首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis of novel melatonin analogues 3a and 4a-c designed as melatonin receptor ligands is described. Among the newly synthesized ligands, 2-((S)-2-hydroxymethylindolin-1-ylmethyl)-melatonin 4b displayed the highest affinity for MT(1) receptors (K(i)=9.8 nM) and for MT(2) subtype (K(i)=7.8 nM), whereas the rigid pentacyclic ligand 3 showed the highest selectivity towards the MT(2) receptor subtype (K(i)=319.3 nM for MT(1) and K(i)=65.2 nM for MT(2)).  相似文献   

2.
We have applied a fast and high-yielding method for the parallel amidation of 4-[4-(2-methoxyphenyl)piperazin-1-yl]-butylamine yielding analogs of the partial dopamine receptor agonist BP 897. Using this amino scaffold prepared in solution and polymer-bound carboxylic acid equivalents, we have synthesized a series of high affinity dopamine D(3) receptor ligands. The novel compounds were obtained in good to excellent yield and purity. Biological evaluation included determination of binding affinities at hD(2S) and hD(3) receptor subtypes. From the 22 novel structures presented here, compound 4v showed high affinity (K(i) (hD(3)) 1.6nM) and a 136-fold preference for the D(3) receptor versus that for the D(2) receptor subtype. Our results suggest that this derivatization technique is a useful method to speed up structure-activity relationships studies on dopamine receptor subtype modulators.  相似文献   

3.
A piperazinylbutylisoxazole libary was designed, synthesized and screened for the binding affinities to dopamine D2, D3, and D4 receptors. Several ligands were identified to possess high binding affinity and selectivity for the D3 and D4 receptors over the D2 receptor. Compounds 6s and 6t showed K(i) values of 2.6 nM and 3.9 nM for the D3 receptor with 46- and 50-fold selectivity over the D2 receptor, respectively.  相似文献   

4.
We previously identified hexahydrobenz[f]isoquinoline (4a) as a new class of dopamine 3 receptor (D(3)) ligand. Herein, we described the design, synthesis, and preliminary structure-activity relationships of new analogues of 4a as a novel class of D(3) ligands. Among these new analogues, compound 4 h is a potent D(3) ligand (K(i)=6.1 nM) and has a selectivity of 133-fold between D(3)- and D(2)-like receptors, and of 163-fold between D(3)- and D(1)-like receptors, respectively. Thus, compound 4 h represents a promising new lead compound for further design and optimization toward achieving highly potent and selective D(3) ligands.  相似文献   

5.
Dopamine (DA) receptors, a class of G-protein coupled receptors (GPCRs), have been targeted for drug development for the treatment of neurological, psychiatric and ocular disorders. The lack of structural information about GPCRs and their ligand complexes has prompted the development of homology models of these proteins aimed at structure-based drug design. Crystal structure of human dopamine D(3) (hD(3)) receptor has been recently solved. Based on the hD(3) receptor crystal structure we generated dopamine D(2) and D(3) receptor models and refined them with molecular dynamics (MD) protocol. Refined structures, obtained from the MD simulations in membrane environment, were subsequently used in molecular docking studies in order to investigate potential sites of interaction. The structure of hD(3) and hD(2L) receptors was differentiated by means of MD simulations and D(3) selective ligands were discriminated, in terms of binding energy, by docking calculation. Robust correlation of computed and experimental K(i) was obtained for hD(3) and hD(2L) receptor ligands. In conclusion, the present computational approach seems suitable to build and refine structure models of homologous dopamine receptors that may be of value for structure-based drug discovery of selective dopaminergic ligands.  相似文献   

6.
A series of new mixed benzimidazole-arylpiperazine derivatives were designed by incorporating in general structure III the pharmacophoric elements of 5-HT(1A) and 5-HT(3) receptors. Compounds 1-11 were synthesized and evaluated for binding affinity at both serotoninergic receptors, all of them exhibiting high 5-HT(3)R affinity (K(i)=10-62nM), and derivatives with an o-alkoxy group in the arylpiperazine ring showing nanomolar affinity for the 5-HT(1A)R (K(i)=18-150nM). Additionally, all the synthesized compounds were selective over alpha(1)-adrenergic and dopamine D(2) receptors (K(i)>1000-10,000nM). Compound 3 was selected for further pharmacological characterization due to its interesting binding profile as mixed 5-HT(1A)/5-HT(3) ligand with high affinity for both receptors (5-HT(1A): K(i)=18.0nM, 5-HT(3): K(i)=27.2nM). In vitro and in vivo findings suggest that this compound acts as a partial agonist at 5-HT(1A)Rs and as a 5-HT(3)R antagonist. This novel mixed 5-HT(1A)/5-HT(3) ligand was also effective in preventing the cognitive deficits induced by muscarinic receptor blockade in a passive avoidance learning test, suggesting a potential interest in the treatment of cognitive dysfunction.  相似文献   

