首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Butterbach-Bahl  K.  Gasche  R.  Willibald  G.  Papen  H. 《Plant and Soil》2002,240(1):117-123
During 4 years continuous measurements of N-trace gas exchange were carried out at the forest floor-atmosphere interface at the Höglwald Forest that is highly affected by atmospheric N-deposition. The measurements included spruce control, spruce limed and beech sites. Based on these field measurements and on intensive laboratory measurements of N2-emissions from the soils of the beech and spruce control sites, a total balance of N-gas emissions was calculated. NO2-deposition was in a range of –1.6 –2.9 kg N ha–1 yr–1 and no huge differences between the different sites could be demonstrated. In contrast to NO2-deposition, NO- and N2O-emissions showed a huge variability among the different sites. NO emissions were highest at the spruce control site (6.4–9.1 kg N ha–1 yr–1), lowest at the beech site (2.3–3.5 kg N ha–1 yr–1) and intermediate at the limed spruce site (3.4–5.4 kg N ha–1 yr–1). With regard to N2O-emissions, the following ranking between the sites was found: beech (1.6–6.6 kg N ha–1 yr–1) >> spruce limed (0.7–4.0 kg N ha–1 yr–1) > spruce control (0.4–3.1 kg N ha–1 yr–1). Average N-trace gas emissions (NO, NO2, N2O) for the years 1994–1997 were 6.8 kg N ha–1 yr–1 at the spruce control site, 3.6 kg N ha–1 yr–1 at the limed spruce site and 4.5 kg N ha–1 yr–1 at the beech site. Considering N2-losses, which were significantly higher at the beech (12.4 kg N ha–1 yr–1) than at the spruce control site (7.2 kg N ha–1 yr–1), the magnitude of total gaseous N losses, i.e. N2-N + NO-N + NO2-N + N2O-N, could be calculated for the first time for a forest ecosystem. Total gaseous N-losses were 14.0 kg N ha–1 yr–1 at the spruce control site and 15.5 kg N ha–1 yr–1 at the beech site, respectively. In view of the huge interannual variability of N-trace gas fluxes and the pronounced site differences in N-gas emissions it is concluded that more research is needed in order to fully understand patterns of microbial N-cycling and N-gas production/emission in forest ecosystems and mechanisms of reactions of forest ecosystems to the ecological stress factor of atmospheric N-input.  相似文献   

2.
Arvidsson  Helen  Lundkvist  Heléne 《Plant and Soil》2002,238(1):159-174
Nutrient concentrations in current and 1-year-old needles were analyzed annually for 5 years after application of hardened wood ash in 1–4-year-old Norway spruce (Picea abies (L.) Karst.) stands within a range of climate and fertility gradients. At each site, 3000 kg ha–1 hardened wood ash of two types, Nymölla and Perstorp, was applied in a randomized block design. Wood ash Nymölla contained 12 kg ha–1 P, 30 kg ha–1 K, 891 kg ha–1 Ca, 72 kg ha–1 Mg and wood ash Perstorp contained 12 kg ha–1 P, 60 kg ha–1 K, 486 kg ha–1 Ca, and 60 kg ha–1 Mg. The ash was intended to compensate for nutrients removed at the preceding harvest when logging residues were collected and removed from the site (whole-tree harvesting). The climate gradient included four climate zones throughout Sweden and each of these included a fertility gradient of three sites classified according to their ground vegetation type. There were no effects on nutrient concentrations in the needles 1 year after the application of wood ash. Five years after ash application, the concentrations of P, K and Ca in current and 1-year-old needles were higher than in the control plots. The results were consistent over all stands, irrespective of climate zone and fertility status. P and K concentrations were higher in spruce needles from plots treated with Perstorp wood ash, whereas Ca concentrations were higher in those of Nymölla treated plots. Analyses across all study sites revealed a treatment effect in terms of increased ratios of P:N, K:N and Ca:N in 1-year-old needles. The ratio P:N tended to increase with time in the Perstorp wood ash treatment compared with the control. The needle concentrations of Mg and S were not affected by the ash applications. The increase in needle nutrient concentrations after application of hardened wood ash suggests that wood ash recycling could be used in order to replace nutrients removed at whole-tree harvesting.  相似文献   

