首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work studied a cost-effective electrosorption that driven by microbial fuel cells (MFC-sorption) to remove Cu2+ from wastewater without an external energy supply. The impact factors, adsorption isotherms and kinetics of the novel process were investigated. It indicated that a low electrolyte concentration and a high solution pH could enhance the Cu2+ removal efficiency, while the adsorption capacity increased with the increase of numbers of MFCs in series and the initial Cu2+ concentration. The adsorption isotherms study indicated that the monolayer adsorption in MFC-sorption was dominant. The kinetics study suggested the increase of initial Cu2+ concentration could enhance the initial adsorption rate. The electrode characterizations verified the existence of Cu2O and Cu on the electrode surface of active carbon fibers (ACFs), suggesting that MFC-sorption was not only an adsorption process, but also a redox reaction process.  相似文献   

2.
The adsorption of Pb(II) onto Hydrilla verticillata was examined in aqueous solution with parameters of pH, adsorbent dosage, contact time and temperature. The linear Langmuir and Freundlich models were applied to describe equilibrium isotherms, and both models fitted well. The monolayer adsorption capacity of Pb(II) was found as 104.2 mg/g at pH 4 and 25°C. Dubinin–Radushkevich (D–R) isotherm model was also applied to the equilibrium data. The mean free energy of adsorption (15.81 kJ/mol) indicated that the adsorption of Pb(II) onto H. verticillata may be carried out via chemical ion-exchange mechanism. Thermodynamic parameters, free energy (ΔG 0), enthalpy (ΔH 0) and entropy (ΔS 0) of adsorption were also calculated. These parameters showed that the adsorption of Pb(II) onto H. verticillata was a feasible, spontaneous and exothermic process in nature. The influence of Cd2+, Cu2+ and Ni2+ on adsorption of Pb2+ onto H. verticillata was studied, too. In the investigated range of operating conditions, it was found that the existence of Cd 2+, Cu 2+ and Ni 2+ had no impact on the adsorption of Pb2+.  相似文献   

3.
Oscillatoria anguistissima rapidly adsorbs Cu2+ from aqueous solution. The adsorption of Cu2+ followed Freundlich Isotherm, and the amount of Cu2+ removed from solution increased with increasing Cu2+ concentration. The adsorption is pH dependent, and maximum Cu2+ removal occurs at pH 5. Of the various pretreatments, HCl treatment of the biomass increased the capacity for Cu2+ removal. Presence of Mg2+ and Ca2+ resulted in decline in the Cu2+ adsorption capacity of Oscillatoria cells. This species could also effectively remove Cu2+ from mine water containing 68.4 μg/ml of Cu2+ at pH 3.45. Received: 23 December 1996 / Accepted: 20 February 1997  相似文献   

4.
Heavy metal pollution has become one of the most serious environmental pollution problems. This study aimed to determine the adsorption and desorption characteristics of Ni2+ and Cu2+ by bio-mineral which was induced by Bacillus subtilis, and to explore the effect of pH on adsorption characteristics. The results showed that the Langmuir model gave a better fit to the experimental data than the Freundlich model, which demonstrated the adsorption was of a single-molecule layer form. The maximum adsorption capacities of the bio-mineral for Ni2+ and Cu2+ were determined as 67.114 mg/g and 69.930 mg/g, respectively. The desorption rates of Ni2+ and Cu2+ were very low, especially for Ni2+ which was almost 0. Besides, the bio-mineral maintained high adsorption capability for metals ions within a wide pH range (pH ≥ 3). It did not show any new phases after adsorption of Ni2+ and Cu2+ tested by FTIR, indicating that the bio-mineral and heavy metal ions might mainly physically be adsorbed. The bio-mineral has a larger internal and external specific surface area, pore volume and colloidal properties which are beneficial for the adsorption of metals ions, but shows limits in desorption. This study provides a theoretical basis for the utilization of bio-mineral and opens a new perspective for the remediation of heavy metals pollution.  相似文献   