7.
On the basis of our earlier studies with the serotonin receptor ligands in the group of 1,3-dimethyl-3,7-dihydropurine-2,6-dione derivatives, a series of new arylpiperazinylalkyl and tetrahydroisoquinolinylalkyl analogs of 8-alkoxy-1,3-dimethyl-3,7-dihydropurine-2,6-dione (10-25) and 1,3-dimethyl-7,9-dihydro-3H-purine-2,6,8-trione (26-30) were synthesized and their 5-HT(1A), 5-HT(2A), and 5-HT(7) receptor affinities were determined. The new compounds 17, 18, 20, and 21 were found to be highly active 5-HT(1A) receptor ligands (K(i)=11-19nM) with diversified affinity for 5-HT(2A) receptors (K(i)=15-253nM). Compounds 12, 13, 15, and 19 were moderately potent 5-HT(2A) ligands (K(i)=23-57nM), whereas 17, 18, 24, and 25 showed distinct affinity for 5-HT(7) receptors (K(i)=51-83nM). Purine-2,6,8-triones showed weak affinities for 5-HT(1A) and 5-HT(7) receptors; among them, 27 and 29 were classified as 5-HT(2A) receptor ligands. The selected compounds 17 and 21 were pharmacologically evaluated to determine their functional activities at pre-(hypothermia in mice) and post-(lower lip retraction in rats) synaptic 5-HT(1A) receptors. Compound 17 showed features of a potential agonist of pre- and post-synaptic 5-HT(1A) receptors, whereas 21 was classified as a potential, weak partial agonist of postsynaptic sites. Last of all, the most interesting compound 17 tested in behavioral models showed potential anxiolytic and antidepressant activities.  相似文献   

8.
Benzamides (3a-f) derived from 4-amino-5-chloro-2-methoxybenzoic acid and either cis or trans 1,2-diaminocyclopropane were synthesised and were evaluated in binding assays employing, bovine striatal D2 receptors, recombinant human hD2 and hD3 receptors expressed in CHO cells and rat, cortical 5-HT3 and striatal 5-HT4 receptors. The cis and trans isomers of the derivatives were isolated and characterised. The results demonstrated the superiority of the cis conformers over the trans conformers in dopamine receptor binding assays (Ki hD2 = 13.4 and 6.9 nM and Ki hD3 = 17.7 and 4.5 nM for the cis-3b and cis-3f compounds, respectively; Ki hD2 = 816 and >l000 nM and Ki hD3 = 469 and >1000 nM for the corresponding trans-3b and trans-3f compounds respectively). The cis compounds are folded: the benzamide group and the basic nitrogen atom were in a syn relationship. Compound 3f can be superimposed with a conformation of the tropane derivative, BRL 25594, having the benzyl group in an axial position to give a suitable fit, indicating that both compounds may have a common binding site in the dopamine receptor.  相似文献   

9.
Human D3 dopamine receptor DNA was stably transfected into GH4C1 pituitary cells. Displacement of iodosulpiride binding in hD3 transfected cells (Kd = 0.3 nM, Bmax = 89 fmol/mg protein) by dopaminergic ligands was indistinguishable from that of hD3 receptors in CHO cells. Only two clonal cell lines exhibited weak GppNHp-dependent shifts in [3H]N-0437 binding, and these were used for functional assays. Neither arachidonic acid metabolism, cAMP levels, inositol phosphate turnover, intracellular calcium, or potassium currents were consistently affected by dopamine (1-10 microM). The paucity of responses indicates that human D3 receptors do not couple efficiently to these second messengers in GH4C1 cells.  相似文献   

