首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
3 beta-Hydroxysteroid dehydrogenase/steroid isomerase has been purified to homogeneity from bovine adrenal glands. A single protein of molecular weight 42,090 +/- 40 containing both enzyme activities has been isolated. Approximately 86% of the amino acid sequence of the bovine adrenal 3 beta-hydroxysteroid dehydrogenase/steroid isomerase has been obtained by sequencing peptides isolated from digests with trypsin and lysyl endopeptidase and by chemical cleavage with CNBr. The sequence obtained is identical with that of the deduced amino acid sequence of the bovine ovarian 3 beta-hydroxysteroid dehydrogenase/steroid isomerase [Zhao et al. (1989) FEBS Lett. 259, 153-157], with the exception that the N-terminal methionine residue found in the bovine ovarian sequence is not present in the mature bovine adrenal enzyme. On the basis of the primary structure and comparisons with other NAD+ binding proteins, we propose a structural model of the bovine adrenal 3 beta-hydroxysteroid dehydrogenase/steroid isomerase localizing the NAD+ binding site as well as the membrane-anchoring segment.  相似文献   

2.
Thymidylate synthetase from Lactobacillus casei was S-carboxymethylated and degraded by treatment with cyanogen bromide. Although the protein contains 6 methionine residues, only 5 cyanogen bromide peptides were obtained due to the presence of 1 methionine on the NH2 terminus and another adjacent to a threonine residue which was resistant to cleavage. The peptides were isolated by differential extraction, first with ammonium acetate, then pyridine acetate, and finally the residue was solubilized with 50% acetic acid. Each peptide was further purified to homogeneity by Bio-Gel chromatography. The size of the peptides from the amino to carboxyl end of the enzyme subunit was CNBr 1, 4,100; CNBr 2, 10,300; CNBr 3, 8,100; CNBr 4, 11,800; CNBr 5, 2,200. The sum of the amino acid residues of the peptides is equal to the sum of the residues in an enzyme subunit, indicating that all of the CNBr peptides have been isolated. The CNBr-resistant methionine was located in CNBr 2 and the 5-fluoro-2'-deoxyuridine 5'-monophosphate binding site in CNBr 4. The holoenzyme molecular weight, based on the residue weights of the amino acids in the two equivalent subunits, is equal to 73,176. The complete sequence of each of the CNBr peptides, except for CNBr 4, which is presented in the following paper, is described.  相似文献   

3.
The amino-acid sequence of a short subfragment-2 in the amino-terminal portion of subfragment-2 (S-2) derived from adult chicken skeletal muscle myosin was completely determined. Peptides cleaved by cyanogen bromide and by lysyl endopeptidase of S-carboxymethylated S-2, and hydrolytic peptides obtained with trypsin or dilute acetic acid of larger CNBr fragments were isolated and sequenced. This region was composed of 257 amino-acid residues, and hydrophobic and charged residue repeat units were found highly conserved and with a periodicity in 7 or 28 residues. This sequence of the short S-2 fragment of chicken skeletal muscle myosin was compared with the sequence of chicken and rat embryonic skeletal muscle myosins, rabbit skeletal and rabbit cardiac muscle myosin (alpha-myosin heavy chain), and 95.3%, 86.8%, 89.9% and 94.2% sequence identities were observed, respectively.  相似文献   

4.
Neurospora NADP-specific glutamate dehydrogenase that was treated with iodoacetate, iodoacetamide, or N-ethylmaleimide to block the thiol groups was cleaved with cyanogen bromide. Of the expected 10 peptides, based on a methionine content of 9 residues, 8 were obtained in pure form and 2 were handled as a mixture. The fragments ranged in size from 9 to 109 residues. In addition, there were isolated 6 peptides, produced by anomalous cleavage at the carboxyl groups of tryptophan residues, and two by hydrolysis of an aspartyl-proline bond. Preliminary separation of these peptides was accomplished by gel filtration followed by either ion-exchange chromatography of the larger peptides or by paper chromatography and paper electrophoresis of the smaller fragments. Ordering of the CNBr fragments in sequence was based upon sequences of tryptic and chymotryptic peptides obtained in another laboratory. The complete sequence of the protein is presented. The amino acid sequences of the bovine and chicken liver glutamate dehydrogenases previously determined show considerable homology with the NADP-specific enzyme of Neurospora in the NH2-terminal half of the molecule; this includes the region of the specifically reactive lysine residue and the portion of the sequence that has been implicated in coenzyme binding. Particularly striking is the fact that most of the residues conserved among the three homologous proteins would be expected to be important for conformational, rather than catalytic, effects. This implies that the conformation of the Neurospora enzyme must be similar in parts of its structure to the vertebrate enzymes but undoubtedly differs in some regards.  相似文献   

