首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genetic control of virulence was studied in four isolates of the fungus Pyrenophora teres f. teres, originating from various geographic regions in experiments with nine barley accessions, possessing known resistance genes. Experiments were performed with the ascospore progeny of two crosses. The results of segregation for virulence in the progeny of direct crosses were confirmed by analysis of backcrosses and sib crosses. One to four genes for avirulence toward various barley genotypes were found in the isolates under study. It is suggested that dominant suppressor genes are involved in the genetic control of avirulence toward four barley genotypes.  相似文献   

2.
Net form net blotch (NFNB), caused by Pyrenophora teres f. teres Drechs., is prevalent in barley-growing regions worldwide. A population of 132 recombinant inbred lines (RILs) developed from a cross of the barley varieties ‘Falcon’ and ‘Azhul’ were used to evaluate resistance to NFNB due to their differential reactions to isolates of P. teres f. teres from Australia, Canada, Japan, and the USA. Falcon is a six-rowed, hulless feed barley harboring resistance to NFNB, while Azhul is a six-rowed, hulless food barley with high levels of susceptibility to many P. teres f. teres isolates. Seedling disease resistance data were collected on seedlings of parents, RILs, and checks in a growth chamber. The population was genotyped using Illumina’s GoldenGate assay, and quantitative trait loci (QTL) were detected on chromosomes 2H, 3H, 4H, and 6H. We identified a single genetic region on barley chromosome 4H that provided varying levels of resistance to all P. teres f. teres isolates evaluated.  相似文献   

3.

Key message

A diverse collection of barley lines was phenotyped with three North American Pyrenophora teres f. teres isolates and association analyses detected 78 significant marker-trait associations at 16 genomic loci.

Abstract

Pyrenophora teres f. teres is a necrotrophic fungal pathogen and the causal agent of the economically important foliar disease net form net blotch (NFNB) of barley. The deployment of effective and durable resistance against P. teres f. teres has been hindered by the complexity of quantitative resistance and susceptibility. Several bi-parental mapping populations have been used to identify QTL associated with NFNB disease on all seven barley chromosomes. Here, we report the first genome-wide association study (GWAS) to detect marker-trait associations for resistance or susceptibility to P. teres f. teres. Geographically diverse barley genotypes from a world barley core collection (957) were genotyped with the Illumina barley iSelect chip and phenotyped with three P. teres f. teres isolates collected in two geographical regions of the USA (15A, 6A and LDNH04Ptt19). The best of nine regression models tested were identified for each isolate and used for association analysis resulting in the identification of 78 significant marker-trait associations (MTA; ?log10p value?>3.0). The MTA identified corresponded to 16 unique genomic loci as determined by analysis of local linkage disequilibrium between markers that did not meet a correlation threshold of R 2?≥?0.1, indicating that the markers represented distinct loci. Five loci identified represent novel QTL and were designated QRptts-3HL, QRptts-4HS, QRptts-5HL.1, QRptts-5HL.2, and QRptts-7HL.1. In addition, 55 of the barley lines examined exhibited a high level of resistance to all three isolates and the SNP markers identified will provide useful genetic resources for barley breeding programs.
  相似文献   

4.

Key message

A CIho 5791 × Tifang recombinant inbred mapping population was developed and used to identify major dominant resistance genes on barley chromosomes 6H and 3H in CI5791 and on 3H in Tifang.

Abstract

The barley line CIho 5791 confers high levels of resistance to Pyrenophora teres f. teres, causal agent of net form net blotch (NFNB), with few documented isolates overcoming this resistance. Tifang barley also harbors resistance to P. teres f. teres which was previously shown to localize to barley chromosome 3H. A CIho 5791 × Tifang F6 recombinant inbred line (RIL) population was developed using single seed descent. The Illumina iSelect SNP platform was used to identify 2562 single nucleotide polymorphism (SNP) markers across the barley genome, resulting in seven linkage maps, one for each barley chromosome. The CIho 5791 × Tifang RIL population was evaluated for NFNB resistance using nine P. teres f. teres isolates collected globally. Tifang was resistant to four of the isolates tested whereas CIho 5791 was highly resistant to all nine isolates. QTL analysis indicated that the CIho 5791 resistance mapped to chromosome 6H whereas the Tifang resistance mapped to chromosome 3H. Additionally, CIho 5791 also harbored resistance to two Japanese isolates that mapped to a 3H region similar to that of Tifang. SNP markers and RILs harboring both 3H and 6H resistance will be useful in resistance breeding against NFNB.
  相似文献   

