首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant cell wall invertases and fructan exohydrolases (FEHs) are very closely related enzymes at the molecular and structural level (family 32 of glycoside hydrolases), but they are functionally different and are believed to fulfill distinct roles in plants. Invertases preferentially hydrolyze the glucose (Glc)-fructose (Fru) linkage in sucrose (Suc), whereas plant FEHs have no invertase activity and only split terminal Fru-Fru linkages in fructans. Recently, the three-dimensional structures of Arabidopsis (Arabidopsis thaliana) cell wall Invertase1 (AtcwINV1) and chicory (Cichorium intybus) 1-FEH IIa were resolved. Until now, it remained unknown which amino acid residues determine whether Suc or fructan is used as a donor substrate in the hydrolysis reaction of the glycosidic bond. In this article, we present site-directed mutagenesis-based data on AtcwINV1 showing that the aspartate (Asp)-239 residue fulfills an important role in both binding and hydrolysis of Suc. Moreover, it was found that the presence of a hydrophobic zone at the rim of the active site is important for optimal and stable binding of Suc. Surprisingly, a D239A mutant acted as a 1-FEH, preferentially degrading 1-kestose, indicating that plant FEHs lacking invertase activity could have evolved from a cell wall invertase-type ancestor by a few mutational changes. In general, family 32 and 68 enzymes containing an Asp-239 functional homolog have Suc as a preferential substrate, whereas enzymes lacking this homolog use fructans as a donor substrate. The presence or absence of such an Asp-239 homolog is proposed as a reliable determinant to discriminate between real invertases and defective invertases/FEHs.  相似文献   

2.
* Invertases and fructan exohydrolases (FEHs) fulfil important physiological functions in plants. Sucrose is the typical substrate for invertases and bacterial levansucrases but not for plant FEHs, which are usually inhibited by sucrose. * Here we report on complexes between chicory (Cichorium intybus) 1-FEH IIa with the substrate 1-kestose and the inhibitors sucrose, fructose and 2,5 dideoxy-2,5-imino-D-mannitol. Comparisons with other family GH32 and 68 enzyme-substrate complexes revealed that sucrose can bind as a substrate (invertase/levansucrase) or as an inhibitor (1-FEH IIa). * Sucrose acts as inhibitor because the O2 of the glucose moiety forms an H-linkage with the acid-base catalyst E201, inhibiting catalysis. By contrast, the homologous O3 of the internal fructose in the substrate 1-kestose forms an intramolecular H-linkage and does not interfere with the catalytic process. Mutagenesis showed that W82 and S101 are important for binding sucrose as inhibitor. * The physiological implications of the essential differences in the active sites of FEHs and invertases/levansucrases are discussed. Sucrose-inhibited FEHs show a K(i) (inhibition constant) well below physiological sucrose concentrations and could be rapidly activated under carbon deprivation.  相似文献   

3.
4.
Recently, the three-dimensional structure of chicory (Cichorium intybus) fructan 1-exohydrolase (1-FEH IIa) in complex with its preferential substrate, 1-kestose, was determined. Unfortunately, no such data could be generated with high degree of polymerization (DP) inulin, despite several soaking and cocrystallization attempts. Here, site-directed mutagenesis data are presented, supporting the presence of an inulin-binding cleft between the N- and C-terminal domains of 1-FEH IIa. In general, enzymes that are unable to degrade high DP inulins contain an N-glycosylation site probably blocking the cleft. By contrast, inulin-degrading enzymes have an open cleft configuration. An 1-FEH IIa P294N mutant, introducing an N-glycosylation site near the cleft, showed highly decreased activity against higher DP inulin. The introduction of a glycosyl chain most probably blocks the cleft and prevents inulin binding and degradation. Besides cell wall invertases, fructan 6-exohydrolases (6-FEHs) also contain a glycosyl chain most probably blocking the cleft. Removal of this glycosyl chain by site-directed mutagenesis in Arabidopsis thaliana cell wall invertase 1 and Beta vulgaris 6-FEH resulted in a strong decrease of enzymatic activities of the mutant proteins. By analogy, glycosylation of 1-FEH IIa affected overall enzyme activity. These data strongly suggest that the presence or absence of a glycosyl chain in the cleft is important for the enzyme's stability and optimal conformation.  相似文献   