5.
Proteolipid protein (PLP) was isolated from white matter of human brain by chloroform/methanol extraction and further purified by chromatography. Performic acid oxidation yielded a product homogeneous in NaDodSO4-polyacrylamide electrophoresis with a molecular mass of 30 kDa. The carboxymethylated PLP was chemically cleaved with cyanogen bromide into four fragments: CNBr I 22-24 kDa, CNBr II 5 kDa, CNBr III 1.4 kDa and CNBr IV 0.7 kDa. HBr/dimethylsulfoxide cleavage at tryptophan residues released four fragments: Trp I 14-16 kDa, Trp II 2.0 kDa, Trp III 5 kDa and Trp IV 7 kDa. Hydrophilic fragments were enriched in 50% formic acid (CNBr II, III, IV and Trp II and III), whereas hydrophobic peptides precipitated from this solvent were CNBr I, Trp I and IV. The fragments were separated by gel filtration with 90% formic acid as solvent and finally purified by gel permeation HPLC (Si 60 and Si 100) for automated liquid and solid-phase Edman degradation. Large fragments were further cleaved with different proteinases (trypsin, V8-proteinase, endoproteinase Lys-C and thermolysin). We used an improved strategy in the sequencing of the human proteolipid protein compared with our approach to the structural elucidation of bovine brain PLP. The amino-acid sequence of human PLP contains 276 residues, the same as found in bovine proteolipid protein. The two sequences proved to be identical. The possible importance of the conservative structure of this integral membrane protein is discussed.  相似文献   

6.
The amino acid sequence of Escherichia coli cyanase   总被引:4,自引:0,他引:4  
The amino acid sequence of the enzyme cyanase (cyanate hydrolase) from Escherichia coli has been determined by automatic Edman degradation of the intact protein and of its component peptides. The primary peptides used in the sequencing were produced by cyanogen bromide cleavage at the methionine residues, yielding 4 peptides plus free homoserine from the NH2-terminal methionine, and by trypsin cleavage at the 7 arginine residues after acetylation of the lysines. Secondary peptides required for overlaps and COOH-terminal sequences were produced by chymotrypsin or clostripain cleavage of some of the larger peptides. The complete sequence of the cyanase subunit consists of 156 amino acid residues (Mr 16,350). Based on the observation that the cysteine-containing peptide is obtained as a disulfide-linked dimer, it is proposed that the covalent structure of cyanase is made up of two subunits linked by a disulfide bond between the single cystine residue in each subunit. The native enzyme (Mr 150,000) then appears to be a complex of four or five such subunit dimers.  相似文献   

7.
Lipoprotein lipases from human, bovine or guinea-pig milk were purified, judged for domain relationships by characterization of sites sensitive to proteases, and structurally compared. The subunit of human lipoprotein lipase migrated slightly slower than those of bovine or guinea-pig lipoprotein lipases on sodium dodecyl sulfate/polyacrylamide gel electrophoresis. Bovine lipoprotein lipase is known to be a dimer of two non-covalently linked subunits of equal size, and the lipases from all three sources now yielded homogeneous N-terminal amino acid sequences (followed for 15-27 residues). The results indicate that the two subunits are identical. Bovine lipoprotein lipase had two additional N-terminal residues, Asp-Arg, compared to the human and guinea-pig enzymes, and the next two positions revealed residue differences, but further on homologies were extensive between all three enzymes as far as presently traced. Exposure of bovine lipoprotein lipase to trypsin led to production of three fragments (T1, T2a, and T2b), suggesting cleavage at exposed segments delineating domain borders. Time studies gave no evidence for precursor-product relationships between the fragments, and prolonged digestion did not lead to further cleavage. Fragments T2a and T2b had the same N-terminal sequence as intact lipase. Fragment T1 revealed a new sequence, and represents the C-terminal half of the molecule. Plasmin caused a similar cleavage as trypsin, whereas thrombin, factor Xa, and tissue plasminogen activator did not cleave the enzyme. Chymotrypsin cleaved off a relatively small fragment from the C-terminal of the molecule, after which exposure to trypsin still resulted in cleavage at the same sites as in intact lipase. Tryptic cleavage of guinea-pig lipoprotein lipase yielded two fragments. One had a similar size as bovine fragment T2b; the other had a similar size as bovine fragment T1 and an N-terminal sequence homologous with that of T1. Thus, trypsin recognizes the same unique site in guinea-pig lipoprotein lipase as in the bovine enzyme. This confirms the conclusion that this segment is the border between two domains in the subunit. The binding site for heparin was retained after both tryptic and chymotryptic cleavages and was identified as localized in the C-terminal part of the molecule.  相似文献   