5.
Abstract

This study evaluates the biosorption of copper by aerobic biomass that was selected from surface waters of the San Pedro River in Sonora, Mexico. Using a batch system, 73% biosorption of copper was obtained in 75 minutes. Continuous biosorption assays were carried out for 133 days in an ascending flow aerobic reactor packed with zeolite (AFAR-PZ) that was inoculated with a bacterial consortium. Strains were grown until 1g L?1 of biomass was obtained. Tests using continuous biosorption were performed as follows: (i) the addition of 50 mg Cu2+ L?1 without recirculation of biomass; (ii) the addition of 20 mg Cu2+ L?1without recirculation of biomass; and (iii) the biomass were recirculated with the addition of 20 mg Cu2+ L?1 to pH 3 to 4. The fourth and fifth assays varied pH between 4 and 5, with 20 mg Cu2+ L?1and the biomass recirculated. Biosorption capacity of the first and second assays was 96% on the first day of experimentation. During the third trial 97% of biosorption was obtained during 6 days and the process was improved by varying the pH. Copper biosorption equilibrium was investigated under the same operating conditions. Langmuir adsorption isotherms were used to fit experimental data. The biosorption capacity of aerobic biomass was 3.08 mmol g?1. It was demonstrated that this biomass is capable of biosorbing copper and this method has potential for the treatment of industrial effluents contaminated with heavy metals.  相似文献   

6.
To achieve a satisfactory removal efficiency of heavy metal ions from wastewater, silane-functionalized montmorillonite with abundant ligand-binding sites (-NH2) was synthesized as an efficient adsorbent. Ca-montmorillonite (Ca-Mt) was functionalized with 3-aminopropyl triethoxysilane (APTES) to obtain the APTES-Mt products (APTES1.0CEC-Mt, APTES2.0CEC-Mt, APTES3.0CEC-Mt, APTES4.0CEC-Mt) with enhanced adsorption capacity for Co2+. The physico-chemical properties of the synthesized adsorbents were characterized by spectroscopic and microscopic methods, and the results demonstrated that APTES was successfully intercalated into the gallery of Ca-Mt or grafted onto the surface of Ca-Mt through Si-O bonds. The effect of solution pH, ionic strength, temperature, initial concentrations and contact time on adsorption of Co2+ by APTES-Mt was evaluated. The results indicated that adsorption of Co2+ onto Ca-Mt, APTES1.0CEC-Mt and APTES2.0CEC-Mt can be considered to be a pseudo-second-order process. In contrast, adsorption of Co2+ onto APTES3.0CEC-Mt and APTES4.0CEC-Mt fitted well with the pseudo-first-order kinetics. The adsorption isotherms were described by the Langmuir model, and the maximum adsorption capacities of APTES1.0CEC-Mt, APTES2.0CEC-Mt, APTES3.0CEC-Mt and APTES4.0CEC-Mt were 25.1, 33.8, 61.6, and 61.9 mg·g-1, respectively. In addition, reaction temperature had no impact on the adsorption capacity, while both the pH and ionic strength significantly affected the adsorption process. A synergistic effect of ion exchange and coordination interactions on adsorption was observed, thereby leading to a significant enhancement of Co2+ adsorption by the composites. Thus, APTES-Mt could be a cost-effective and environmental-friendly adsorbent, with potential for treating Co2+-rich wastewater.  相似文献   

7.
Many polluted sites are simultaneously contaminated with polycyclic aromatic hydrocarbons and heavy metals. In the present study, batch and continuous column experiments were performed utilizing self-composition soil to describe the sorption behavior of two contaminants: lead (Pb2+) and pyrene (PYR). Operational conditions such as contact time, bed depth, and flow rate were optimized. The effect of soil organic matter content on the process of adsorption of both contaminants was investigated. The presence of PYR in solution at neutral pH (6.0–7.5) decreased Pb2+ sorption. Similar behavior was observed for PYR in the presence of Pb2+ in solution. At room temperature, batch experimental data conducted as a function of contact time were analyzed using the Langmuir and Freundlich isotherms. Results revealed that Pb2+ sorption isotherms were fitted better by the Langmuir model and PYR sorption isotherms were fitted better by the Freundlich model. Column adsorption experiments were carried out at room temperature and under operating parameters (bed depth, flow rate, and initial contaminant concentration). Breakthrough curves were well fitted to the two-site first-order kinetic model with a sum of square errors less than 0.14. The Pb2+ adsorption kinetic data were processed also for the Thomas model with a good accuracy.  相似文献   