5.
Fructan 1-exohydrolase, an enzyme involved in fructan degradation, belongs to the glycosyl hydrolase family 32. The structure of isoenzyme 1-FEH IIa from Cichorium intybus is described at a resolution of 2.35 A. The structure consists of an N-terminal fivefold beta-propeller domain connected to two C-terminal beta-sheets. The putative active site is located entirely in the beta-propeller domain and is formed by amino acids which are highly conserved within glycosyl hydrolase family 32. The fructan-binding site is thought to be in the cleft formed between the two domains. The 1-FEH IIa structure is compared with the structures of two homologous but functionally different enzymes: a levansucrase from Bacillus subtilis (glycosyl hydrolase family 68) and an invertase from Thermotoga maritima (glycosyl hydrolase family 32).  相似文献   

6.
About 15% of flowering plant species synthesize fructans. Fructans serve mainly as reserve carbohydrates and are subject to breakdown by plant fructan exohydrolases (FEHs), among which 1-FEHs (inulinases) and 6-FEHs (levanases) can be differentiated. This paper describes the unexpected finding that 6-FEHs also occur in plants that do not synthesize fructans. The purification, characterization, cloning and functional analysis of sugar beet (Beta vulgaris L.) 6-FEH are described. Enzyme activity measurements during sugar beet development suggest a constitutive expression of the gene in sugar beet roots. Classical enzyme purification followed by in-gel trypsin digestion and mass spectrometry (quadruple-time-of-flight mass spectrometry (Q-TOF) MS) led to peptide sequence information used in subsequent RT-PCR based cloning. Levan-type fructans (beta-2,6) are the best substrates for the enzyme, while inulin-type fructans (beta-2,1) and sucrose are poorly or not degraded. Sugar beet 6-FEH is more related to cell wall invertases than to vacuolar invertases and has a low iso-electric point (pI), clearly different from typical high pI cell wall invertases. Poor sequence homology to bacterial or fungal FEHs makes an endophytic origin highly unlikely. The functionality of the 6-FEH cDNA was further demonstrated by heterologous expression in Pichia pastoris. As fructans are absent in sugar beet, the role of 6-FEH in planta is not obvious. Like chitinases and beta-glucanases hydrolysing cell-surface components of fungal plant pathogens, a straightforward working hypothesis for further research might be that plant 6-FEHs participate in hydrolysis (or prevent the formation) of levan-containing slime surrounding endophytic or phytopathogenic bacteria.  相似文献   

7.
Molecular genetics of fructan metabolism in perennial ryegrass   总被引:1,自引:0,他引:1  
Fructans are the main storage carbohydrates of temperate grasses, sustaining regrowth immediately after defoliation, as well as contributing to the nutritive value of feed. Fructan metabolism is based on the substrate sucrose and involves fructosyltransferases (FTs) for biosynthesis and fructan exohydrolases (FEHs) for degradation. Sucrose is also utilized by invertases (INVs), which hydrolyse it into its constituent monosaccharides for use in metabolism. The isolation, molecular characterization, functional analysis, and phylogenetic relationships of genes encoding FTs, FEHs, and INVs from temperate grasses are reviewed, with an emphasis on perennial ryegrass (Lolium perenne L.). The roles these enzymes play in fructan accumulation and remobilization, and future biotechnological applications in molecular plant breeding are discussed.  相似文献   