8.
The amino acid sequence of the heavy-chain variable region of the human immunoglobulin. New has been determined. Since the amino terminus of the heavy chain was blocked, the sequence of residues 1-69 was established by digesting the appropriate CNBr fragment separately with trypsin, chymotrypsin, and thermolysin and sequencing the resulting peptides. The region from residues 70 to 120 was present in another CNBr fragment which was submitted directly to automatic Edman degradation. The result of this experiment extended the sequence to residue 100. The primary structure of the remaining portion of the VH region was determined by automatic Edman degradation of a lysine-blocked tryptic peptide derived from this region which included residues 98-214. The sequence of the VH region of New corresponds most closely to VH sequences of proteins in the VH II subgroup. This primary structure makes it possible to construct a model from the high-resolution electron-density map of protein New.  相似文献   

9.
The amino acid sequence of the VH region of McE, a monoclonal IgM cryoimmunoglobulin, has been determined employing automated sequencing methodology. Digestion of the intact Fab mu component, derived by trypsin cleavage of the parent protein at elevated temperature with CNBr, followed by complete reduction and alkylation, yielded the intact light chain as well as the 2 CNBr fragments that constituted the VH. N-terminal sequencing of the larger unblocked CNBr fragment, along with a component fragment derived by cleavage by BNPS-Skatole, established the structure of the VH from position 88 through the V leads to C switch region. Citraconylation of the smaller, blocked fragment effected sufficient solubilization for enzymatic deblocking and direct sequencing of the N-terminal 20 residues of the VH. Complete trypsin digestion of the N-terminal CNBr fragment yielded 9 peptides that could be isolated by preparative cation exchange chromatography and gel filtration. The complete sequence of these peptides along with 4 chymotryptic peptides completed the primary structure of the VH region. The primary structure of McE appears to resemble that of He, previously identified as belonging to the VH II subgroup. The presence of characteristic CDR and FR regions as well as the identification of a probable site of glycosylation suggest that the cryoimmunoglobulin closely resembles noncryoglobulins in terms of overall structural composition. The cryoglobulin property may arise through alterations in individual residues or unfavorable arrangements of CDR and FR segments.  相似文献   

10.
Phosphatidylinositol (PtdIns)-glycan-specific phospholipase D was purified from bovine and human serum by phase separation in Triton X-114 and by chromatography on DEAE-cellulose, octyl-Sepharose, concanavalin-A-Sepharose, and hydroxyapatite. The purification of the two enzymes was approximately 1200-fold with a recovery of 3-5%. Bovine serum contained about 40 micrograms/ml of PtdIns-glycan-specific phospholipase D, about 10 times more than the amount determined in human serum. PtdIns-glycan-specific phospholipase D is also present in mammalian cerebrospinal fluid and in mammalian milk but to a much lesser extent than in serum. Enzyme from bovine and human serum displayed amphiphilic properties as revealed by sucrose density gradient centrifugation and gel filtration in the absence and presence of detergent. On density gradient centrifugation, both enzymes sedimented with an apparent sedimentation coefficient of about 6.0 S in the presence of 0.1% Triton X-100, and formed aggregates up to 14.5 S in the absence of detergent. Upon gel filtration, the bovine and human enzymes migrated with a Stokes' radius of 6.5 nm and 6.6 nm, respectively, in the presence of Triton X-100. In the absence of Triton X-100, both enzymes gave a Stokes' radius of 8.8 nm. Serial centrifugation of serum at increasing NaBr concentrations revealed that the majority of the enzyme is contained in the high-density lipoprotein fraction. PtdIns-glycan-specific phospholipase D from bovine and human serum contained 27 and 28 N-acetylglucosamine residues, respectively. Treatment with N-glycosidase F decreased the apparent molecular mass of the bovine and human enzyme from 115 and 123 kDa to 91 and 87 kDa, respectively. Sequence analysis of peptides derived from PtdIns-glycan-specific phospholipase D of bovine serum by CNBr cleavage gave 100% identity to the sequence published for the bovine liver enzyme while there was 83% similarity and 74% identity to the sequence of peptides obtained from the human serum enzyme.  相似文献   