8.
Biosorption of copper by fungal melanin   总被引:1,自引:0,他引:1  
Summary Melanin obtained from Aureobasidium pullulans and Cladosporium resinae was an efficient biosorbent for copper. Copper uptake could be expressed using various adsorption isotherms; melanin from A. pullulans obeyed Freundlich and Langmuir isotherms whereas C. resinae melanin followed the BET isotherm indicating a more complex type of adsorption than in A. pullulans. In general, uptake capacities of melanin were greater than for intact biomass and the higher uptake by pigmented rather than albino biomass could be correlated with the presence of melanin. Cu2+ was less readily desorbed from melanin by dilute mineral acids than from intact biomass and again, the relative ease of Cu2+ desorption from pre-loaded pigmented or albino biomass was correlated with the presence or absence of melanin. Mg2+ and Zn2+ appeared to be the most effective cations for desorption with Na+ and K+ the least effective. The addition of melanin to a coppercontaining culture of the albino strain of A. pullulans resulted in some reduction of toxicity.  相似文献   

9.
Deng L  Zhu X  Wang X  Su Y  Su H 《Biodegradation》2007,18(4):393-402
Biosorption is an effective means of removal of heavy metals from wastewater. In this work the biosorption behavior of Cladophora fascicularis was investigated as a function of pH, amount of biosorbent, initial Cu2+ concentration, temperature, and co-existing ions. Adsorption equilibria were well described by Langmuir isotherm models. The enthalpy change for the biosorption process was found to be 6.86 kJ mol−1 by use of the Langmuir constant b. The biosorption process was found to be rapid in the first 30 min. The presence of co-existing cations such as Na+, K+, Mg2+, and Ca2+ and anions such as chloride, nitrate, sulfate, and acetate did not significantly affect uptake of Cu2+ whereas EDTA substantially affected adsorption of the metal. When experiments were performed with different desorbents the results indicated that EDTA was an efficient desorbent for the recovery of Cu2+ from biomass. IR spectral analysis suggested amido or hydroxy, C=O, and C–O could combine strongly with Cu2+.  相似文献   

10.
A new metal-chelate adsorbent utilizing 2-methacryloylamidohistidine (MAH) was prepared as a metalchelating ligand. MAH was synthesized using methacryloly chloride and histidine. Monosize nanospheres with an average diameter of 450 nm were produced by emulsion polymerization of 2-hydroxyetylmethacrylate (HEMA) and MAH. Then, Fe3+ ions were chelated directly onto the monosize nanospheres. Mon-poly(HEMA-MAH) nanospheres were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and elemental analysis. Fe3+ chelated monosize nanospheres were used in ferritin adsorption from an aqueous solution. The maximum ferritin adsorption capacity of Fe3+-chelated mon-poly(HEMAMAH) nanospheres was 202 mg/g at pH 4.0 in acetate buffer. The non-specific ferritin adsorption on the monpoly( HEMA-MAH) nanospheres was 20 mg/g. The adsorption behavior of ferritin could be modeled using both Langmuir and Freundlich isotherms. The adsorption capacity decreased with increasing ionic strength of the binding buffer. High desorption ratios (> 95% of the adsorbed ferritin) were achieved with 1.0 M NaCl at pH 7.0. Ferritin could be repeatedly adsorbed and desorbed with the Fe3+-chelated mon-poly(HEMA-MAH) nanospheres without significant loss of adsorption capacity.  相似文献   

