首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Endocytosis of immunoglobulin G (IgG)-coated colloidal gold particles in cultured mouse peritoneal macrophages was studied by scanning and transmission electron microscopy. At 4 degrees C, the tracers adhered to the plasma membrane and accumulated in coated pits located in the bottom of furrows or deep invaginations on the cell surface. In the presence of an excess of unlabeled mouse IgG, cellular binding of the tracer was reduced by 80 to 90%. After warming to 37 degrees C, surface-bound tracer particles were rapidly ingested and transported to small and large vesicles lacking membrane coat. From here, they were then passed over to multivesicular bodies and lysosomes characterized by their content of myelin-like figures and other inclusions. Double-labeling experiments with IgG-coated colloidal gold particles of two different sizes (20 and 5 nm diameter) indicated that the plasma membrane was depleted of binding sites after uptake of a polyvalent ligand. The restoration of the binding capacity was a slow process requiring ongoing protein synthesis. On the basis of these observations, a model for endocytosis of immune complexes in macrophages is presented. It includes the following four steps: IgG-containing macromolecular aggregates bind to specific receptors in the plasma membrane. These appear to be preclustered in coated pits or able to move laterally within the membrane even at 4 degrees C. The receptor-ligand complexes are internalized and transferred sequentially to larger uncoated vesicles or endosomes, multivesicular bodies, and lysosomes with inclusions of varying appearance. Receptors and ligands are degraded within the lysosomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The effects of the Na+/H+ ionophore monensin and the weak base chloroquine on lysosomal uptake of endocytosed macromolecules were studied in cultured mouse peritoneal macrophages using horseradish peroxidase (HRP) and ferritin as exogenous tracers. The lysosomes were first loaded with HRP using a pulse-chase protocol. The cells were then exposed to ferritin for 30 to 120 min, either in control medium or in medium containing 3 microM monensin or 50 microM chloroquine. Semiquantitative electron microscopic analyses indicated that the uptake of ferritin into HRP-labeled lysosomes was inhibited in the drug-treated cells, and that the tracer particles accumulated in endosomes. At the same time the volume density of the endosomes was increased, fourfold by monensin and threefold by chloroquine; with the latter drug there was also an increase in lysosome volume density. Further, both drugs decreased the rate of endocytosis as measured biochemically, but not in proportion to the reduction of lysosomal ferritin uptake. After withdrawal of the drugs, cell morphology returned to normal and transfer of ferritin from endosomes to HRP-labeled lysosomes was resumed. The recovery was more rapid and complete in monensin-treated than in chloroquine-treated cells. On the basis of these findings and earlier investigations demonstrating that monensin and chloroquine both raise the pH in acid cell compartments, it is suggested that the transfer of soluble and not only membrane-bound macromolecules from endosomes to lysosomes is modulated by the pH in these organelles.  相似文献   

3.
4.
Endocytosis of radioactive technetium collo?d by murine peritoneal macrophages cultures is measured after incubation. The results show a time and temperature dependant phenomen, reduced by hydrocortisone and inhibitor of glycolysis (NaF). Cytochalasine B and colchicine have no effect on the uptake of Technetium sulfur collo?d. These results suggest that the pinocytosis of technetium collo?d is independent of the actions of microfilaments and microtubules.  相似文献   

5.
Recent work from several laboratories has suggested the participation of intermediate structures in the delivery of adsorbed ligands from the plasma membrane to lysosomes. This report presents subcellular fractionation studies bearing on the role of these structures in adsorptive pinocytosis of epidermal growth factor (EGF), beta-hexosaminidase, and low density lipoprotein (LDL) by human fibroblasts. Using a two-step Percoll density gradient fractionation, we identified newly internalized (5 min) EGF in two intermediate density structures that are essentially negative for plasma membrane marker, and more bouyant than secondary lysosomes. Continued incubation for 20 min resulted in transfer to (or conversion to) vesicles sedimenting with secondary lysosomes. Internalized beta-hexosaminidase and LDL behaved similarly, appearing first in structures of intermediate density, and later appearing in association with secondary lysosomes. Two drugs, NH4Cl and monensin, were found to inhibit ligand transfer to the secondary lysosome peak, although they did not inhibit entry of bound ligands into intermediate density structures. Upon removal of both inhibitors, internalized ligands were quickly transferred to the secondary lysosome peak. This "transfer process" was faster for EGF, than for the other two ligands studied. We interpret these data to indicate that the endocytosis of these three ligands, and their delivery to lysosomes in fibroblasts, proceeds through a common pathway, involving intermediate nonlysosomal structures.  相似文献   

