首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
An extracellular glucosyltransferase (sucrose: 1,6-, 1,3-alpha-D-glucan 3-alpha- and 6-alpha-D-glucosyltransferase, EC 2.4.1.-) of Streptococcus mutans HS6 (serotype a) was purified from culture supernatant by DEAE-Sepharose chromatography and preparative isoelectric focusing. The molecular weight measured by SDS-PAGE was 159 000 and the isoelectric point was pH 4.9. The specific activity was 89.7 i.u. (mg protein)-1 and the optimum pH was 6.0. The Km value for sucrose was 4.9 mM and the enzyme activity was not stimulated by exogenous dextran T10. Glucan was synthesized de novo from sucrose by the purified enzyme and consisted of 49.1 mol% 1,6-alpha-linked glucose and 33.9 mol% 1,3-alpha-linked glucose, with 13.6 mol% terminal glucose and 3.3 mol% 1,3,6-alpha-branched glucose.  相似文献   

2.
Extracellular 1,3-alpha-D-glucan synthase (sucrose: 1,3-alpha-D-glucan 3-alpha-D-glucosyltransferase, EC 2.4.1.-) of Streptococcus mutans HS6 (serotype a) was purified from culture supernatant by ultrafiltration, DEAE-Sepharose chromatography and preparative isoelectric focusing. The enzyme had a molecular weight of 158 000 by SDS-PAGE and an isoelectric point of pH 5.2. The specific activity of the enzyme was 48.3 i.u. (mg protein)-1. The Km for sucrose was 1.2 mM and the activity was optimal at pH 6.0. The enzyme activity was stimulated about 20-fold in the presence of dextran T10. Glucan was synthesized de novo from sucrose by the enzyme and characterized as a linear 1,3-alpha-D-glucan by GC-MS.  相似文献   

3.
Streptococcus mutans Ingbritt (serotype c) was found to secrete basic glucosyltranserase (sucrose: 1,6-α-D-glucan 3-α- and 6-α- glucosyltransferase). The enzyme preparation obtained by ethanol fractionation, DEAE Bio-Gel A chromatography, chromatofocusing and preparative isoelectric focusing was composed of three isozymes with slightly different isoelectric points (pI 8.1–8.4). The molecular weight was estimated to be 151 000 by SDS-polyacrylamide gel electrophoresis. The specific activity of the enzyme was 9.8 IU per mg of protein and the optimum pH was 6.5. The enzyme was activated 2.4-fold by commercial dextran T10, and had Km values of 7.1 μM for the dextran and 4.3 mM for sucrose. Glucan was de novo synthesized from sucrose by the enzyme and found to be 1,6- α-D-glucan with 17.7% of 1,3,6-branching structure by a gas-liquid chromatography-mass spectroscopy.  相似文献   

4.
Extracellular glucosyltransferases (sucrose: 1,6-alpha-D-glucan 3-alpha- and 6-alpha-glucosyltransferase) of Streptococcus mutans HS6 (serotype a) were purified from the culture supernatant by DEAE-Sepharose chromatography, ConA-Sepharose chromatography and chromatofocusing. The enzymes I and II with specific activities of 6.20 and 5.86 i.u. mg-1, respectively, exhibited slightly different isoelectric points (pI 4.5 and 4.2) and the molecular weights were estimated to be 161000 and 174000, respectively, by SDS-PAGE. The enzymes had the same optimum pH of 5.5 and the same Km values of 1.3 mM for sucrose and of 83 microM-glucose equivalent for dextran T10. By double immunodiffusion test on agar, these enzymes were immunologically identical to each other. Analysis by GLC of the glucans synthesized de novo from sucrose by the enzymes (I and II) established that they were 1,6-alpha-D-glucans with 20 and 24.5 mol% 1,3,6-branch points, respectively. Both are therefore bifunctional enzymes.  相似文献   