11.
Evangelou  V. P.  Marsi  M.  Vandiviere  M. M. 《Plant and Soil》1999,213(1-2):63-74
Decomposition of fresh plant residues in soil is expected to produce humic fractions varying in molecular size. It was hypothesized that metal adsorption by soil, to some degree, will depend on humic acid content and molecular size. The latter is expected to vary in number and type of functional groups. In this study, illite-humic complexes were used to evaluate Ca2+, Cd2+, and Cu2+ adsorption and how this adsorption was affected by humic acids, differing in molecular size, under various pH values. Potentiometric titration using ion-selective electrodes with a stop-and-go procedure was employed to evaluate metal-[illite-humic] complex formation. The results showed that illite-humic complexes exhibited at least two types of metal-ion adsorption sites (low and high affinity) and molecular size of humic fractions had a large potential influence on total metal adsorption but a relatively smaller influence on metal-complex stability. Relative strength of metal-ion-[illite-humic] complexes followed the order of Cu2+>Cd2+>Ca2+ and were affected by pH, especially for low metal-ion affinity sites. Magnitude of metal-[illite-humic] stability constants, depending on molecular size of humic fraction and pH, varied on a log-scale from 3.52 to 4.21 for Ca2+, 4.38 to 5.18 for Cd2+and from 5.23 to 5.83 for Cu2+. There was an approximate 5-fold difference in these stability constants between the three different sizes of humic fractions. The larger the humic fraction, the lower the metal-[illite-humic] stability constant. This revised version was published online in June 2006 with corrections to the Cover Date. This revised version was published online in June 2006 with corrections to the Cover Date. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
The potentials of Adansonia digitata root powders (ADRP) for adsorption of Pb2+, Cd2+ and Cu2+ from aqueous solutions was investigated. Physico-chemical analysis of the adsorbent (ADRP) shows that hydroxyl, carbonyl and amino groups were predominant on the surface of the adsorbent. Scanning Electron Microscope (SEM) image revealed its high porosity and irregular pores in the adsorbent while the Energy Dispersive X-ray Spectrum showed the major element with 53.0% Nitrogen, 23.8% carbon, 9.1% calcium, 7.5% potassium and 6.6% magnesium present. The found optimal conditions were: initial concentration of the metal ions = 0.5 mg/L, pH = 5, contact time = 90 min, adsorbent dose = 0.4 g and particle size = 32 µm. Freundlich isotherm showed good fit for the adsorption of Pb2+, Cd2+ and Cu2+. Dubinin-Radushkevich isotherm revealed that the adsorption processes were physisorption Cd(II) and Cu(II) but chemisorption with respect to Pb(II) ions. The kinetics and thermodynamic studies showed that Pseudo-second order and chemisorptions provided the best fit to the experimental data of Pb (II) ions only. Batch desorption result show that desorption in the acidic media for the metal ions were more rapid and over 90% of the metal ions were recovered from the biomass.  相似文献   

13.
Carboxymethyl chitosan-graft-d-glucuronic acid (CMCS-g-d-GA) was prepared by grafting d-GA onto CMCS in the presence of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and then the membranes were made from it. In this work, the bioactivity studies of CMCS-g-d-GA membranes were carried out and then characterized by SEM, CLSM, XRD and FT-IR. The CMCS-g-d-GA membranes were found to be bioactive. The adsorption of Ni2+, Zn2+and Cu2+ ions onto CMCS-g-d-GA membranes has also been investigated. The maximum adsorption capacity of CMCS-g-d-GA for Ni2+, Zn2+and Cu2+ was found to be 57, 56.4 and 70.2 mg/g, respectively. Hence, these membranes were useful for tissue engineering, environmental and water purification applications.  相似文献   