11.
The reactivity of the cysteine residues in the non-denatured catalytic domain of the NADPH-cytochrome P-450 reductase (pig liver) was studied using the -SH reagent monobromobimane. Prerequisite was the characterization of the cysteine residues by their surrounding amino-acid sequences. In pursuit of these aims the CNBr fragments obtained from the catalytic domain were sequenced. The cysteine residues are distributed on six CNBr fragments of the catalytic domain [Vogel and Lumper (1984) Hoppe-Seyler's Z. Physiol. Chem. 365, 1074]. Only the 11-kDa CNBr peptides with the N-terminal sequences Val-Gly-Pro-Thr- and Ala-Ser-Ser-Ser-, respectively, contain two cysteine residues each. The cysteine residues of the catalytic domain accessible to monobromobimane were localized on three CNBr peptides with the N-terminal sequences Val-Gly-Pro-Thr-, Ala-Ser-Ser-Ser- and Ala-Arg-Asp-Val-, respectively. Inactivation of the trypsin-solubilized enzyme by -SH-directed reagents is caused by the modification of the accessible cysteine residue (which can be protected by NADPH) in the 11-kDa CNBr fragment (N-terminal sequence: Val-Gly-Pro-Thr-). The cosubstrate NADPH protected a second cysteine residue localized in the 11-kDa CNBr peptide with the N-terminal sequence Ala-Ser-Ser-Ser-, which is however modified at a distinctly slower rate than the critical cysteine residue characterized by the sequence -Gly-Glu-Thr-Leu-Leu-Tyr-Tyr-Gly-Cys-Arg-Arg. Five non-reacting thiol groups were localized on CNBr fragments with the N-terminal sequences Val-Gly-Pro-Thr-, Ala-Ser-Ser-Ser-, Ser-Leu-Asn-Asn-, Gly-Lys-Tyr-Val-Asp- and Ala-Ala-Asp-Pro-.  相似文献   

12.
The major (14)C-labelled peptides from creatine kinase from normal and dystrophic chicken muscle obtained by carboxymethylating the reactive thiol groups with iodo[2-(14)C]acetic acid and digestion with trypsin were purified by ion-exchange chromatography on Dowex-50 (X2) and by paper electrophoresis. The chromatographic characteristics of the (14)C-labelled peptides, their electrophoretic mobilities at pH6.5, and their amino acid compositions were identical for the two enzymes. The sequence of amino acids around the essential thiol groups of creatine kinase from normal and dystrophic chicken muscle was shown to be Ile-Leu-Thr-CmCys-Pro-Ser-Asn-Leu-Gly-Thr-Gly-Leu-Arg (CmCys, carboxymethylcysteine). This sequence is almost identical with that for the creatine kinases in human and ox muscle and bovine brain and is very similar to that of arginine kinase from lobster muscle. Antibodies to the enzymes were raised in rabbits and their reaction with the creatine kinase from normal and dystrophic muscles in interfacial, immunodiffusion and immunoelectrophoretic experiments was studied. The cross-reaction between normal muscle creatine kinase and antisera against the dystrophic muscle enzyme (or vice versa) observed by immunodiffusion and by immunoelectrophoretic experiments further suggests that the enzymes from normal and dystrophic chicken muscle are similar in structure. The results of the present study, the identical amino acid sequence of the peptides containing the reactive thiol group from both the normal and dystrophic chicken muscle enzymes and the immunological similarities of the two enzymes are in accord with the similarity of the two enzymes observed by Roy et al. (1970).  相似文献   