6.
The uptake and degradation of bovine serum albumin (BSA), bovine liver catalase, and rabbit muscle enolase have been studied in cultured mouse peritoneal macrophages (MPM) and baby hamster kidney fibroblasts (BHK cells). Rates constant for the uptake of the three proteins by MPM were similar. In addition, BSA accumulation was independent of BSA concentration in the uptake medium and was not inhibited by a large excess of serum, suggesting that protein accumulation was by fluid phase pinocytosis. Following an overnight uptake, 20-30% of the accumulated protein was subsequently regurgitated into the medium in a trichloroacetic acid/phosphotungstic acid-precipitable form. This material co-migrated with the authentic protein during molecular sieve chromatography on Sephadex G-50. The rates of appearance of trichloroacetic acid/phosphotungstic acid-insoluble products were greater than expected for cell death and leakage. The observed first order rate constants, kobs, for the appearance of trichloroacetic acid/phosphotungstic acid-soluble and trichloroacetic acid/phosphotungstic acid-insoluble products in the culture medium were identical, indicating that both products were released in parallel from MPM and BHK cells. The kobs for intracellular BSA degradation and regurgitation were independent of the initial BSA concentration in the uptake medium, but were decreased about 35% when degradation was allowed to proceed in the presence of high concentrations of serum. Degradation was also inhibited by chloroquine and pepstatin. Inhibition of degradation was accompanied by an increase in the total amount of regurgitated protein appearing in the medium. Remarkably, however, these inhibitors also decreased kobs for regurgitation, thereby preserving the similarity in the observed rate constants for the appearance of trichloroacetic acid/phosphotungstic acid-soluble and trichloroacetic acid/phosphotungstic acid-insoluble products. These and other results were inconsistent with desorption of proteins from the surface of the culture dish or the surface of cells as the source of the trichloroacetic acid/phosphotungstic acid-insoluble label appearing in the medium.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The role of external calcium in platelet-activating factor- and zymosan-stimulated arachidonic acid release from mouse macrophages was investigated. Deprivation of external Ca2+ led to strong inhibition of receptor-mediated arachidonic acid release, which was completely restored when Ca2+ was added to the incubation medium. When arachidonic acid release was examined in Ca(2+)-depleted cells, the response took place only in presence of external Ca2+. Verapamil, a voltage-dependent Ca2+ channel blocker, nearly abolished arachidonic acid release in response to both platelet-activating factor and zymosan. These results suggest that extracellular Ca2+ influx is functionally linked to arachidonic acid release and hence to phospholipase A2 activation in mouse peritoneal macrophages.  相似文献   

8.
Summary A double-labeling protocol was used to study endocytic pathways and lysosomal transfer of exogenous macromolecules in cultured mouse peritoneal macrophages. After pulse-chase labeling of lysosomes with horseradish peroxidase (visualized cytochemically), the cells were exposed to native, anionic ferritin for 0–45 min at 37° C and then analysed by transmission electron microscopy. The results show that ferritin binds to the plasma membrane, accumulates in coated pits, and is rapidly taken up in small, smooth-surfaced endocytic vesicles. The latter carry the ferritin molecules directly to lysosomes, recognized by their peroxidase labeling, or fuse with each other to form larger endocytic vacuoles (endosomes) which in turn fuse with and empty their content into lysosomes. The first signs of transfer of ferritin into the lysosomes were seen after 5–10 min of exposure and after 25–30 min most of the lysosomes were labeled. Union of ferritin-labeled and other lysosomes was also noted, suggesting that the contents of the lysosomes were spread within the lysosomal compartment by fusion-fission processes. It is concluded that a multiplicity of structures is involved in the uptake and intracellular transport of exogenous macromolecules in macrophages and that the time sequence of lysosomal transfer of the interiorized material is highly variable.  相似文献   