14.
Summary Experiments are reported demonstrating that differential rates of inactivation of the histochemical staining for myofibrillar actomyosin ATPase in rat skeletal muscle fibers exist following inclusion of low concentrations of Cu2+ in the preincubation medium. This response of rat muscle occurs at near neutral (7.40), acid (4.60), and alkaline (10.30) pH. The response to Cu2+ appears to result from a binding of Cu2+ onto the myofibrillar complex, probably on myosin itself, as it can be reversed by soaking of the pretreated muscle sections in sodium cyanide or the Cu2+ chelator diethyldithiocarbamate. The pattern of modification of the staining pattern following pretreatment with Cu2+ is the mirror image of that produced by pretreatment with acid. The results demonstrate that the inclusion of Cu2+ in the preincubation media for the myofibrillar actomyosin ATPase can be a useful tool to differentiate fiber types. They also support the earlier conclusion that three distinct types of type II fibers can be identified in rat skeletal muscle based on the histochemical staining for myofibrillar actomyosin ATPase.  相似文献   

15.
In a previous work, chemically modified cellulose (EMC) and sugarcane bagasse (EMMB) were prepared from mercerized cellulose (MC) and twice-mercerized sugarcane bagasse (MMB) using ethylenediaminetetraacetic dianhydride (EDTAD) as modifying agent. In this work we described in detail the modification of these materials in function of reaction time and EDTAD amount in the reaction media. The resistance of ester bond at pH 1, 2, 11, and 12 was also evaluated by FTIR. The results were used to model the hydrolysis process and a kinetic model was proposed. The modified materials (EMMB and EMC) were used to adsorb Ca2+ and Mg2+ ions from aqueous single solutions. The adsorption isotherms were developed at two pH values. These materials showed maximum adsorption capacities for Ca2+ and Mg2+ ions ranging from 15.6 to 54.1 mg/g and 13.5 to 42.6 mg/g, respectively. The modified material from sugarcane bagasse (EMMB) showed larger maximum adsorption capacities than modified material from cellulose (EMC) for both metals.  相似文献   

16.
Polyvinylimidazole (PVI)-grafted iron oxide nanoparticles (PVIgMNP) were prepared by grafting of telomere of PVI on the iron oxide nanoparticles. Different metal ions (Cu2+, Zn2+, Cr2+, Ni2+) ions were chelated on polyvinylimidazole-grafted iron oxide nanoparticles, and then the metal-chelated magnetic particles were used in the adsorption of invertase. The maximum invertase immobilization capacity of the PVIgMNP–Cu2+ beads was observed to be 142.856 mg/g (invertase/PVIgMNP) at pH 5.0. The values of the maximum reaction rate (V max) and Michaelis–Menten constant (Km) were determined for the free and immobilized enzymes. The enzyme adsorption–desorption studies, pH effect on the adsorption efficiency, affinity of different metal ions, the kinetic parameters and storage stability of free and immobilized enzymes were evaluated.  相似文献   

17.
This study describes the preparation of two new chelating materials derived from succinylated mercerized cellulose (cell 1). Cell 1 was activated through two different methods by using diisopropylcarbodiimide and acetic anhydride (to form an internal anhydride) and reacted with triethylenetetramine in order to obtain cell 2 and 4. New modified celluloses were characterized by mass percent gain, concentration of amine functions, elemental analysis, and infrared spectroscopy. Cell 2 and 4 showed degrees of amination of 2.8 and 2.3 mmol/g and nitrogen content of 6.07% and 4.61%, respectively. The capacity of cell 2 and 4 to adsorb Cu2+, Cd2+, and Pb2+ ions from single aqueous solutions were examined. The effect of contact time, pH, and initial concentration of metal ions on the metal ions uptake was also investigated. Adsorption isotherms were well fitted by the Langmuir model. The maximum adsorption capacity of cell 2 and 4 were found to be 56.8 and 69.4 mg/g for Cu2+; 68.0 and 87.0 mg/g for Cd2+; and 147.1 and 192.3 mg/g for Pb2+, respectively.  相似文献   