3.
To study the impact of high atmospheric nitrogen deposition on the leaching of NO3 and NH4+ beneath forest and heathland vegetation, investigations were carried out in adjacent forest and heathland ecosystems in Northwest Germany. The study area is subjected to high deposition of nitrogen ranging from 15.9 kg ha–1 yr–1 in bulk precipitation to 65.3 kg ha–1 yr–1 beneath a stand of Pinus sylvestris L. with NH4–N accounting for 70–80% of the nitrogen deposited. Considerable leaching of nitrogen compounds from the upper horizons of the soil, mostly as nitrate, occurred at most of the forest sites and below a mixed stand of Calluna vulgaris (L.) Hull. and Erica tetralix, but was low in a Betula pubescens Ehrh. swamp forest as well as beneath Erica tetralix L. wet heath and heath dominated by Molinia caerulea(L.) Moench. Ground water concentrations of both NO3–N and NH4–N did not exceed 1 mg L–1 at most of the sites investigated.  相似文献   

4.
Above ground net primary production (NPP), nitrogen (N) allocation, and retranslocation from senescing leaves were measured in 7 sugar-maple dominated sites having annual net N mineralization rates ranging from 26 to 94 kg · ha–1 · yr–1. The following responses were observed: (1) Green sun leaves on richer sites had higher N mass per unit leaf area than sun leaves on poorer sites; (2) Total canopy N varied much less than annual net mineralization, ranging from 81 to 111 kg · ha–1; (3) This was due to the existence of a large and relatively constant pool of N which was retranslocated from senescing leaves for use the following year (54 to 80 kg · ha–1); (4) The percentage of canopy N retranslocated by sugar maple was also relatively constant, but was slightly higher on the richer sites. Percent N in leaf litter did not change across the gradient; (5) Above ground NPP increased linearly in relation to N allocated above ground. Therefore, N use efficiency, expressed as above ground NPP divided by N allocated above ground was constant; (6) N use efficiency expressed as (NPP above ground/total N availability) was a curvilinear function of N availability; and (7) This pattern reflected a decreasing apparent allocation of N below ground with decreasing N availability.  相似文献   

5.
The effect of tree row species on the distribution of soil inorganic N and the biomass growth and N uptake of trees and crops was investigated beneath a Grevillea robustaA. Cunn. ex R. Br. (grevillea) tree row and Senna spectabilisDC. (senna) hedgerow grown with Zea mays L. (maize) and a sole maize crop, during one cropping season. The hypothesis was that a tree with a large nutrient uptake would have a greater competitive effect upon coexisting plants than a tree that takes up less and internally cycles nutrients. The field study was conducted on a kaolinitic Oxisol in the sub-humid highlands of western Kenya. Soil nitrate and ammonium were measured to 300 cm depth and 525 cm distance from the tree rows, before and after maize cropping. Ammonium concentrations were small and did not change significantly during the cropping season. There was > 8 mg nitrate kg–1 in the upper 60 cm and at 90–180 cm depth at the start of the season, except within 300 cm of the senna hedgerow where concentrations were smaller. During the season, nitrate in the grevillea-maize system only decreased in the upper 60 cm, whereas nitrate decreased at almost every depth and distance from the senna hedgerow. Inorganic N (nitrate plus ammonium) decreased by 94 kg ha–1 in the senna-maize system and 33 kg ha–1 in the grevillea-maize system.The aboveground N content of the trees increased by 23 kg ha–1 for grevillea and 39 kg ha–1 for senna. Nitrogen uptake by maize was 85 kg ha–1 when grown with grevillea and 65 kg ha–1 with senna. Assuming a mineralisation input of 50 kg N ha–1season–1, the decrease in inorganic soil N approximately equalled plant N uptake in the grevillea-maize system, but exceeded that in the senna-maize system. Pruning and litter fall removed about 14 kg N ha–1 a–1 from grevillea, and > 75 kg N ha–1 a–1 from senna. The removal of pruned material from an agroforestry system may lead to nutrient mining and a decline in productivity.  相似文献   