10.
We report the synthesis and evaluation of 4-benzylpiperazine ligands (BP-CH(3), BP-F, BP-Br, BP-I, and BP-NO(2)) as potential σ(1) receptor ligands. The X-ray crystal structure of BP-Br, which crystallized with monoclinic space group P2(1)/c, has been determined. In vitro competition binding assays showed that all the five ligands exhibit low nanomolar affinity for σ(1) receptors (K(i)=0.43-0.91nM) and high subtype selectivity (σ(2) receptor: K(i)=40-61nM; K(i)σ(2)/K(i)σ(1)=52-94). [(125)I]BP-I (1-(1,3-benzodioxol-5-ylmethyl)-4-(4-iodobenzyl)piperazine) was prepared in 53±10% isolated radiochemical yield, with radiochemical purity of >99% by HPLC analysis after purification, via iododestannylation of the corresponding tributyltin precursor. The logD value of [(125)I]BP-I was found to be 2.98±0.17, which is within the range expected to give high brain uptake. Biodistribution studies in mice demonstrated relatively high concentration of radiolabeled substances in organs known to contain σ(1) receptors, including the brain, lung, kidney, heart, and spleen. Administration of haloperidol 5min prior to injection of [(125)I]BP-I significantly reduced the concentration of radioactivity in the above-mentioned organs. The accumulation of radiolabeled substance in the thyroid was quite low suggesting that [(125)I]BP-I is relatively stable to in vivo deiodination. These findings suggest that the binding of [(125)I]BP-I to σ(1) receptors in vivo is specific.  相似文献   

11.
A series of N-(2-methoxyphenyl)piperazine and N-(2,3-dichlorophenyl)piperazine analogs were prepared and their affinities for dopamine D(2), D(3), and D(4) receptors were measured in vitro. Binding studies were also conducted to determine if the compounds bound to sigma (sigma(1) and sigma(2)) and serotonin (5-HT(1A), 5-HT(2A), 5-HT(2B), 5-HT(2C), 5-HT(3), 5-HT(4), 5-HT(5), 5-HT(6), and 5-HT(7)) receptors. The results of the current study revealed a number of compounds (12b, 12c, 12e, and 12g) having a high affinity for D(3) (K(i) at D(3) receptors ranging from 0.3 to 0.9 nM) versus D(2) (K(i) at D(2) receptors ranging from 40 to 53 nM) receptors and a log P value indicating that they should readily cross the blood brain barrier (log P = 2.6-3.5). All of the compounds evaluated in this study had a high affinity for serotonin 5-HT(1A) receptors. These compounds may be useful as probes for studying the behavioral pharmacology of the dopamine D(3) receptor, as well as lead compounds for the development of radiotracers for studying D(3) receptor regulation in vivo with the functional imaging technique, positron emission tomography.  相似文献   

12.
A series of new tetrahydroprotoberberine (THPB) derivatives were designed, synthesized, and tested for their binding affinity towards dopamine (D(1) and D(2)) and serotonin (5-HT(1A) and 5-HT(2A)) receptors. Many of the THPB compounds exhibited high binding affinity and activity at the dopamine D(1) receptor, as well as high selectivity for the D(1) receptor over the D(2), 5-HT(1A), and 5-HT(2A) receptors. Among these, compound 19c exhibited a promising D(1) receptor binding affinity (K(i)=2.53nM) and remarkable selectivity versus D(2)R (inhibition=81.87%), 5-HT(1A)R (inhibition=61.70%), and 5-HT(2A)R (inhibition=24.96%). Compared with l-(S)-stepholidine (l-SPD) (D(1)K(i)=6.23nM, D(2)K(i)=56.17nM), compound 19c showed better binding affinity for the D(1) receptor (2.5-fold higher) and excellent D(2)/D(1) selectivity. Functional assays found compounds 18j, 18k, and 19c are pure D(1) receptor antagonists. These results indicate that removing the C10 hydroxy group and introducing a methoxy group at C11 of the pharmacophore of l-SPD can reverse the function of THPB compounds at the D(1) receptor. These results are in accord with molecular docking studies.  相似文献   

13.
We have recently reported hexahydropyrazinoquinolines as a new class of dopamine 3 (D(3)) receptor ligands with high-affinity to the D(3) receptor and excellent selectivity over the closely related D(1)-like and D(2)-like receptors. However, our previously reported most potent and selective D(3) ligands have poor aqueous solubility, which greatly hinders our in vivo studies aimed at evaluation of their therapeutic potential in animal models. In this study, we wish to report the design, synthesis, and evaluation of a series of new hexahydropyrazinoquinolines as D(3) ligands with improved solubility. Among them, compound 4g has a K(i) value of 9.7 nM for the D(3) receptor and displays a selectivity of >5000 and 466 times over the D(1)-like and D(2)-like receptors, respectively. Importantly, the hydrochloride salt form of compound 4g has a good aqueous solubility (>50 mg/mL) and represents a promising D(3) ligand for further in vivo evaluations of its therapeutic potential for the treatment of drug abuse, restless legs syndrome, schizophrenia, Parkinson's disease, and depression.  相似文献   