18.
Alginate/phosphorylated chitin (P-chitin) blend films were prepared by mixing of 2% of alginate and P-chitin in water and then cross-linked with 4% CaCl2 solution. The blended films were characterized by FT-IR. Then, the bioactivity of blend films was studied by biomimetic method in simulated body fluid solution (SBF) for 7, 14 and 21 days. After 7, 14 and 21 days and films were characterized by FT-IR and SEM studies. The SEM and FT-IR studies showed that the hydroxyapatite was formed on the surface of the blend films after 7, 14 and 21 days in the SBF solution. These studies confirmed that the alginate/P-chitin blend films are bioactive. Furthermore, the adsorption of Ni2+, Zn2+and Cu2+onto alginate/P-chitin blend films has been investigated. The parameters studied include the pH, contact time, and initial metal ion concentrations. The maximum adsorption capacity of alginate/P-chitin blend films for Ni2+, Zn2+and Cu2+ at pH 5.0 was found to be 5.67, 2.85 and 11.7 mg/g, respectively. These results suggest that alginate/P-chitin blend films-based technologies may be developed for water purification and metal ions separation and enrichment.  相似文献   

19.
The cyanobacterium Nostoc sphaeroides Kützing is expected to be effective in toxic metal adsorption as it produces abundant exopolysaccharides with functional groups. Therefore, the adsorption properties of Cu2+, Cd2+, Cr3+, Pb2+, Ni2+, and Mn2+ on fresh macrocolonies and algal powder of N. sphaeroides were compared at pH 5 and 25 °C. The adsorption capacity of fresh biomass for Pb2+ and of algal powder for Pb2+ and Cr3+ were highest in single metal solutions. Compared to the fresh biomass, the metal adsorption capacities of algal powder were similar for Ni2+, Cd2+, and Pb2+ and slightly greater for Cr3+, but they were markedly smaller for Mn2+ and Cu2+. Coexisting ions (in tap water or in multiple solutions) significantly decreased the metal adsorption capacity, except for Cr3+ in tap water. The Pb2+ and Cr3+ adsorption dynamic process fitted the pseudo-second-order model well, showing fast adsorption at the first stage in 10 and 20 min, respectively. Higher pH in acidic ranges favored the adsorption greatly. The Langmuir isotherm model was suitable for explaining the adsorption, and the maximum adsorption capacities were 116.28 and 22.37 mg g?1 for Pb2+ and Cr3+, respectively. The adsorption process was endothermic, confirmed by the significantly higher adsorption capability at higher temperature. Hydroxyl, amino, and carboxyl groups were the main functional groups based on Fourier transform infrared spectroscopy analysis, and they bind to metal ions via ion exchange. The results suggest that fresh macrocolonies of N. sphaeroides can be used as an effective biosorbent for metal ion removal, especially for Pb2+ and Cr3+.  相似文献   

20.

The most crucial role played by minerals was in the preconcentration of biomolecules or precursors of biomolecules in prebiotic seas. If this step had not occurred, molecular evolution would not have occurred. Thiocyanate is an important molecule in the formation of biomolecules as well as a catalyst for prebiotic reactions. The adsorption of thiocyanate onto ferrihydrite was carried out under pH and ion composition conditions in seawater that resembled those of prebiotic Earth. The seawater used in this work had high Mg2+, Ca2+ and SO42? concentrations. The most important result of this work was that ferrihydrite adsorbed thiocyanateata pH value (7.2?±?0.2) that usually does not adsorb thiocyanate. The high adsorptivity of Mg2+, Ca2+ and SO42?onto ferrihydrite showed that seawater ions can act as carriers of thiocyanate to the ferrihydrite surface, creating a huge outer-sphere complex. Kinetic adsorption and isotherm experiments showed the best fit for the pseudo-second-order model and an activation energy of 23.8 kJ mol?1forthe Langmuir-Freundlich model, respectively. Thermodynamic data showed positive ΔG values, which apparently contradict the adsorption isotherm data and kinetic data that was obtained. The adsorption of thiocyanate onto ferrihydrite could be explained by coupling with the exergonic SO42? adsorption onto ferrihydrite. The FTIR spectra showed no difference between the C≡N stretching peaks of adsorbed thiocyanate and free thiocyanate, corroborating the formation of an outer-sphere complex. All the results demonstrated the importance of the artificial seawater composition for the adsorption of thiocyanate and for understanding prebiotic chemistry.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号