9.
Hypercholesterolemic rabbit beta-VLDL and human LDL are both internalized by mouse peritoneal macrophages by receptor-mediated endocytosis. However, only beta-VLDL (which binds to the cells with a much higher affinity than LDL) markedly stimulates acyl-CoA/cholesterol acyl transferase (ACAT) and induces foam cell formation in these cells. As an initial step to test whether the two lipoproteins might be targeted to different organelles (which might differ in their ability to deliver cholesterol to microsomal ACAT), we studied the endocytic pathways of beta-VLDL and LDL. Lipoproteins were labeled with the non-transferable fluorescent label, DiI. When the macrophages were incubated with DiI-LDL for 10 min at 37 degrees C, the fluorescence was concentrated near the center of the cell both in heavily labeled vesicles and in a diffuse pattern. The pattern with DiI-beta-VLDL was quite different: an array of bright vesicles throughout the cytoplasm was the predominant feature. Differences in distribution were seen as early as 2 min of incubation and persisted throughout a 10-min chase period. By using a procedure in which photobleaching of DiI fluorescence converts diaminobenzidine into an electron-dense marker, we were able to identify at the ultrastructural level vesicles containing electron-dense material in cells incubated with DiI-beta-VLDL. Human E2/E2 beta-VLDL (from a patient with familial dysbetalipoproteinemia), which has a binding affinity and ACAT-stimulatory potential similar to LDL, gave a pattern of fluorescence virtually identical to LDL. Pulse-chase studies with 125I-labeled and [3H]cholesteryl ester-labeled lipoproteins disclosed that both protein degradation and cholesteryl ester hydrolysis were markedly retarded in beta-VLDL compared with LDL. Thus, in mouse peritoneal macrophages, endocytosed beta-VLDL appears in a distinct set of widely-distributed vesicles not seen with LDL (or with E2-beta-VLDL) and, compared with LDL, has a markedly diminished rate of protein degradation and cholesteryl ester hydrolysis. The differential routing of LDL and beta-VLDL may provide a mechanism for differences in ACAT-stimulatory potential between the two lipoproteins.  相似文献   

10.
Using the platinum-carbon surface replication technique, the distribution of receptors for two colloidal gold labeled lipoproteins (acetylated low density lipoprotein and high density lipoprotein), iron-saturated transferrin and bovine serum albumin in the plasma membrane of cultured mouse peritoneal macrophages was mapped. The plasma membrane surface of cultured peritoneal macrophages exhibits three morphologically distinct regions which have shown differences in the distribution, density and dynamics of these receptors. The flat border of the plasma membrane surfaces are the domains that appear to have the highest concentration of transferrin receptors, whereas the intermediate regions contain most of the receptors for acetylated low density lipoprotein and high density lipoprotein. Bovine serum albumin receptors are concentrated at the edge of the cells and had a uniform distribution on the rest of the cell surface. The functional significance and the mechanisms by which these regional differences in the distribution of the receptors are generated and then maintained are not yet known.  相似文献   

11.
With few exceptions, weakly basic compounds that are sufficiently lipophilic in their neutral forms and sufficiently hydrophilic in their protonated forms accumulate in lysosomes. When the concentration within the lysosomes becomes sufficiently high, osmotic swelling occurs. The cells than take on a vacuolated appearance. The concentrations at which different weak bases cause lysosomal vacuolation vary over almost three orders of magnitude. For any particular weak base, it is the concentration of the neutral form that determines the extent of uptake and the degree of vacuolation. Chloroquine is anomalous in that concentrations greater than approximately 30 microM cause less uptake and less vacuolation than do lower concentrations.  相似文献   