6.
N deposition, N transformation and N leaching in acid forest soils   总被引:9,自引:3,他引:6  
Nitrogen deposition, mineralisation, uptake and leaching were measured on a monthly basis in the field during 2 years in six forested stands on acidic soils under mountainous climate. Studies were conducted in three Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] plantations (D20: 20 year; D40: 40 yr; D60: 60 yr) on abandoned croplands in the Beaujolais Mounts; and two spruce (Picea abies Karst.) plantations (S45: 45 yr; S90: 90 yr) and an old beech (Fagus sylvatica L.) stand (B150: 150 yr) on ancient forest soils in a small catchment in the Vosges Mountains. N deposition in throughfall varied between 7–8 kg ha–1 year–1 (D20, B150, S45) and 15–21 kg ha–1 yr–1 (S90, D40, D60). N in annual litterfall varied between 20–29 kg ha–1 (D40, D60, S90), and 36–43 kg ha–1 (D20, S45, B150). N leaching below root depth varied among stands within a much larger range, between 1–9 kg ha–1 yr–1 (B150, S45, D60) and 28–66 kg ha–1 yr–1 (D40, S90, D20), with no simple relationship with N deposition, or N deposition minus N storage in stand biomass. N mineralisation was between 57–121 kg ha–1 yr–1 (S45, D40, S90) and between 176–209 kg ha–1 yr–1 in (B150, D60 and D20). The amounts of nitrogen annually mineralised and nitrified were positively related. Neither general soil parameters, such as pH, soil type, base saturation and C:N ratio, nor deposition in throughfall or litterfall were simply related to the intensity of mineralisation and/or nitrification. When root uptake was not allowed, nitrate leaching increased by 11 kg ha–1 yr–1 at S45, 36 kg ha–1 yr–1 at S90 and between 69 and 91 kg ha–1 yr–1 at D20, D40, B150 and D60, in relation to the nitrification rates of each plot. From this data set and recent data from the literature, we suggest that: high nitrification and nitrate leaching in Douglas-fir soils was likely related to the former agricultural land use. High nitrification rate but very low nitrate leaching in the old beech soil was related to intense recycling of mineralised N by beech roots. Medium nitrification and nitrate leaching in the old spruce stand was related to the average level of N deposition and to the deposition and declining health of the stand. Very low nitrification and N leaching in the young spruce stand were considered representative of fast growing spruce plantations receiving low N deposition on acidic soils of ancient coniferous forests. Consequently, we suggest that past land use and fine root cycling (which is dependent on to tree species and health) should be taken into account to explain the variability in the relation between N deposition and leaching in forests.  相似文献   

7.
Summary This study evaluated the utility of free arginine concentrations as a possible alternative to mineral nutrient concentrations as an indicator of mineral nutrient imbalances in Norway spruce [Picea abies (L.) Karst.]. The concentrations of mineral nutrients and arginine were measured in the needles of spruce trees from two areas in Sweden, one with high (15–30 kg ha–1 year–1) airborne N deposition, and one with lower (1–4 kg ha–1 year–1) deposition. The spruce needles from the area with high deposition in southern Sweden had elevated concentrations of free arginine, especially on peat sites. No increase in concentrations was found in the low deposition area in northern Sweden. The arginine concentrations on different sampling occasions were consistent for each site and for individual trees. Trees on peat sites in the south seemed to suffer from P deficiency in relation to N availability. A tendency for K deficiency in needles from peat sites was also found. Needles from trees on mor plots showed acceptable levels of these nutrient elements. Sites in the northern area showed low N concentrations, but the ratios between the different mineral elements analyzed in this study and N were within ranges normally found. A low P/N ratio correlated to high free arginine concentration. The threshold for elevated arginine concentrations is crossed when P/N ratios drop below 0.07–0.08. A tendency for increased arginine levels when ratios between N and the other mineral elements are low was also found, although it was not as strong as that for the P/N ratio. The results are discussed in relation to mineral nutrient imbalances in spruce stands caused by airborne deposition.  相似文献   

