acid in the surface of the parasite plays an important role in the infectious process, however, T. cruzi is unable to synthesize sialic acid or the usual donor CMP-sialic acid. Instead, T. cruzi expresses a unique enzyme, the trans-sialidase (TcTS) involved in the transfer of sialic acid from host glycoconjugates to mucins of the parasite. The mucins are the major glycoproteins in the insect stage epimastigotes and in the infective trypomastigotes. Both, the mucins and the TcTS are anchored to the plasma membrane by a glycosylphosphatidylinositol anchor. Thus, TcTS may be shed into the bloodstream of the mammal host by the action of a parasite phosphatidylinositol-phospholipase C, affecting the immune system. The composition and structure of the sugars in the parasite mucins is characteristic of each differentiation stage, also, interstrain variations were described for epimastigote mucins. This review focus on the characteristics of the interplay between the trans-sialidase and the mucins of T. cruzi and summarizes the known carbohydrate structures of the mucins.  相似文献   

19.
Trypanosoma cruzi in order to complete its development in the digestive tract of Rhodnius prolixus needs to overcome the immune reactions and microbiota trypanolytic activity of the gut. We demonstrate that in R. prolixus following infection with epimastigotes of Trypanosoma cruzi clone Dm28c and, in comparison with uninfected control insects, the midgut contained (i) fewer bacteria, (ii) higher parasite numbers, and (iii) reduced nitrite and nitrate production and increased phenoloxidase and antibacterial activities. In addition, in insects pre-treated with antibiotic and then infected with Dm28c, there were also reduced bacteria numbers and a higher parasite load compared with insects solely infected with parasites. Furthermore, and in contrast to insects infected with Dm28c, infection with T. cruzi Y strain resulted in a slight decreased numbers of gut bacteria but not sufficient to mediate a successful parasite infection. We conclude that infection of R. prolixus with the T. cruzi Dm28c clone modifies the host gut immune responses to decrease the microbiota population and these changes are crucial for the parasite development in the insect gut.  相似文献   

20.
We analyzed the influence of Trypanosoma cruzi maintenance in different hosts (dog and mouse) on its susceptibility to benznidazole treatment. Five T. cruzi stocks were isolated from dogs inoculated with Be-62 or Be-78 strain (both sensitive to benznidazole) 2-10 years ago, and the benznidazole sensitivity was then determined using the mouse as experimental model. The different T. cruzi stocks obtained from long-term infected dogs showed 50-90% drug resistance right after isolation. However, maintenance of these T. cruzi stocks in mice, by successive blood passages (2.5 years), led to either a decrease or stability of the drug resistance pattern and an increase in parasite virulence. We also demonstrated the effectiveness of the induction of parasitemia reactivation by cyclophosphamide immunosuppression in the evaluation of the response to the specific drug treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号