12.
The morphological aspects of the binding and internalization of low density lipoproteins (LDL) and acetylated low density lipoproteins (AcLDL) by cultured human monocyte-derived macrophages were investigated. For this purpose, LDL and AcLDL were conjugated to 20 nm colloidal gold particles. After incubation of the cells with the conjugated lipoproteins at 4 degrees C some LDL- or AcLDL-gold complexes were found to be attached to the cell surface, but without characteristic localization. However, after incubation of the cells at 8 degrees C with either LDL-gold or AcLDL-gold, lipoprotein-gold complexes were present in clusters on the plasma membrane, often in coated pits. Cells incubated at 37 degrees C for various time periods showed internalization of both LDL- and AcLDL-gold complexes via small coated and non-coated vesicles and processing of the complexes in smooth-walled endosomes. When the cells were pulse-chased with LDL- or AcLDL-gold for 30 min at 37 degrees C, the gold conjugates occurred in dense bodies, probably lysosomes. The results suggest that although native and modified LDL are reported to be metabolized differently by macrophages, the morphological aspects of the endocytosis of LDL and AcLDL by cultured human monocyte-derived macrophages are similar.  相似文献   

13.
Summary The morphological aspects of the binding and internalization of low density lipoproteins (LDL) and acetylated low density lipoproteins (AcLDL) by cultured human monocyte-derived macrophages were investigated. For this purpose, LDL and AcLDL were conjugated to 20 nm colloidal gold particles. After incubation of the cells with the conjugated lipoproteins at 4° C some LDL-or AcLDL-gold complexes were found to be attached to the cell surface, but without characteristic localization. However, after incubation of the cells at 8° C with either LDL-gold or AcLDL-gold, lipoprotein-gold complexes were present in clusters on the plasma membrane, often in coated pits. Cells incubated at 37° C for various time periods showed internalization of both LDL- and AcLDL-gold complexes via small coated and non-coated vesicles and processing of the complexes in smooth-walled endosomes. When the cells were pulse-chased with LDL- or AcLDL-gold for 30 min at 37° C, the gold conjugates occurred in dense bodies, probably lysosomes. The results suggest that although native and modified LDL are reported to be metabolized differently by macrophages, the morphological aspects of the endocytosis of LDL and AcLDL by cultured human monocyte-derived macrophages are similar.  相似文献   

14.
It has been shown that endocytic vesicles in BALB/c 3T3 cells have a pH of 5.0 (Tycko and Maxfield, Cell, 28:643-651). In this paper, a method for measuring the effect of various agents, including weak bases and ionophores, on the pH of endocytic vesicles is presented. The method is based on the increase in fluorescein fluorescence with 490-nm excitation as the pH is raised above 5.0. Intensities of cells were measured using a microscope spectrofluorometer after internalization of fluorescein-labeled alpha 2-macroglobulin by receptor-mediated endocytosis. The increase in endocytic vesicle pH was determined from the increase in fluorescence after addition of various concentrations of the test agents. The following agents increased endocytic vesicle pH above 6.0 at the indicated concentrations: monensin (6 microM), FCCP (10 microM), chloroquine (140 microM), ammonia (5 mM), methylamine (10 mM). The ability of many of these agents to raise endocytic vesicle pH may account for many of their effects on receptor-mediated endocytosis. Dansylcadaverine caused no effect on vesicle pH at 1 mM. The observed increases in vesicle pH were rapid (1-2 min) and could be reversed by removal of the perturbant. This reversibility indicates that the vesicles themselves contain a mechanism for acidification. The increase in vesicle pH due to these treatments can be observed visually using an SIT video camera. Using this method, it is shown that endocytic vesicles become acidic at very early times (i.e., within 5-7 min of continuous uptake at 37 degrees C).  相似文献   