8.
The effects of grass growth and N deposition on the leaching of nutrients from forest soil were studied in a lysimeter experiment performed in the Moravian-Silesian Beskydy Mts. (the Czech Republic). It was assumed that the grass sward formed on sites deforested due to forest decline would improve the soil environment. Lysimeters with growing acidophilous grasses (Calamagrostis arundinacea and C. villosa), common on clear-cut areas, and with unplanted bare forest soil were installed in the deforested area affected by air pollution. Wet bulk deposition of sulphur in SO42– corresponded to 21.6–40.1 kg ha–1 and nitrogen in NH4+ and NO3 to 8.9–17.4 kg N ha–1, with a rain water pH of 4.39–4.59 and conductivity of 18.6–36.4 S cm–1 during the growing seasons 1997–1999. In addition, the lysimeters were treated with 50 kg N ha–1 yr–1 as ammonium nitrate during the 3 years of the experiment. Rapid growth of planted grasses resulted in a very fast formation of both above- and below-ground biomass and a large accumulation of nitrogen in the tissue of growing grasses. The greatest differences in N accumulation in aboveground biomass were observed at the end of the third growing season; in C. villosa and C. arundinacea, respectively, 2.66 and 3.44 g N m–2 after addition of nitrogen and 1.34 and 2.39 g N m–2 in control. Greater amounts of nitrogen were assessed in below-ground plant parts (9.93–12.97 g N m–2 in C. villosa and 4.29–4.39 g N m–2 in C. arundinacea). During the second and third year of experiment, the following effects were the most pronounced: the presence of growing grasses resulted in a decrease of both the acidity and conductivity of lysimetric water and in a lower amount of leached nitrogen, especially of nitrates. Leaching of base cations (Ca2+ and Mg2+) was two to three times lower than from bare soil without grasses. An excess of labile Al3+ was substantially eliminated in treatments with grasses. Enhanced N input increased significantly the acidity and losses of nutrients only in unplanted lysimeters. The leaching of N from treatments with grasses (3.9–5.6 kg N ha–1) was 31–46% of the amount of N in wet deposition. However, the amount of leached N (4.2–6.0 kg N ha–1) after N application was only 7.1–8.9% of total N input. After a short three year period, the features of soil with planted grasses indicated a slight improvement: higher pH values and Ca2+ and Mg2+ contents. The ability of these grass stands to reduce the excess nitrogen in soil is the principal mechanism modifying the negative impact on sites deforested by acid depositions. Thus it is suggested that grass sward formation partly eliminates negative processes associated with soil acidification and has a positive effect on the reduction of nutrient losses from the soil.  相似文献   

9.
A pot experiment was conducted in the green house to investigate the establishment of phosphate solubilizing strains of Azotobacter chroococcum, including soil isolates and their mutants, in the rhizosphere and their effect on growth parameters and root biomass of three genetically divergent wheat cultivars (Triticum aestivum L.). Five fertilizer treatments were performed: Control, 90 kg N ha—1, 90 kg N + 60 kg P2O5 ha—1, 120 kg N ha—1 and 120 kg N + 60 kg P2O5 ha—1. Phosphate solubilizing and phytohormone producing parent soil isolates and mutant strains of A. chroococcum were isolated and selected by an enrichment method. In vitro phosphate solubilization and growth hormone production by mutant strains was increased compared with soil isolates. Seed inoculation of wheat varieties with P solubilizing and phytohormone producing A. chroococcum showed better response compared with controls. Mutant strains of A. chroococcum showed higher increase in grain (12.6%) and straw (11.4%) yield over control and their survival (12—14%) in the rhizosphere as compared to their parent soil isolate (P4). Mutant strain M37 performed better in all three varieties in terms of increase in grain yield (14.0%) and root biomass (11.4%) over control.  相似文献   

10.
Common bean (Phaseolus vulgaris L.) is able to fix 20–60 kg N ha–1 under tropical environments in Brazil, but these amounts are inadequate to meet the N requirement for economically attractive seed yields. When the plant is supplemented with N fertilizer, N2 fixation by Rhizobium can be suppressed even at low rates of N. Using the 15N enriched method, two field experiments were conducted to compare the effect of foliar and soil applications of N-urea on N2 fixation traits and seed yield. All treatments received a similar fertilization including 10 kg N ha–1 at sowing. Increasing rates of N (10, 30 and 50 kg N ha–1) were applied for both methods. Foliar application significantly enhanced nodulation, N2 fixation (acetylene reduction activity) and yield at low N level (10 kg N ha–1). Foliar nitrogen was less suppressive to nodulation, even at higher N levels, than soil N treatments. In the site where established Rhizobium was in low numbers, inoculation contributed substantially to increased N2 fixation traits and yield. Both foliar and soil methods inhibited nodulation at high N rates and did not significantly increase bean yield, when comparing low (10 kg N ha–1) and high (50 kg N ha–1) rates applied after emergence. In both experiments, up to 30 kg N ha–1 of biologically fixed N2 were obtained when low rates of N were applied onto the leaves.  相似文献   