5.
Leuconostoc mesenteroides NRRL B-512(F) was grown in continuous culture under conditions of energy-limited growth. The extracellular enzyme dextransucrase (sucrose: 1,6-alpha-D-glucan 6-alpha-glucosyltransferase EC 2.4.1.5), was not detected in glucose- or maltose-limited cultures. Under conditions of sucrose-limited growth, the enzyme activity of the cell-free culture supernatant increased with increasing dilution rate only after the critical concentration of enzyme inducer (sucrose) in the chemostat had been achieved. The appearance of fructose in the effluent of the sucrose-limited chemostat at higher dilution rates indicated that sucrose was being diverted to dextran biosynthesis. The competition between bacteria and extracellular enzyme for the common substrate sucrose represents an inefficiency in the system of enzyme production. Dextransucrase was isolated from the cell-free culture supernatant by ammonium sulfate precipitation and DEAE-cellulose chromatography. The enzyme preparation exhibited both dextran biosynthetic activity and an invertase-like activity. The biosynthetic efficiency was increased by decreasing the temperature from 30 to 10 degrees C. The enzyme was irreversibly denatured by prolonged incubation in the absence of Ca2+.  相似文献   

6.
Streptococcus mutans Ingbritt (serotype c) was shown to have a significant amount of cell-associated glucosyltransferase activity which synthesizes water-insoluble glucan from sucrose. The enzyme was extracted from the washed cells with SDS, renatured with Triton X-100, adsorbed to 1,3-alpha-D-glucan gel, and then eluted with SDS. The enzyme preparation was electrophoretically homogeneous, and the specific activity was 7.3 i.u. (mg protein)-1. The enzyme had an Mr of 158,000 as determined by SDS-PAGE, and was a strongly hydrophilic protein, as judged by its amino acid composition. The enzyme gradually aggregated in the absence of SDS. The enzyme had an optimum pH of 6.5 and a Km value of 16.3 mm for sucrose. Activity was stimulated 1.7-fold by dextran T10, but was not stimulated by high concentrations of ammonium sulphate. Below a sodium phosphate buffer concentration of 50 mm, activity was reduced by 75%. This enzyme synthesized an insoluble D-glucan consisting of 76 mol% 1,3-alpha-linked glucose and 24 mol% 1,6-alpha-linked glucose.  相似文献   

7.
Streptococcus mutans secretes a sucrose-independent branalphang enzyme that utilizes isomaltosaccharides as donors for branalphang formation on dextran. Although the branching enzyme is necessary for the formation of extracellular polysaccharide complexes, the source of the donor for the enzyme is unknown. In this study, we purified a novel glucosyltransferase from S. mutans and characterized its properties. The glucosyltransferase was primer independent 1,6-alpha-D-glucan synthase, which produced oligo-isomaltosaccharides. The enzyme was thought to be a source of donor for the branching enzyme in S. mutans.  相似文献   

8.
Dextransucrase (sucrose: 1,6-alpha-D-glucan 6-alpha-D-glucosyltransferase, EC 2.4.1.5) (3 IU/ml culture supernatant) was obtained by a modification of the method of Robyt and Walseth (Robyt, J.F. and Walseth, T.F. (1979) Carbohydr. Res. 68, 95-111) from a nitrosoguanidine mutant of Leuconostoc mesenteroides NRRL B-512F selected for high dextransucrase production. Dialyzed, concentrated culture supernatant (crude enzyme) was treated with immobilized dextranase (EC 3.2.1.11) and chromatographed on a column of Bio-Gel A-5m. The resulting, purified enzyme lost activity rapidly at 25 degrees C or on manipulation, as did the crude enzyme when diluted below 1 U/ml. Both enzyme preparations could be stabilized by low levels of high-molecular-weight dextran (2 micrograms/ml), poly(ethylene glycol) (e.g., 10 micrograms/ml PEG 20 000), or nonionic detergents (e.g., 10 micrograms/ml Tween 80). The stabilizing capacity of poly(ethylene glycol) and of dextran increased with molecular weight. Calcium had no stabilizing action in the absence of other additions, but reduced the inactivation that occurred in the presence of 0.5% bovine serum albumin or high concentrations (greater than 0.1%) of Triton X-100. In summary, dextransucrase could be stabilized against activity losses caused by heating or by dilution through the addition of low concentrations of nonionic polymers (dextran, PEG 20000, methyl cellulose) or of nonionic detergents at or slightly below their critical micelle concentrations.  相似文献   