5.
Net form of net blotch (NFNB) of barley (Hordeum vulgare L.), caused by Pyrenophora teres f. teres (Ptt) Drechsler (anamorph: Drechslera teres [Sacc.] Shoem.), is considered one of the major constraints of successful barley production in major barley growing regions of the world. Resistance to NFNB was evaluated in a barley collection of 336 genotypes (AM-2014), at seedling stage using isolates LGDPtt.19 and TD10 in the USA, and adult stage in seven hotspot environments in Morocco. The AM-2014 panel was genotyped with 9K SNP markers and genome-wide association studies (GWAS) were carried out using mixed linear model (MLM: Q?+?K) accounting for population structure (Q) and kinship (K) as covariates. Significant (P?<?0.001) marker trait associations were corrected for false discovery rate (FDR) at the q?<?0.05. Four genotypes showed an average infection response (IRs ≤ 2) to both isolates, LGDPttt.19 and TD10, at the seedling stage, and 30 genotypes showed resistance in all environments in the field while three genotypes exhibited the highest resistance at both stages. The GWAS of NFNB identified 31 distinct QTLs on all seven barley chromosomes, of which 8 with resistance at seedling stage, 21 were associated with resistance at the adult stage, and two QTLs, QRptt.2H-132.15 and QPtt.6H-54-55, conferred resistance at both stages. Of 31 resistance QTLs reported in this study, 10 QTLs coincided with previously mapped QTL while 21 are novel, thereby validating the GWAS approach used in this study. The resistance sources identified in AM-2014 and QTL mapped in this study are valuable resources for marker-assisted breeding for NFNB resistance in the future.  相似文献   

6.
Corynespora cassiicola is a species of fungus that is a plant pathogen of many agricultural crop plants, including severe target spot disease on cucumber. Cassiicolin is an important effector of pathogenicity of this fungus. In this study, we collected 141 Corynespora isolates from eighteen hosts, and the casscolin gene was detected in 82 C. cassiicola strains. The deduced protein sequences revealed that 72 isolates contained the Cas2 gene, two strains from Gynura bicolor harboured the Cas2.2 gene, and 59 isolates without a cassiicolin gene were classified as Cas0. Phylogenetic analyses was performed for the 141 isolates using four loci (ITS, ga4, caa5, and act1) and revealed two genetic clusters. Cluster A is composed of four subclades: subcluster A1 includes all Cas2 isolates plus 18 Cas0 strains, subcluster A2 includes the eight Cas5 isolates and one Cas0 isolate, and subclusters A3 and A4 contain Cas0 strains. Cluster B consists of 21 Cas0 isolates. Twenty-two C. cassiicola strains from different toxin classes showed varying degrees of virulence against cucumber. Cas0 or Cas2 strains induced diverse responses on cucumber, from no symptoms to symptoms of moderate or severe infection, but all Cas5 isolates exhibited avirulence on cucumber.  相似文献   

7.

Background

The widespread Escherichia coli clone ST131 implicated in multidrug-resistant infections has been recently reported, the majority belonging to O25:H4 serotype and classified into five main virotypes in accordance with the virulence genes carried.

Methods

Pathogenicity Islands I and II (PAI-I and PAI-II) were determined using conventional PCR protocols from a set of four E. coli CTXR ST131 O25:H4/H30-Rx strains collected from healthy donors’ stool. The virulence genes patterns were also analyzed and compared them with the virotypes reported previously; then adherence, invasion, macrophage survival and biofilm formation assays were evaluated and AIEC pathotype genetic determinants were investigated.

Findings

Non-reported virulence patterns were found in our isolates, two of them carried satA, papA, papGII genes and the two-remaining isolates carried cnfI, iroN, satA, papA, papGII genes, and none of them belonged to classical ST131 virotypes, suggesting an endemic distribution of virulence genes and two new virotypes. The presence of PAI-I and PAI-II of Uropathogenic E. coli was determined in three of the four strains, furthermore adherence and invasion assays demonstrated higher degrees of attachment/invasion compared with the control strains. We also amplified intI1, insA and insB genes in all four samples.