11.
Nils Malmer  Bo Wallén 《Oikos》2005,109(3):539-554
Southern Sweden has long been exposed to an increasing atmospheric nitrogen deposition. We investigated the effects of this supply on the Sphagnum mire vegetation in SW Götaland by comparing above‐ground tissue concentrations of N and P and biomass variables in five vascular plant and two Sphagnum species collected during three periods since 1955 at 81 sites representing three vegetation types, viz. ombrotrophic bog, extremely poor fen and moderately poor fen, within two areas differing in annual N deposition. The N:P ratios in the plants were rarely below 17, suggesting P as the growth‐limiting mineral nutrient. In the vascular plants both growth and concentrations of N and P were highest in the moderately poor fen sites because of a higher mineralization rate, the differences between the extremely poor fen and bog sites being smaller in these respects. In the extremely poor fen and bog sites the N concentrations were slightly higher in the area with the highest N deposition. From 1955 to 2002 the concentration of N in the Sphagnum spp. increased proportionally to the supply rate while P remained constant. In the vascular plants the concentrations of P remained constant while N showed slightly decreasing trends in the bog and extremely poor fen sites, but since the size of the plants increased the biomass content of N and P increased, too. The increased N deposition has had its greatest effects on the site types with the highest Sphagnum biomass and peat accumulation rate. The high N concentration in the Sphagnum mosses probably reduced their competitiveness and facilitated the observed expansion of vascular plants. However, the increased N deposition might also have triggered an increased mineralization in the acrotelm increasing the supply of P to the vascular plants and thus also their productivity. This may also explain the slightly higher productivity among the vascular plants in the area with the highest N deposition rate. In conclusion, it seems as the increased N deposition has directly influenced only the growth of the Sphagnum mosses and that the effects on the growth of the vascular plants are indirect.  相似文献   

12.
The production of aboveground tissue of three alder species (Alnus crispa (Ait.) Pursh,A. rugosa (Du Roi) Spreng. andA. glutinosa (L) Gaertn.) on four sites ranged from 0.4 t ha–1 yr–1 to 4.0 t ha–1 yr–1 after four growing seasons. Large differences were observed among the four sites studied and among species. Soil nutrient levels affected the biomass production and foliar symptoms of P and Mg deficiency occurred withA. crispa andA. rugosa. Because of their poor aboveground biomass production (0.4–1.4 t ha–1 yr–1),A. crispa andA. rugosa should be used mainly as nurse trees. For its higher potential for biomass production (up to 4.0 t ha–1 yr–1), and its apparent higher ability to use P and Mg on deficient sites,A. glutinosa should be used preferably toA. crispa andA. rugosa for the production of biomass.  相似文献   

13.
Effect of soil application of eight combinations of NPK fertilizers on the severity of black spot disease (BSD), caused by Alternaria brassicae (Sacc.) Berk., and yield of short duration oilseed rape (Brassica campestris L) were investigated under both pot and field conditions in 1987–88, 1988–89 and 1990–91. The severity of BSD was significantly greater (36–48%) on plants grown in ground treated with NP (N 90 kg ha–1+P 40 kg ha–1) applied as urea and single superphosphate respectively than on plants from the unfertilized control (NoPoKo) (o). However, the severity of BSD was significantly smaller (25–33%) when K (40 kg ha–1) was applied as muriate of potash than in plants from control and NP treatments. The effect of NK (N 90 kg ha–1+K 40 kg ha–1) in decreasing the severity of BSD was increasingly more pronounced than the effects of PK (P 40 kg ha–1+K 40 kg ha–1), NP and K (40 kg ha–1) applications. The decrease in the severity of BSD due to K was due to increased production in plants of phenolics which inhibited conidial germination and decreased sporulation of A. brassicae.The decrease in the severity of BSD due to NK application gave consistently increased seed yield 68% more than those of control and other treatments. The K-fertilized plants also showed increased resistance to lodging, increased 1000-seed weight and decreased seed infection. Seeds obtained from K-fertilized plants showed good seed germinability and vigorous seeding growth.  相似文献   