9.
N Hanada  T Takehara 《Microbios》1991,66(266):21-25
Four kinds of glucosyltransferases, P1, P2, P3 and P4, were separately purified from the culture supernatant of Streptococcus sobrinus. Their dependencies on primer were analysed. There were two primer-dependent glucosyltransferases (P3 and P4). In the absence of primer 1,6-alpha-D-glucan, P3 was not able to produce glucan from sucrose. However, P3 showed sucrose hydrolase activity, whereas P4 was still able to produce glucan without primer 1,6-alpha-D-glucan. Consequently, glucosyltransferase activity of P4 was incompletely primer-dependent. Both P3 and P4 showed high substrate specificity for sucrose, failing to use melezitose, raffinose, or stachyose as the substrates.  相似文献   

10.
The ability of several native and chemically synthesized, branched dextrans to stimulate the activity of an alpha-D-glucosyltransferase (GTF-I) of Streptococcus mutans has been compared. The enzyme catalysed the transfer of glucosyl residues from sucrose with the formation of water-insoluble (1----3)-alpha-D-glucan. The rate of this reaction was greatly increased in the presence of dextran, and the extent of stimulation was negatively correlated with the degree of branching of the added dextran. The results refute the concept that growth of water-insoluble glucan occurs from the multiple, non-reducing termini of dextran acceptors.  相似文献   

11.
Amino acid analysis of purified dextransucrase (sucrose: 1,6-alpha-D-glucan 6-alpha-D-glucosyltransferase EC 2.4.1.5) from Leuconostoc mesenteroides NRRL B-512F was carried out. The enzyme is virtually devoid of cysteine residue there being only one cysteine residue in the whole enzyme molecule comprising over 1500 amino acid residues. The enzyme is rich in acidic amino acid residues. The number of amino acid residues was calculated based on the molecular weight of 188,000 (Goyal and Katiyar 1994). Amino sugars were not found, implying that the enzyme is not a glycoprotein. It has been shown earlier that the cysteine residue in dextransucrase is not essential for enzyme activity (Goyal and Katiyar 1998). The presence of only one cysteine residue per enzyme molecule illustrates that its tertiary structure is solely dependent on other types of non-covalent interactions such as hydrogen bonding, ionic and nonpolar hydrophobic interactions.  相似文献   

12.
Multiple forms of dextransucrase (sucrose:1.6-alpha-D-glucan 6-alpha-D-glucosyltransferae EC 2.4.1.5) from Leuconostoc mesenteroides NRRL B-512F strain were shown by gel filtraton and electrophoretic analyses. Two components of enzyme, having different affinities for dextran gel, were separated by a column of Sephadex G-100. The major component voided from the Sephadex column was treated with dextranase and purified to an electrophoretically homogeneous state. The ]urified enzyme had a molecular weight of 64 000-65 000, pI value of 4.1, and 17% of carbohydrate in a molecule. EDTA showed a characteristic inhibition on the enzyme while stimulative effects were observed by the addition of exogenous dextran to the incubation mixture. The enzyme activity was stimulated by various dextrans and its Km value was decreased with increasing concentration of dextran. The purified enzyme showed no affinity for a Sephadex G-100 gel, and readily aggregated after the preservation at 4 degrees C in a concentrated solution.  相似文献   

13.
In addition to the 1,3-alpha-D-glucan synthetase (pI 4.9) and the highly-branched 1,6-alpha-D-glucan synthetase (pI 3.9-4.1), Streptococcus mutans 6715 (serotype g) was found to secrete the third glucosyltransferase in multiple forms (pI 5.5-7.0), which exhibited 87% 1,6-alpha-bond-, 6% 1,3-alpha-bond- and 7% 1,3,6-branch-forming activities. The production of this enzyme was extremely enhanced when the organism was grown in Tween 80-supplemented medium. The 3 glucosyltransferases from the same organism were enzymatically and immunologically distinct from each other, and they were commonly found among the serotype g strains.  相似文献   