8.
9.
Witloof chicory ( Cichorium intybus L. var. foliosum cv. Flash) was sown in acid-washed vermiculite in a controlled growth chamber. After 1 month of growth, one half of the chicory plants were defoliated whereas the intact chicory plants remained as a control. Twenty-four hours after defoliation, a very sharp decrease in hexose, sucrose, and total fructan concentration was observed in the roots. This coincided with a strong decrease in sucrose:sucrose 1-fructosyl transferase (1-SST; EC 2.4.1.99) activity and a strong increase in fructan 1-exohydrolase (1-FEH; EC 3.2.1.80) activity. After day 5, 1-SST activity increased and 1-FEH activity decreased. However, from day 5 to 15, both the activities of 1-SST and acid invertase (EC 3.2.1.26) remained significantly lower than in the control plants. From 10 days after defoliation, fructan synthesis resumed and hexose and sucrose concentrations increased. Up to now, 1-FEH activity was believed to occur only in mature tissues (end of the growing season, storage, forcing, or sprouting). Therefore, the rather unexpected finding that 1-FEH can also be induced in very young chicory roots after defoliation suggests that 1-FEH can be considered a 'survival' enzyme that can be induced at any physiological stage when energy demands increase.  相似文献   

10.
Witloof chicory seeds ( Cichorium intybus L. var. foliosum cv. Flash) were sown in acid-washed vermiculite in a controlled environment growth chamber. Plants received a nitrogen poor ("N-poor": 0.2 m M NH4NO3) but otherwise complete medium, or a nitrogen rich ("N-rich": 2 m M NH4NO3) medium. After 1 month of growth the fructan concentration in the "N-poor" plants was about five times higher and also the activity of sucrose:sucrose 1-fructosyl transferase (1-SST; EC 2.4.1.99) was twice as high as in "N-rich" plants. The activities of the catabolic enzymes fructan 1-exohydrolase (1-FEH; EC 3.2.1.80) and acid invertase (EC 3.2.1.26) were higher in the "N-rich" plants where significant energy was invested in root and leaf growth. After one month of growth, part of the "N-poor" plants were switched to the "N-rich" medium. One day after this switch, a sharp decrease in sucrose and glucose concentration was observed in the roots. During the following days, both the activities of 1-SST and fructan:fructan 1-fructosyl transferase (1-FFT; EC 2.4.1.100) decreased and the 1-FEH and invertase activities increased. These changes were correlated with a decrease in fructan concentration. Ten days after the switch, glucose and sucrose concentrations increased again and fructan synthesis resumed. During this period 1-SST activity increased and 1-FEH activity decreased. Apparently 1-SST, 1-FFT and 1-FEH simultaneously control fructan in young chicory roots. The rather unexpected finding that 1-FEH activity, which was believed to occur only in older material, can be induced in very young roots indicates that this enzyme can be induced at any physiological stage.  相似文献   

11.
This paper describes the cloning and functional analysis of chicory (Cichorium intybus L.) fructan 1-exohydrolase I cDNA (1-FEH I). To our knowledge it is the first plant FEH cloned. Full-length cDNA was obtained by a combination of RT-PCR, 5' and 3' RACE using primers based on N-terminal and conserved amino acid sequences. Electrophoretically purified 1-FEH I enzyme was further analyzed by in-gel trypsin digestion followed by matrix-assisted laser desorption ionization and electrospray time-of-flight tandem mass spectrometry. Functionality of the cDNA was demonstrated by heterologous expression in potato tubers. 1-FEH I takes a new, distinct position in the phylogenetic tree of plant glycosyl hydrolases being more homologous to cell-wall invertases (44-53%) than to vacuolar invertases (38-41%) and fructosyl transferases (33-38%). The 1-FEH I enzyme could not be purified from the apoplastic fluid at significantly higher levels than can be explained by cellular leakage. These and other data suggest a vacuolar localization for 1-FEH I. Also, the pI of the enzyme (6.5) is lower than expected from a typical cell-wall invertase. Unlike plant fructosyl transferases that are believed to have evolved from a vacuolar invertase, 1-FEH I might have evolved from a cell-wall invertase-like ancestor gene that later obtained a vacuolar targeting signal. 1-FEH I mRNA quantities increase in the roots throughout autumn, and especially when roots are stored at low temperature.  相似文献   