13.
Sorbitol dehydrogenase. The primary structure of the sheep-liver enzyme   总被引:5,自引:0,他引:5  
The first primary structure for a sorbitol dehydrogenase has been determined by analysis of the tetrameric enzyme from sheep liver. The [14C]carboxymethylated protein was cleaved with CNBr and proteolytic enzymes. Peptides were purified by several methods, often utilizing exclusion chromatography for pre-fractionation and reverse-phase high-performance liquid chromatography for final purification. Different methods of sequence analysis complemented each other, mainly the manual dimethylaminoazobenzene isothiocyanate method and and the use of liquid-phase sequencer degradations. All eight major CNBr fragments were purified and form the basis of the work. Three minor CNBr fragments derived from an acid cleavage and from a partly resistant Met-Thr bond were also obtained, as well as evidence for a contaminating homologous polypeptide. Most of the tryptic peptides were purified, including all with methionine residues, thus overlapping the CNBr fragments. Combined, all data permit the deduction of a 354-residue amino acid sequence for the polypeptide chain of sorbitol dehydrogenase. The N terminus is acyl-blocked, the C terminus is formed by a proline residue, tryptophan is the least common residue (two, at positions 50 and 301) and there are 10 cysteine residues, including the residue previously shown to be especially reactive (at position 43). Similarities to 'long' alcohol dehydrogenases have functional implications.  相似文献   

14.
The isolation of the 26 CNBr fragments from the identical Mr = 180,000 subunits of human alpha 2-macroglobulin is described. The fragments have been purified by combinations of gel chromatography, ion-exchange chromatography, high voltage paper electrophoresis, paper chromatography, and high performance liquid chromatography. The complete amino acid sequences of 13 small CNBr fragments have been determined. These fragments include CB1 (residues 1-9), CB3 (residues 79-98), CB4 (residues 99-128), CB9 (residues 442-477), CB10 (residues 478-497), CB13 (residues 644-650), CB14 (residues 651-665), CB15 (residues 666-674), CB16 (residues 675-690), CB19 (residues 937-945), CB20 (residues 946-954), CB24 (residues 1356-1362), and CB25 (residues 1363-1375). The fragments determined account for 200 of the 1451 residues of the subunits of alpha 2-macroglobulin. Most likely, Cys-6 of CB9 is bound to the corresponding residue in CB9 from another subunit, thus forming an interchain disulfide bridge in alpha 2-macroglobulin. Cys-1 of CB15 is bound to Cys-35 of CB12. CB15 contains a pair of Gln residues that can react covalently with amines in a factor XIIIa-catalyzed process (Gln-5 and Gln-6). CB16 contains the primary cleavage sites for proteinases in the bait region of alpha 2-macroglobulin (-Arg7-Val-Gly-Phe-Tyr-Glu-). CB20 contains the residues which in native alpha 2-macroglobulin presumably form an internal reactive beta-cysteinyl-gamma-glutamyl thiol ester (Cys-4 and Glx-7). Partial NH2- and COOH-terminal sequence data are given for the 13 large CNBr fragments. Complete or partial sequence determination of 19 methionine-containing peptides or variants thereof allow the alignment of all the CNBr fragments.  相似文献   

15.
Carboxymethylated sperm-specific lactate dehydrogenase isozyme C4 (LDH-C4) proteins from mouse and rat testes were cleaved with cyanogen bromide and trypsin. Proteins were also citraconylated and digested with trypsin. In the case of mouse LDH-C4 isozyme, all 7 CNBr and 11 limited tryptic (arginine) peptides were isolated and sequenced. Some of the CNBr peptides were further fragmented with trypsin and chymotrypsin and their compositions and/or sequences characterized. Also, 34 of the 36 expected tryptic peptides were purified, and their compositions and sequences determined. Amino acid sequences of these peptides purified from mouse LDH-C4 were overlapped into a complete covalent structure of the 330 residues. For rat LDH-C4, 5 of 6 expected CNBr peptides, 5 of 8 expected arginine peptides, and 28 of the 34 expected tryptic peptides were isolated, and their compositions and sequences were determined. Some of the CNBr and arginine peptides were further fragmented with chymotrypsin, thermolysin, or V8 protease, and their compositions and/or sequences characterized. The amino acid sequence of 85% of the 330 residues from rat LDH-C subunit has been unambiguously determined, and the sequences of the remaining regions were tentatively aligned on the basis of peptide compositions and sequence homologies with the other known lactate dehydrogenase sequences, including mouse LDH-C. A comparison of the proposed rat LDH-C sequence with the complete covalent structure of mouse LDH-C indicates that 27 differences are located in the established rat LDH-C sequence of 280 residues and that 5 additional differences are in the tentative sequence of the remaining 50 amino acids.  相似文献   