Interpretation

The results indicate that these strains own non-reported virotypes suggesting endemic distribution of virulence genes, our four strains also belong to an AIEC pathotype, being this the first report of AIEC in México and the association of AIEC with healthy donors.
  相似文献   

8.
Trueperella pyogenes is one of the most important microorganisms causing metritis in post-partum cattle. Co-infection with other bacterial species such as Escherichia coli or Fusobacterium necrofurom increases the severity of the disease and the persistence of bacteria in utero. The aim of this study was to investigate the frequency of T. pyogenes strains, and their virulence and antimicrobial resistant profiles in metritis cases. The study was carried out on 200 samples obtained from metritis discharges of postpartum cattle on 18 farms around Tehran, Iran. Sixty-five T. pyogenes isolates (32.5%) were identified, of which 16 isolates were detected as pure cultures and the other 49 isolates from cultures most commonly mixed with E. coli or F. necrofurom. In terms of diversity in biochemical characteristic of T. pyogenes strains, 8 different biotypes were identified among the isolates. Single or multi antimicrobial resistance was observed in 48 isolates (73.9%), which was mostly against trimethoprim sulfamethoxazole, azithromycin, erythromycin and streptomycin. The tetracycline resistance gene tetW and macrolide resistance genes ermB and ermX were detected in 30, 18 and 25 isolates, respectively. In the screening of genes encoding virulence factors, fimA and plo genes were identified in all tested isolates. Genes encoding nanP, nanH, fimC, fimG, fimE and cbpA were detected in 50, 54, 45, 40, 50 and 37 of isolates, respectively. Thirteen different genotypes were observed in these T. pyogenes isolates. A significant association between clonal types and virulence factor genes, biochemical profile, CAMP test result, severity of the disease and sampling time was detected.  相似文献   

9.

Background

Powdery mildew of barley is a wind-borne and obligate biotrophic pathogen, which ranks among the most widespread barley pathogens worldwide. However, purposeful research towards studying the structure of the barley powdery mildew populations, of their virulence and of effectiveness of certain resistance genes against the infection was not conducted in Kazakhstan till present time. This paper is the first to describe characteristics of the pathotype structure of Blumeria graminis f.sp. hordei (Bgh) population and effectiveness of resistance genes in two regions of barley cultivation in the republic.

Results

One hundred and seven isolates of Bgh were obtained from seven populations occurring on cultivated barley at two geographically locations in Kazakhstan during 2015 and 2016. Their virulence frequency was determined on 17 differential lines Pallas. All isolates were virulent on the resistance gene Mla8 and avirulent for the resistance genes Mla9, Mla1 + MlaAl2, Mla6 + Mla14, Mla13 + MlRu3, Mla7 + MlNo3, Mla10 + MlDu2, Mla13 + MlRu3 and Mlo-5. The frequencies of isolates overcoming the genes Mla3, Mla22, Mlat Mlg + MlCP and Mla12 + MlEm2 were 0.0–33.33%, and frequencies of isolates overcoming the genes Mlra, Mlk, MlLa and Mlh ranged from 10.0 to 78.6%. Based on reactions of differential lines possessing the genes Mla22, Mlra, Mlk, Mlat, MlLa and Mlh, pathotypes were identified. In total, 23 pathotypes with virulence complexity ranging from 1 to 6 were identified. During both years in all populations of South Kazakhstan and Zhambyl regions pathotypes 24 and 64 mainly prevailed.

Conclusions

Obtained data suggest that low similarity of populations Bgh in Kazakhstan to European, African, Australian and South-East Asian populations. The present study provides a foundation for future studies on the pathogenic variability within of Bgh populations in Kazakhstan and addresses the knowledge gap on the virulence structure of Bgh in Central Asia. Complete effectiveness of the resistance genes, for which no corresponding virulence was found, will allow Kazakhstanean breeders to access many modern barley cultivars that those possessing the resistance effectiveness genes.
  相似文献   

10.

Key message

Association mapping of resistance to Pyrenophora teres f. teres in a collection of Nordic barley germplasm at different developmental stages revealed 13 quantitative loci with mostly small effects.