12.
Fructans are fructose polymers that are synthesized from sucrose by fructosyltransferases. Fructosyltransferases are present in unrelated plant families suggesting a polyphyletic origin for their transglycosylation activity. Based on sequence comparisons and enzymatic properties, fructosyltransferases are proposed to have evolved from vacuolar invertases. Between 1% and 5% of the total activity of vacuolar invertase is transglycosylating activity. We investigated the nature of the changes that can convert a hydrolysing invertase into a transglycosylating enzyme. Remarkably, replacing 33 amino acids (amino acids 143-175) corresponding to the N-terminus of the mature onion vacuolar invertase with the corresponding region of onion fructan:fructan 6G-fructosyltransferase (6G-FFT) led to a shift in activity from hydrolysis of sucrose towards transglycosylation between two sucrose molecules. The substituted N-terminal region contains the sucrose-binding box that harbours the nucleophile involved in sucrose hydrolysis (Asp164). Subsequent research into the individual amino acids responsible for the enhanced transglycosylation activity revealed that mutations in amino acids Trp161 and Asn166, can give rise to a shift towards polymerase activity. Changing the amino acid at either of these positions in the sucrose-binding box increases the transglycosylation capacity of invertases two- to threefold compared to wild type. Combining the two mutations had an additive effect on transglycosylation ability, resulting in an approximately fourfold enhancement. The mutations generated correspond with natural variation present in the sucrose-binding boxes of vacuolar invertases and fructosyltransferases. These relatively small changes that increase the transglycosylation capacity of invertases might explain the polyphyletic origin of the fructan accumulation trait.  相似文献   

13.
A genuine 1-SST (sucrose:sucrose 1-fructosy] transferase, EC 2.4.1.99) was purified and characterized from young chicory roots ( Cichorium intybus L. var. foliosum cv. Flash) by a combination of ammonium sulfate precipitation, concanavalin A affinity chromatography, anion and cation exchange chromatography. This protocol produced a 63-fold purification and a specific activity of 4.75 U (mg protein)−1. The mass of the enzyme was 69 kDa as estimated by gel filtration. On SDS-PAGE apparent molecular masses of 49 kDa (α-subunit) and 24 kDa (β-subunit) were found. Further specification was obtained by MALDI-TOF MS detecting molecular ions at m/z 40109 and 19 896. These two fragments were also found on a western blot using an SDS-boiled chicory root extract and chicken-raised polyclonal antibodies against the purified 1-SST, indicating that the enzyme is a heterodimer in vivo. The N-terminus of chicory root 1-SST α-subunit was shown to be highly homologous with the cDNA-derived amino acid sequences from barley 6-SFT and a number of β-fructosyl hydrolases (in-vertases and fructan hydrolases). However, chicory root 1-SST properties could be clearly differentiated from those of chicory root 1-FFT (EC 2.4.1.100), chicory root acid invertase (EC 3.2.1.26) and yeast invertase. The enzyme mainly produced 1-kes-tose and glucose from physiologically relevant sucrose concentrations, indicating that this 1-SST is the key enzyme initiating fructan biosynthesis in vivo. However, like chicory root 1-FFT and barley 6-SFT, the enzyme also showed some β-fructofuranosi-dase activity (fructosyl transfer to water) at very low sucrose concentrations. Although sucrose clearly is the best substrate for the enzyme, some transferase and β-fructofuranosidase activity were also detected using 1-kestose as the sole substrate.  相似文献   