15.
We have used endocytic and phagocytic tracers in an EM immunocytochemical study to define the compartments of the phagocytic and endocytic pathways in mouse peritoneal macrophages. Endocytosed BSA-gold appeared successively in early endosomes, spherical endosomal vesicles, a late endosomal tubuloreticular compartment (TC), and terminal lysosomes. The TC appeared as an elaborate structure enriched for the lysosomal membrane glycoproteins Lamp 1 and Lamp 2, and expressing significant levels of rab7, a late endosome-specific GTP-binding protein. The cation-independent mannose-6-phosphate receptor was restricted to specialized regions of the TC that were predominantly adjacent to the Golgi complex. Both the early endosome and the TC had coated bud structures whose composition and function are presently unknown. Phagolysosomes containing latex beads expressed the same membrane antigens and received endocytic tracers simultaneously with the TC. Since the membrane surrounding both organelles was also in direct continuity, we assume that both structures form one functional compartment. Macrosialin, an antigen confined to macrophages and dendritic cells, was heavily expressed in TC and phagolysosomal membranes with low levels being detected in other endosomal compartments and on the cell surface. Treatment of cells with wheat germ agglutinin drastically altered the morphology of the TC, giving rise to sheets of tightly adherent membrane and greatly expanded vesicles, in which cell-associated wheat germ agglutinin was concentrated. The spherical endosomal carrier vesicles loaded with internalized gold tracers clustered nearby, often making contact without fusing. Since the delivery of endocytic tracer to the TC was significantly delayed these experiments suggest that the lectin is somehow preventing the endosome vesicles from fusing with the TC. Collectively, our data argue first that the PLC is equivalent to the "tubular lysosomes" commonly described in macrophages, and second that the meeting of the phagocytic and endocytic pathway occurs in this compartment.  相似文献   

16.
Concentrative receptor-mediated endocytosis of many specific ligands by cultured fibroblasts occurs through the coated pit-receptosome pathway. The formation of receptosomes was studied using two impermeant electron-dense labels for the cell surface, ruthenium red and concanavalin A-horseradish peroxidase. These studies show that at 4 degrees C, virtually all coated structures near the plasma membrane are in communication with the cell surface, and are not isolated coated vesicles. On warming cells to 37 degrees C for only 1 minute, a major portion of these structures become cryptic, that is, not labeled by these surface markers. However, on cooling cells immediately back to 4 degrees C, virtually all of these structures are again in communication with the surface. Many images showed that membrane of these cryptic pits to be continuous with the cell surface when caught in the appropriate plane of section; often there was a very narrow entrance that excluded extracellular label. At 37 degrees C, receptosomes could be occasionally seen forming as an invagination of membrane adjacent to the coated region. Mechanisms by which receptosomes may form and other evidence demonstrating the failure of coated pits to pinch off to form isolated coated vesicles during endocytosis are discussed.  相似文献   

17.
Transmission electron microscopy was used to analyse the process of interaction of Trypanosoma cruzi with resident and activated mouse peritoneal macrophages. Initially, the parasites are located within a membrane-bounded endocytic vacuole. Lysosomes from the host cell fuse and discharge their content into the parasite-containing vacuole, as visualized by localization of horseradish peroxidase and acid phosphatase activity. Acridine orange was used to label secondary lysosomes in order to quantify the process of lysosome-phagosome fusion by fluorescence microscopy. The fusion index was higher for amastigote than for epimastigote and trypomastigote forms. Images were obtained showing that a few hours after ingestion of trypomastigote forms by the macrophages there is progressive disruption of the membrane lining the vacuole, until its complete disappearance.  相似文献   

18.
1. The endocytic pathway of horseradish peroxidase (HRP) was investigated in the perikarya of cultured neurons by electron microscopy and enzyme cytochemistry. The tracer was observed in endocytic pits and vesicles, endosomes, multivesicular bodies, and lysosomes. It took approximate 15 min for the transfer of HRP from the exterior of the cell to the lysosomes. 2. Monensin induced distension of the Golgi apparatus and formation of intracellular vacuoles. When neurons were incubated with both monensin and HRP for 30 to 120 min, the number of HRP-labeled endosomes was greater than that in the monensin-free group, whereas the reverse was seen for HRP-positive lysosomes. The formation of HRP-positive lysosomes in monensin-treated cells was blocked by 47 to 79%. 3. These results indicate that the intracellular transport of the endocytosed macromolecule is pH dependent. It is also possible that the export of lysosomal enzymes is inhibited by monensin, resulting in an accumulation of the endosomes and a reduction of the lysosomes.  相似文献   