14.
Glucoamylase (1,4-alpha-D-glucan glucohydrolase, EC 3.2.1.3) was purified from the culture filtrates of the thermophilic fungus Thermomyces lanuginosus and was established to be homogeneous by a number of criteria. The enzyme was a glycoprotein with an average molecular weight of about 57 000 and a carbohydrate content of 10-12%. The enzyme hydrolysed successive glucose residues from the non-reducing ends of the starch molecule. It did not exhibit any glucosyltransferase activity. The enzyme appeared to hydrolyse maltotriose by the multi-chain mechanism. The enzyme was unable to hydrolyse 1,6-alpha-D-glucosidic linkages of isomaltose and dextran. It was optimally active at 70 degrees C. The enzyme exhibited increase in the Vmax. and decreased in Km values with increasing chain length of the substrate molecule. The enzyme was inhibited by the substrate analogue D-glucono-delta-lactone in a non-competitive manner. The enzyme inhibited remarkable resistance towards chemical and thermal denaturation.  相似文献   

15.
An active-site peptide containing an aspartic acid implicated in catalysis has been isolated and sequenced from two Streptococcus sobrinus extracellular glucosyltransferases: sucrose:1,3-alpha-D-glucan 3-alpha-D-glucosyltransferase (GTase-I) and sucrose:1,6-alpha-D-glucan 6-alpha-D-glucosyltransferase (GTase-S). The sequenced peptides, tagged with radiolabeled glucose, were isolated from a pepsin digest of a stabilized glucosylenzyme complex prepared by rapidly denaturing a reaction of enzyme and radiolabeled sucrose. The glucosyl linkage had previously been characterized as a beta-anomer bound to an active-site carboxyl group. Purified GTase-I and GTase-S glucosyl-peptides had the following similar but not identical sequences: GTase-I, Asp-Ser-Ile-Arg-Val-Asp-Ala-Val-Asp; and GTase-S, Asp-Gly-Val-Arg-Val-Asp-Ala-Val-Asp. Each has 3 aspartic acids as potential sites of glucose conjugation, but the relevant residue was not identified in sequence analysis because the highly base-labile glucosyl bond was cleaved in the first sequence cycle. As an alternative, the GTase-I glucosyl-peptide was partially digested at the N terminus with cathepsin C and at the C terminus with carboxypeptidase P. Analysis of the truncated products by fast atom bombardment mass spectrometry localized the glucosyl group to Asp-6 i the GTase-I peptide. In the native enzyme, this sequence is found near the N terminus, well-removed from the glucan-binding site located on a 60-kDa domain at the C terminus. The catalysis-dependent method of incorporating a glucosyl label implicates the aspartic acid as the residue involved in stabilizing an oxocarbonium ion transition state. The peptide segment is highly conserved and homologous to a peptide from sucrase-isomaltase labeled by site-directed irreversible inhibition and peptide segments common to a broad array of alpha-glucosidases and related transferases.  相似文献   

16.
An extracellular glucosyltransferase (GT-S) synthesizing water-soluble glucan was purified from the culture supernatant of Streptococcus mutans BHT (serotype b, subsp. rattus) by DEAE-Sepharose chromatography and preparative isoelectric focusing. The Mr of the enzyme was 155,000 and the pI was 4.5. The GT-S had a specific activity of 10.2 i.u. (mg protein)-1, an optimum pH of 6.0 and a Km value of 0.8 mM for sucrose, and was activated twofold by dextran T10. The GT-S was immunologically partially identical with the corresponding enzymes in crude preparations from serotypes c, e and f. The glucan synthesized de novo from sucrose by the GT-S was water-soluble and consisted of 29 mol% of non-reducing terminal, 49 mol% of 1,6-alpha-linked, 11 mol% of 1,3-alpha-linked and 11 mol% of 1,3,6-alpha-branched glucose residues.  相似文献   