14.
A genuine 1-SST (sucrose:sucrose 1-fructosy] transferase, EC 2.4.1.99) was purified and characterized from young chicory roots ( Cichorium intybus L. var. foliosum cv. Flash) by a combination of ammonium sulfate precipitation, concanavalin A affinity chromatography, anion and cation exchange chromatography. This protocol produced a 63-fold purification and a specific activity of 4.75 U (mg protein)−1. The mass of the enzyme was 69 kDa as estimated by gel filtration. On SDS-PAGE apparent molecular masses of 49 kDa (α-subunit) and 24 kDa (β-subunit) were found. Further specification was obtained by MALDI-TOF MS detecting molecular ions at m/z 40109 and 19 896. These two fragments were also found on a western blot using an SDS-boiled chicory root extract and chicken-raised polyclonal antibodies against the purified 1-SST, indicating that the enzyme is a heterodimer in vivo. The N-terminus of chicory root 1-SST α-subunit was shown to be highly homologous with the cDNA-derived amino acid sequences from barley 6-SFT and a number of β-fructosyl hydrolases (in-vertases and fructan hydrolases). However, chicory root 1-SST properties could be clearly differentiated from those of chicory root 1-FFT (EC 2.4.1.100), chicory root acid invertase (EC 3.2.1.26) and yeast invertase. The enzyme mainly produced 1-kes-tose and glucose from physiologically relevant sucrose concentrations, indicating that this 1-SST is the key enzyme initiating fructan biosynthesis in vivo. However, like chicory root 1-FFT and barley 6-SFT, the enzyme also showed some β-fructofuranosi-dase activity (fructosyl transfer to water) at very low sucrose concentrations. Although sucrose clearly is the best substrate for the enzyme, some transferase and β-fructofuranosidase activity were also detected using 1-kestose as the sole substrate.  相似文献   

15.
* Fructan:fructan 6G-fructosyltransferase (6G-FFT) catalyses a transfructosylation from fructooligosaccharides to C6 of the glucose residue of sucrose or fructooligosacchrides. In asparagus (Asparagus officinalis), 6G-FFT is important for the synthesis of inulin neoseries fructan. Here, we report the isolation and functional analysis of the gene encoding asparagus 6G-FFT. * A cDNA clone was isolated from asparagus cDNA library. Recombinant protein was produced by expression system of Pichia pastoris. To measure enzymatic activity, recombinant protein was incubated with sucrose, 1-kestose, 1-kestose and sucrose, or neokestose. The reaction products were detected by high performance anion-exchange chromatography. * The deduced amino acid sequence of isolated cDNA was similar to that of fructosyltransferases and vacuolar type invertases from plants. Recombinant protein mainly produced inulin neoseries fructan, such as 1F, 6G-di-beta-D-fructofuranosylsucrose and neokestose. * Recombinant protein demonstrates 6G-FFT activity, and slight fructan:fructan 1-fructosyltransferase (1-FFT) activity. The ratio of 6G-FFT activity to 1-FFT activity was calculated to be 13. The characteristics of the recombinant protein closely resemble those of the 6G-FFT from asparagus roots, except for a difference in accompanying 1-FFT activity.  相似文献   