14.
To predict the role of ombrotrophic bogs as carbon sinks in the future, it is crucial to understand how Sphagnum vegetation in bogs will respond to global change. We performed a greenhouse experiment to study the effects of two temperature treatments (17.5 and 21.7°C) and two N addition treatments (0 and 4 g N m−2 year−1) on the growth of four Sphagnum species from three geographically interspersed regions: S. fuscum, S. balticum (northern and central Sweden), S. magellanicum and S. cuspidatum (southern Sweden). We studied the growth and cover change in four combinations of these Sphagnum species during two growing seasons. Sphagnum height increment and production were affected negatively by high temperature and high N addition. However, the northern species were more affected by temperature, while the southern species were more affected by N addition. High temperature depressed the cover of the ‘wet’ species, S. balticum and S. cuspidatum. Nitrogen concentrations increased with high N addition. N:P and N:K ratios indicated P-limited growth in all treatments and co-limitation of P and K in the high N treatments. In the second year of the experiment, several containers suffered from a severe fungal infection, particularly affecting the ‘wet’ species and the high N treatment. Our findings suggest that global change can have negative consequences for the production of Sphagnum species in bogs, with important implications for the carbon sequestration in these ecosystems.  相似文献   

15.
Huber  C.  Oberhauser  A.  Kreutzer  K. 《Plant and Soil》2002,240(1):3-11
Laboratory and field measurements of the flux of ammonia to forest floor canopies of spruce and beech stands at the Höglwald site in southern Bavaria are reported. Measurements were performed with an open chamber method. A linearity between ammonia concentration and ammonia flux from the atmosphere to the ground floor canopy was detected. Deposition of ammonia showed no saturation even at air concentrations up to 50 g NH3 m–3 air. Temperature, water content and the moss layer of the ground floor canopy had a minor influence on the deposition velocity in laboratory experiments. Deposition velocity of ammonia was higher to the spruce (1.3 cm s–1), and limed spruce ground floor canopy (1.17 cm s–1) compared to the beech stand (0.79 cm s–1). In field studies, a diurnal course of the deposition velocity was detected with highest velocities in midday and minor during night times, but not in the climatic chamber. The flux of ammonia to the ground floor canopy was estimated of app. 10 kg N ha–1 yr–1 for the soil under spruce, 9 kg N ha–1 yr–1 for the limed spruce and 6 kg N ha–1yr–1 for the soil under beech. The fluxes are interpreted as fluxes from the atmosphere to the ground canopies of the stands.  相似文献   

16.
Persson  Olle A  Eriksson  Harry  Johansson  Ulf 《Plant and Soil》1995,168(1):249-254
Long-term field experiments in Norway spruce stands on fertile sites (site indices 27–35 m) in southwestern Sweden were analysed with respect to volume increment. Three treatments were included (0=No fertilization, N = Fertilization with N, NP = Fertilization with N and P).Volume growth was monitored for 18 years in 10 blocks. No significant differences in annual volume increment between the treatments were detected. Volume increments in the N treatment were 97%, 99% and 107% as high as those in the 0 treatment for the periods 1–5, 6–10 and 11–15 years after the first fertilization. Corresponding values for the NP treatment were 104%, 108% and 110%, indicating that P has a small positive effect.The amount of N-fertilization would correspond to an annual N deposition of 20 kg ha-1 during the next 30 years in southwestern Sweden. For this period, the results imply that this N deposition would not affect the growth of Norway spruce stands on fertile sites.  相似文献   

17.
Litterfall and nutrient returns in red alder stands in western Washington   总被引:1,自引:0,他引:1  
Summary Litterfall was collected over 1 year from eight natural stands of red alder growing on different sites in western Washington. The stands occurred at various elevations and on different soils, and differed in age, basal area, and site index. Most litterfall was leaf litter (average 86 percent). Amounts of litterfall and leaf litter varied significantly (P<0.05) among the sites. Average weights of litterfall and leaf litter in kg ha–1 yr–1, were 5150 and 4440, respectively. Weight of leaf litter was not significantly (P<0.05) related to site index, stand age, or basal area. The sites varied significantly (P<0.05) in concentrations of all elements determined in the leaf litter, except Zn. Average chemical concentrations were: N, 1.98 percent; P, 0.09 percent; K, 0.44 percent; Ca, 1.01 percent; Mg, 0.21 percent; S, 0.17 percent; SO4–S, nil; Fe, 324 ppm; Mn, 311 ppm; Zn, 53 ppm; Cu, 13 ppm; and Al, 281 ppm. There were significant correlations between some stand characteristics and concentrations of some elements, and among the different chemical components of the leaf litter. Important correlations were found between stand age and P concentration (r=–0.84,P<0.01); weight of leaf litter and P concentration (r=0.74,P<0.05); weight of leaf litter and K concentration (r=0.71,P<0.05); concentrations of N and S (r=0.81,P<0.05); and concentrations of Fe and Al (r=0.98,P<0.01). Returns of the different elements to the soil by leaf litter varied among the different sites. Average nutrient and Al returns, in kg ha–1 yr–1, were: N, 82; Ca, 41; K, 19; Mg, 8; S, 7; P, 4; Fe, 1; Mn, 1; Al, 1; Zn, 0.2, and Cu, <0.1.  相似文献   