17.
Initial rate kinetics of dextran synthesis by dextransucrase (sucrose:1,6-alpha-D-glucan-6-alpha-D-glucosyltransferase, EC 2.4.1.5) from Leuconostoc mesenteroides NRRL B-512F showed that below 1 mM, Ca2+ activated the enzyme by increasing Vmax and decreasing the Km for sucrose. Above 1 mM, Ca2+ was a weak competitive inhibitor (Ki = 59 mM). Although it was an activator at low concentration, Ca2+ was not required for dextran synthesis, either of main chain or branch linkages. Neither was it required for sucrose hydrolysis, acceptor reactions, or enzyme renaturation after SDS-polyacrylamide gel electrophoresis. A model for dextran synthesis is proposed in which dextransucrase has two Ca2+ sites, one activating and one inhibitory. Ca2+ at the inhibitory site prevents the binding of sucrose.  相似文献   

18.
Extracellular proteins from continuous cultures of serotype c and g Streptococcus mutans strains were separated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate. Gels stained with raffinose after electrophoresis revealed that although serotype c strains secrete two fructosyltransferases of molecular mass 68 kDa and 79 kDa, no fructosyltransferase was secreted by the serotype g strain K1. A sucrose activity stain was used to detect two glucosyltransferases (GTF) of molecular mass 162 kDa (bifunctional 1,6-alpha-D-glucan 3-alpha- and 6-alpha GTF or 'dextransucrase') and 153 kDa (a 1,3-alpha-D-glucan 3-alpha-GTF) in samples from cariogenic serotype c strains. Neither the 153 kDa protein nor the corresponding GTF activity was secreted by the non-cariogenic mutant C 67-25. The molecular masses of the corresponding 1,3-alpha and 1,6-alpha-GTF proteins from the serotype g strain K1 were 164 kDa and 158 kDa, respectively. All of the GTF proteins were degraded to discrete bands of lower molecular mass on storage at 4 degrees C even after extensive purification. The results provide an explanation for several outstanding controversies in the GTF literature.  相似文献   

19.
The dsrE gene from Leuconostoc mesenteroides NRRL B-1299 was shown to encode a very large protein with two potentially active catalytic domains (CD1 and CD2) separated by a glucan binding domain (GBD). From sequence analysis, DSR-E was classified in glucoside hydrolase family 70, where it is the only enzyme to have two catalytic domains. The recombinant protein DSR-E synthesizes both alpha-1,6 and alpha-1,2 glucosidic linkages in transglucosylation reactions using sucrose as the donor and maltose as the acceptor. To investigate the specific roles of CD1 and CD2 in the catalytic mechanism, truncated forms of dsrE were cloned and expressed in Escherichia coli. Gene products were then small-scale purified to isolate the various corresponding enzymes. Dextran and oligosaccharide syntheses were performed. Structural characterization by (13)C nuclear magnetic resonance and/or high-performance liquid chromatography showed that enzymes devoid of CD2 synthesized products containing only alpha-1,6 linkages. On the other hand, enzymes devoid of CD1 modified alpha-1,6 linear oligosaccharides and dextran acceptors through the formation of alpha-1,2 linkages. Therefore, each domain is highly regiospecific, CD1 being specific for the synthesis of alpha-1,6 glucosidic bonds and CD2 only catalyzing the formation of alpha-1,2 linkages. This finding permitted us to elucidate the mechanism of alpha-1,2 branching formation and to engineer a novel transglucosidase specific for the formation of alpha-1,2 linkages. This enzyme will be very useful to control the rate of alpha-1,2 linkage synthesis in dextran or oligosaccharide production.  相似文献   

20.
An enzyme in glucosyltransferase preparations from Streptococcus mutans catalyzed the transfer of [14C]glucopyranoside from purified isomaltosaccharides, each containing [14C]glucopyranoside at its non-reducing terminus, to acceptor dextran, in the absence of sucrose. Half of the radioactivity present in the resulting [14C]dextrans was resistant to hydrolysis by amylo-1,6-glucosidase. Treatment of the [14C]dextrans with endodextranase resulted in extensive hydrolysis and produced [14C]-labeled limit oligosaccharides containing branch sites. Acetolysis of the [14C]-labeled limit oligosaccharides yielded [14C]nigerose, thus indicating the formation of branch sites on dextran in the absence of sucrose. The enzyme catalyzing this reaction has not been identified but appears to be independent of the major extracellular glucosyltransferases of S. mutans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号