19.
We have prepared a conjugate (Ri-Au) of the toxic plant protein ricin and colloidal gold (particle size 5 nm) and used it for internalization studies in monolayer cultures of Vero cells. The Ri-Au conjugate was very stable, with only little release of ricin ([125I]Ri) from the gold particles within a pH range of 4.5-8.0. Within 2 h at 37 degrees C, only very little intracellular degradation of the ricin preparation ([125I]Ri-Au) occurred. The cells bound the same proportion of native ricin ([125I]Ri) and Ri-Au from the medium, and the kinetics of toxicity (decrease in cellular incorporation of [3H]leucine) of [125I]Ri and [125I]Ri-Au were also comparable. At 4 degrees C, the cell-surface binding of Ri-Au was continuous and distinct, as revealed by electron microscopy. This binding was specific, since almost no Ri-Au surface binding occurred at 4 degrees C in the presence of 0.1 M lactose or 1 mg/ml native (unlabelled) ricin. Within the first 30 min of warming prelabelled cells to 37 degrees C, the amount of surface-associated Ri-Au decreased considerably (from 150 to 60 gold particles per micron cell surface in 40 nm sections). Coated pits and vesicles were involved in the internalization of Ri-Au, and within 5-30 min at 37 degrees C Ri-Au had been delivered to vacuolar and tubulo-vesicular portions of the endosomal system, and later also to lysosomes. Analysis of very thin (ca 20 nm) serial sections revealed that most of the tubulo-vesicular elements were separate structures not connected to the membrane of the vacuolar portion. Data here presented indicate that our ricin conjugate, like many "physiological' ligands and viruses, is internalized by receptor-mediated endocytosis via the coated pit-endosomal pathway.  相似文献   

20.
Low density lipoprotein (LDL) and beta-very low density lipoprotein (beta-VLDL) are internalized by the same receptor in mouse peritoneal macrophages and yet their endocytic patterns differ; beta-VLDL is targeted to both widely distributed and perinuclear vesicles, whereas LDL is targeted almost entirely to perinuclear lysosomes. This endocytic divergence may have important metabolic consequences since beta-VLDL is catabolized slower than LDL and is a more potent stimulator of acyl-CoA/cholesterol acyl transferase (ACAT) than LDL. The goal of this study was to explore the determinants of beta-VLDL responsible for its pattern of endocytic targeting. Fluorescence microscopy experiments revealed that large, intestinally derived, apoprotein (Apo) E-rich beta-VLDL was targeted mostly to widely distributed vesicles, whereas small, hepatically derived beta-VLDL was targeted more centrally (like LDL). Furthermore, the large beta-VLDL had a higher ACAT-stimulatory potential than the smaller beta-VLDL. The basis for these differences was not due to fundamental differences in the means of uptake; both large and small beta-VLDL were internalized by receptor-mediated endocytosis (i.e., not phagocytosis) involving the interaction of Apo E of the beta-VLDL with the macrophage LDL receptor. However, large beta-VLDL was much more resistant to acid-mediated release from LDL receptors than small beta-VLDL. Furthermore, partial neutralization of the multiple Apo Es on these particles by immunotitration resulted in a more perinuclear endocytic pattern, a lower ACAT-stimulatory potential, and an increased sensitivity to acid-mediated receptor release. These data are consistent with the hypothesis that the interaction of the multivalent Apo Es of large beta-VLDL with multiple macrophage LDL receptors leads to a diminished or retarded release of the beta-VLDL from its receptor in the acidic sorting endosome which, in turn, may lead to the widely distributed endocytic pattern of large beta-VLDL. These findings may represent a physiologically relevant example of a previously described laboratory phenomenon whereby receptor cross-linking by multivalent ligands leads to a change in receptor targeting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号