18.
Application of 0, 30, 60, 90 and 120 kg N ha–1 of urea (U) in split doses with (and without)Azolla pinnata, R. Brown was studied for three consecutive seasons under planted field condition. Fresh weight (FW), acetylene reduction activity (ARA) and N yield of Azolla were found to be maximum 14 days after inoculation (DAI). Among the different treatments, maximum Azolla growth was recorded in no N control. The FW, ARA and N yield of Azolla were inhibited increasingly with the increase in N levels. Irrespective of season, FW and N yield of Azolla were inhibited only a small extent with 90 kg N ha–1 U, beyond which the inhibition was pronounced. ARA was inhibited only slightly up to 60 kg N ha–1 of U. Grain yield and crop N uptake of rice increased significantly up to 90 kg N ha–1 of U (alone or in combination with Azolla) in the dry seasons (variety IR 36) and up to 60 kg N ha–1 U in the wet season (variety CR 1018).  相似文献   

19.
While it is established that increasing atmospheric inorganic nitrogen (N) deposition reduces ectomycorrhizal fungal biomass and shifts the relative abundances of fungal species, little is known about effects of organic N deposition. The effects of organic and inorganic N deposition on ectomycorrhizal fungi may differ because responses to inorganic N deposition may reflect C-limitation. To compare the effects of organic and inorganic N additions on ectomycorrhizal fungi, and to assess whether host species may influence the response of ectomycorrhizal fungi to N additions, we conducted an N addition experiment at a field site in the New Jersey pine barrens. Seedlings of two host species, Quercus velutina (black oak) and Pinus rigida (pitch pine), were planted at the base of randomly-selected mature pitch pine trees. Nitrogen was added as glutamic acid, ammonium, or nitrate at a rate equivalent to 227.5 kg ha−1 y−1 for eight weeks, to achieve a total application of 35 kg ha−1 during the 10-week study period. Organic and inorganic N additions differed in their effects on total ectomycorrhizal root tip abundance across hosts, and these effects differed for individual morphotypes between oak and pine seedlings. Mycorrhizal root tip abundance across hosts was 90 % higher on seedlings receiving organic N compared to seedlings in the control treatment, while abundances were similar among seedlings receiving the inorganic N treatments and seedlings in the control. On oak, 33–83 % of the most-common morphotypes exhibited increased root tip abundances in response to the three forms of N, relative to the control. On pine, 33–66 % of the most-common morphotypes exhibited decreased root tip abundance in response to inorganic N, while responses to organic N were mixed. Plant chemistry and regression analyses suggested that, on oak seedlings, mycorrhizal colonization increased in response to N limitation. In contrast, pine root and shoot N and C contents did not vary in response to any form of N added, and mycorrhizal root tip abundance was not associated with seedling N or C status, indicating that pine received sufficient N. These results suggest that in situ organic and inorganic N additions differentially affect ectomycorrhizal root tip abundance and that ectomycorrhizal fungal responses to N addition may be mediated by host tree species.  相似文献   

20.
Summary A microplot field experiment was conducted in the presence or absence of P and N application to evaluate the influence of the seed inoculation of mustard (cv. Baruna T59) withAzospirillum lipoferum on N2-fixation in rhizosphere, association of the bacteria with the roots and grain yield and N uptake. Inoculation significantly increased the N content in rhizosphere soil particularly at early stage (40 days) of plant growth, which was accompanied by the increased association of the bacteria (A. lipoferum) in rhizosphere soil, root surface washing and surface-sterilized macerated root. A significant increase in grain yield and N uptake was also observed due to inoculation. Application of P particularly at the 20 kg. ha–1 level further enhanced the beneficial effect ofAzospirillum lipoferum inoculation, while N addition markedly reduced such an effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号