14.
The preparation of some lactam (cyclic amide) derivatives bearing various phenylpiperazinylbutyl side chains attached to the amide nitrogen together with their dopamine receptor affinity study is described. The synthesis of the target compounds involved the preparation of the intermediate bromobutyl derivatives of the appropriate lactam followed by N-alkylation of the appropriate phenylpiperazines with these intermediates. Radioligand binding studies at D(2)-D(5) receptor subtypes and a functional calcium assay of the target compounds at D(2) and D(5) receptor subtypes were performed. All compounds, except 12a and 12b, showed selectivity towards the D(2)-like receptor subtypes. Selectivity of the indolinone derivatives 11a-d at the D(4) receptors was observed. Compound 11b exhibited a remarkable affinity to hD(4) receptors with K(i) value of 0.04+/-0.02 nm and was >43,000-fold selective over the hD(2) receptor. In the functional assay, all the active compounds were of antagonistic activity.  相似文献   

15.
In the present study, 11 novel N-(3,3-diphenyl)propyl-2,2-diphenylacetamide derivatives (4a-d and 9a-g) and six triphenylacetamides (10a-c and 11a-c) were synthesized and tested as ligands of cannabinoid CB(1) and CB(2) receptors. All compounds exhibited affinity for CB(1) and CB(2) receptors. Four compounds (4b, 9a, 9b, and 11a) showed selectivity for CB(1) versus CB(2) receptors, although only the N-(3,3-diphenyl)propyl-2,2-diphenylacetamide (4b) can be considered a potent CB(1) ligand (K(i)=58 nM). It was 140-fold selective over CB(2) receptors (K(i)=7800 nM) and behaved as an inverse agonist by stimulating forskolin-induced cAMP formation in mouse N18TG2 neuroblastoma cells. This compound is the first of a novel class of tetraphenyl CB(1) ligands that, in view of its easy synthesis and high affinity for CB(1) receptors and despite its sterical hindrance, will be useful for the design of new blockers of this therapeutically exploitable receptor type.  相似文献   

16.
The dopamine D(3) receptor subtype has been targeted as a potential neurochemical modulator of the behavioral actions of psychomotor stimulants, such as cocaine. Previous synthetic studies provided structural requirements for high affinity binding to D(3) receptors which included a 2,3-dichloro-phenylpiperazine linked to an arylamido function via a butyl chain. To reduce lipophilicity of these agents and further investigate optimal conformation, a second series of 15 novel ligands was designed that included heteroaromatic substitution and unsaturated alkyl linkers. These compounds were synthesized and evaluated for binding at rat D(3) and D(2) receptors stably expressed in Sf9 cells. D(3) binding affinities ranged from K(i)=0.6-1080 nM, with a broad range of D(3)/D(2) selectivities (2-97). The discovery of potent, selective and bioavailable D(3) receptor ligands will provide essential molecular probes to elucidate the role D(3) receptors play in the psychomotor stimulant and reinforcing effects of cocaine.  相似文献   

17.
A small series of N-propylnoraporphin-11-O-yl carboxylic esters with variant ester lengths were synthesized and their binding potencies at dopamine receptors (D(1), D(2)) and serotonin receptors (5-HT(1A), 5-HT(2A)) were evaluated. Monoesters 3a-f showed binding potency of 100 nM or less for the D(2) receptor, and potency of 10-30 nM for the 5-HT(1A) receptor. Butyryl ester 3d was found to be the best compound possessing the highest potency for both receptors, with K(i) values of 55 and 12 nM for D(2) and 5-HT(1A) receptors, respectively. There is no correlation between the binding potency and the length of the monoesters, but the diesters 9 and 10 were inactive for the D(2) receptor. The dual binding profile of these monoesters for the D(2) and 5-HT(1A) receptors may be useful for the treatment of neuropsychiatric disorders.  相似文献   