16.
Fructosyltransferases (FTs) synthesize fructans, fructose polymers accumulating in economically important cool-season grasses and cereals. FTs might be crucial for plant survival under stress conditions in species in which fructans represent the major form of reserve carbohydrate, such as perennial ryegrass (Lolium perenne). Two FT types can be distinguished: those using sucrose (S-type enzymes: sucrose:sucrose 1-fructosyltransferase [1-SST], sucrose:fructan 6-fructosyltransferase) and those using fructans (F-type enzymes: fructan:fructan 1-fructosyltransferase [1-FFT], fructan:fructan 6G-fructosyltransferase [6G-FFT]) as preferential donor substrate. Here, we report, to our knowledge for the first time, the transformation of an F-type enzyme (6G-FFT/1-FFT) into an S-type enzyme (1-SST) using perennial ryegrass 6G-FFT/1-FFT (Lp6G-FFT/1-FFT) and 1-SST (Lp1-SST) as model enzymes. This transformation was accomplished by mutating three amino acids (N340D, W343R, and S415N) in the vicinity of the active site of Lp6G-FFT/1-FFT. In addition, effects of each amino acid mutation alone or in combination have been studied. Our results strongly suggest that the amino acid at position 343 (tryptophan or arginine) can greatly determine the donor substrate characteristics by influencing the position of the amino acid at position 340. Moreover, the presence of arginine-343 negatively affects the formation of neofructan-type linkages. The results are compared with recent findings on donor substrate selectivity within the group of plant cell wall invertases and fructan exohydrolases. Taken together, these insights contribute to our knowledge of structure/function relationships within plant family 32 glycosyl hydrolases and open the way to the production of tailor-made fructans on a larger scale.  相似文献   

17.
18.
Enzymes of the glycosyl hydrolase family 32 are highly similar with respect to primary sequence but catalyze divergent reactions. Previously, the importance of the conserved sucrose-binding box in determining product specificity of onion fructan:fructan 6G-fructosyltransferase (6G-FFT) was established [Ritsema et al., 2004, Plant Mol. Biol. 54: 853–863]. Onion 6G-FFT synthesizes the complex fructan neo-series inulin by transferring fructose residues to either a terminal fructose or a terminal glucose residue. In the present study we have elucidated the molecular determinants of product specificity by substitution of individual amino acids of the sucrose binding box with amino acids that are present on homologous positions in other fructosyltransferases or vacuolar invertases. Substituting the presumed nucleophile Asp85 of the β-fructosidase motif resulted in an inactive enzyme. 6G-FFT mutants S87N and S87D did not change substrate or product specificities, whereas mutants N84Y and N84G resulted in an inactive enzyme. Most interestingly, mutants N84S, N84A, and N84Q added fructose residues preferably to a terminal fructose and hardly to the terminal glucose. This resulted in the preferential production of inulin-type fructans. Combining mutations showed that amino acid 84 determines product specificity of 6G-FFT irrespective of the amino acid at position 87.  相似文献   

19.
Three invertase forms (EC 3.2.1.26) were identified in soluble extracts from developing flower buds of Lilium longiflorum Thunb. cv. Nellie White. The enzymes were separable on a diethylaminoethyl (DEAE)-Sephacel column and designated invertase I. II or III according to the order of elution from Sephacel. To determine tissue specificity of these floral invertases, anthers were separated from tepal. pistil and filament tissue, and analyzed for invertase activity. Invertase I was localized primarily in anthers, with invertases II and III being present in much smaller amounts (less than 5% of the invertase I activity). Much higher levels of invertases II and III were found in the nonanther organs of the flower, where essentially no invertase 1 was detectable. Further purification of each form (using gel filtration. Con-A-Sepharose affinity chromatog-raphy and hydrophobic interaction chromatography on phenyl-agarose) resulted in 135- 189- and 202-fold purification of pooled fractions from DEAE-Sephacel. respectively, and established that each invertase form is a glycoprotein. Each was an acid invertase. with pH optima between 4.0 and 5.0 and an apparent molecular mass of 77 500 Da (as determined by Sephadex gel filtration). The invertases had sucrose Km values of 1.0. 6.4 and 6.6 m M . and temperature optima of 40. 50 and 45°C. respectively. A temperature stability study revealed that invertase III was the most thermostable, followed by II and I. Invertases II and III had lower affinity to raffinose and stachyose than invertase I. All three enzymes were completely inhibited by Hg2+ or Ag+ ions at 1.7 m M . At this concentration. Cu2- showed differential partial inhibition . Although fructan was shown to be present in both anther and nonanther tissues of Lilium flower buds, these invertases showed no sucrose:sucrose fructosyltransferase (EC 2.4.1.99) activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号