16.
The amino acid sequence of peptide CB-II, the major product (mol.wt. 30 000) of CNBr cleavage of fragment Bb from human complement Factor B, is given. The sequence was obtained from peptides derived by trypsin cleavage of peptide CB-II and clostripain digestion of fragment Bb. Cleavage of two Asn-Gly bonds in peptide CB-II was also found useful. These results, along with those presented in the preceding paper [Gagnon & Christie (1983) Biochem. J. 209, 51-60], yield the complete sequence of the 505 amino acid residues of fragment Bb. The C-terminal half of the molecule shows strong homology of sequence with serine proteinases. Factor B has a catalytic chain (fragment Bb) with a molecular weight twice that of proteinases previously described, suggesting that it is a novel type of serine proteinase, probably with a different activation mechanism.  相似文献   

17.
The complete amino acid sequence of chicken skeletal-muscle enolase, comprising 433 residues, was determined. The sequence was deduced by automated sequencing of hydroxylamine-cleavage, CNBr-cleavage, o-iodosobenzoic acid-cleavage, clostripain-digest and staphylococcal-proteinase-digest fragments. The presence of several acid-labile peptide bonds and the tenacious aggregation of most CNBr-cleavage fragments meant that a commonly used sequencing strategy involving initial CNBr cleavage was unproductive. Cleavage at the single Asn-Gly peptide bond with hydroxylamine proved to be particularly useful. Comparison of the sequence of chicken enolase with the two yeast enolase isoenzyme sequences shows that the enzyme is strongly conserved, with 60% of the residues identical. The histidine and arginine residues implicated as being important for the activity of yeast enolase are conserved in the chicken enzyme. Secondary-structure predictions are analysed in an accompanying paper [Sawyer, Fothergill-Gilmore & Russell (1986) Biochem. J. 236, 127-130].  相似文献   

18.
C Y Yang  Z W Gu  W Patsch  S A Weng  T W Kim  L Chan 《FEBS letters》1987,224(2):261-266
The complete amino acid sequence of proapolipoprotein (proapo) A-I of chicken high density lipoproteins was determined by sequencing overlapping peptides produced by trypsin, S. aureus V8 protease, and cyanogen bromide cleavage. There are 240 amino acid residues in mature chicken apoA-I. By direct sequence analysis of a cyanogen bromide peptide, we also determined the sequence of a 6-amino-acid prosegment which is present at approx. 10% the molar amount of the mature peptide in chicken plasma. Sequence comparison among apoA-I from chicken, human, rabbit, dog and rat, and secondary structure analysis indicate that while the degree of sequence homology is only moderate (less than 50% between chicken and man), there is good conservation of apoA-I secondary structure, especially in the N-terminal two-thirds of the protein in these widely separated species.  相似文献   

19.
The partial amino acid sequence of porcine elastase II, isolated from crude trypsin Type II, was determined. The enzyme consists of two polypeptide chains, a light chain composed of 11 residues, and a heavy chain (Mr = 23 500) with four intrachain disulfide bridges; the two chains are held together by one interchain disulfide bond. Elastase II was fragmented into several peptides by chemical cleavages with CNBr at the two methionine residues, 99 and 180 (chymotrypsinogen numbering), and with hydroxylamine at the peptide bond following DIP-Ser195. About 50% of the sequence was determined and the positions of 120 amino acids were located, including the light chain residues and most of the active site residues. The partial sequence shows 64% difference between porcine elastase II and elastase I and only 26% difference between porcine elastase II and bovine chymotrypsin B.  相似文献   

20.
Amino acid sequence of bovine white matter proteolipid   总被引:13,自引:0,他引:13  
The sequence of the bovine white matter proteolipid has been studied by a combination of proteolytic digestion and chemical cleavage at tryptophan residues. Alignment of peptides obtained by digestion with trypsin, chymotrypsin, clostripain, and Staphylococcus aureus protease gave the sequence of 52 residues at the amino terminus, 96 residues at the carboxyl terminus, and several additional segments. Peptides obtained by treatment of the protein with 2-(2-nitrophenylsulfenyl)-3-methyl-3'-bromoindolenine confirmed the alignment and extended the sequence. This information, combined with that of other investigators, permits us to propose the primary structure for the entire protein. On the basis of the sequence determination, the molecular weight of the proteolipid protein is 29,869.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号