18.
Ligand binding studies reveal information about affinity to G protein-coupled receptors (GPCRs) rather than functional properties. Increase in intracellular Ca(2+) appears to represent a universal second messenger signal for a majority of recombinant GPCRs. Here, we exploit Ca(2+) signaling as a fast and sensitive functional screening method for a number of GPCRs coupled to different G proteins. Ca(2+) fluorescence measurements are performed using Oregon Green 488 BAPTA-1/AM and a microplate reader equipped with an injector. Buffer alone or test compounds dissolved in buffer are injected into a cell suspension, and fluorescence intensity is recorded for 30 s. Each of the GPCRs tested--G(q)-coupled P2Y(2), G(s)-coupled dopamine D1 and D5, G(i)-coupled dopamine D2L, and G(q/11)-coupled muscarinic acetylcholine M1--yielded a significant rise in intracellular free [Ca(2+)] on agonist stimulation. Agonist stimulation was dose dependent, as shown for ATP or UTP stimulation of P2Y(2) receptors (EC(50) = 1 microM), SKF38393 stimulation of hD1 and hD5 (EC(50) = 18.1 nM and 2.7 nM), and quinpirole at hD2L (EC(50) = 6.5 nM). SCH23390 (at hD1 and hD5) and spiperone, haloperidol, and clozapine (at hD2L) competitively antagonized the Ca(2+) response. Furthermore, the Ca(2+) assay served to screen suramin analogs for antagonistic activity at P2Y(2) receptors. Screening at dopamine receptors revealed LE300, a new lead for a dopamine receptor antagonist. Advantages of the assay include fast and simple 96- or 384-well plate format (high-throughput screening), use of a visible light-excitable fluorescent dye, applicability to a majority of GPCRs, and simultaneous analysis of distinct Ca(2+) fluxes.  相似文献   

19.
To delineate the structural determinants involved in the constitutive activation of the D1 receptor subtypes, we have constructed chimeras between the D1A and D1B receptors. These chimeras harbored a cognate domain corresponding to transmembrane regions 6 and 7 as well as the third extracellular loop (EL3) and cytoplasmic tail, a domain referred herein to as the terminal receptor locus (TRL). A chimeric D1A receptor harboring the D1B-TRL (chimera 1) displays an increased affinity for dopamine that is indistinguishable from the wild-type D1B receptor. Likewise, a chimeric D1B receptor containing the D1A-TRL cassette (chimera 2) binds dopamine with a reduced affinity that is highly reminiscent of the dopamine affinity for the wild-type D1A receptor. Furthermore, we show that the agonist independent activity of chimera 1 is identical to the wild-type D1B receptor whereas the chimera 2 displays a low agonist independent activity that is indistinguishable from the wild-type D1A receptor. Dopamine potencies for the wild-type D1A and D1B receptor were recapitulated in cells expressing the chimera 2 or chimera 1, respectively. However, the differences observed in agonist-mediated maximal activation of adenylyl cyclase elicited by the D1A and D1B receptors remain unchanged in cells expressing the chimeric receptors. To gain further mechanistic insights into the structural determinants of the TRL involved in the activation properties of the D1 receptor subtypes, we have engineered two additional chimeric D1 receptors that contain the EL3 region of their respective cognate wild-type counterparts (hD1A-EL3B and hD1B-EL3A). In marked contrast to chimera 1 and 2, dopamine affinity and constitutive activation were partially modulated by the exchange of the EL3. Meanwhile, hD1A-EL3B and hD1B-EL3A mutant receptors display a full switch in the agonist-mediated maximal activation, which is reminiscent of their cognate wild-type counterparts. Overall, our studies suggest a fundamental role for the TRL in shaping the intramolecular interactions implicated in the constitutive activation and coupling properties of the dopamine D1 receptor subtypes.  相似文献   

20.
The synthesis of novel spirocyclic sigma receptor ligands with high affinity is described. The cyclization of the hydroxy acetal 8, which represents a key step in the synthesis of the spirocyclic compounds 3, was supported by theoretical considerations. The affinity of the spirocyclic furopyrazoles 3a-c to the sigma receptors was determined in receptor binding studies with radioligands. The N-benzyl (3b) and N-butyl (3c) derivatives display very high sigma(1) receptor affinity (3b, K(i)=0.50 nM; 3c, K(i)=1.28 nM) and high selectivity toward the sigma(2) receptor and some other receptor systems. Calculation of crucial distances of the spirocyclic furopyrazole derivatives 3b and 3c shows good correlation with the pharmacophore model of Glennon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号