Abstract

Net blotch, caused by the necrotrophic fungus Pyrenophora teres, is one of the major diseases in barley in Norway causing quantitative and qualitative yield losses. Resistance in Norwegian cultivars and germplasm is generally insufficient and resistance sources have not been extensively explored yet. In this study, we mapped quantitative trait loci (QTL) associated with resistance to net blotch in Nordic germplasm. We evaluated a collection of 209 mostly Nordic spring barley lines for reactions to net form net blotch (NFNB; Pyrenophora teres f. teres) in inoculations with three single conidia isolates at the seedling stage and in inoculated field trials at the adult stage in 4 years. Using 5669 SNP markers genotyped with the Illumina iSelect 9k Barley SNP Chip and a mixed linear model accounting for population structure and kinship, we found a total of 35 significant marker-trait associations for net blotch resistance, corresponding to 13 QTL, on all chromosomes. Out of these QTL, seven conferred resistance only in adult plants and four were only detectable in seedlings. Two QTL on chromosomes 3H and 6H were significant during both seedling inoculations and adult stage field trials. These are promising candidates for breeding programs using marker-assisted selection strategies. The results elucidate the genetic background of NFNB resistance in Nordic germplasm and suggest that NB resistance is conferred by a number of genes each with small-to-moderate effects, making it necessary to pyramid these genes to achieve sufficient levels of resistance.
  相似文献   

11.

Background

Uropathogenic Escherichia coli (UPEC) are one of the main bacteria causing urinary tract infections (UTIs). The rates of UPEC with high resistance towards antibiotics and multidrug-resistant bacteria have increased dramatically in recent years and could difficult the treatment.

Methods

The aim of the study was to determine multidrug-resistant bacteria, antibiotic resistance profile, virulence traits, and genetic background of 110 E. coli isolated from community (79 isolates) and hospital-acquired (31 isolates) urinary tract infections. The plasmid-mediated quinolone resistance genes presence was also investigated. A subset of 18 isolates with a quinolone-resistance phenotype was examined for common virulence genes encoded in diarrheagenic and extra-intestinal pathogenic E. coli by a specific E. coli microarray.

Results

Female children were the group most affected by UTIs, which were mainly community-acquired. Resistance to trimethoprim–sulfamethoxazole, ampicillin, and ampicillin–sulbactam was most prevalent. A frequent occurrence of resistance toward ciprofloxacin (47.3%), levofloxacin (43.6%) and cephalosporins (27.6%) was observed. In addition, 63% of the strains were multidrug-resistant (MDR). Almost all the fluoroquinolone (FQ)-resistant strains showed MDR-phenotype. Isolates from male patients were associated to FQ-resistant and MDR-phenotype. Moreover, hospital-acquired infections were correlated to third generation cephalosporin and nitrofurantoin resistance and the presence of kpsMTII gene. Overall, fimH (71.8%) and fyuA (68.2%), had the highest prevalence as virulence genes among isolates. However, the profile of virulence genes displayed a great diversity, which included the presence of genes related to diarrheagenic E. coli. Out of 110 isolates, 25 isolates (22.7%) were positive to qnrA, 23 (20.9%) to qnrB, 7 (6.4%) to qnrS1, 7 (6.4%) to aac(6′)lb-cr, 5 (4.5%) to qnrD, and 1 (0.9%) to qnrC genes. A total of 12.7% of the isolates harbored blaCTX-M genes, with blaCTX-M-15 being the most prevalent.

Conclusions

Urinary tract infection due to E. coli may be difficult to treat empirically due to high resistance to commonly used antibiotics. Continuous surveillance of multidrug resistant organisms and patterns of drug resistance are needed in order to prevent treatment failure and reduce selective pressure. These findings may help choosing more suitable treatments of UTI patients in this region of Mexico.
  相似文献   

12.
13.
To compare the genetic profiles of Campylobacter jejuni (C. jejuni) isolates of broiler and turkey reservoirs sampled in Semnan City, Iran, 60 C. jejuni isolates (30 from broilers and 30 from turkeys) were genotyped by RAPD-PCR- and ERIC-PCR-based methods. RAPD-PCR identified 6 genotypes and ERIC-PCR identified 21 genotypes among the 60 C. jejuni isolates. Both techniques were able to discriminate the C. jejuni isolates. Results demonstrated that one single genotype was identical to broiler and one single genotype was identical to turkey isolates at 83% similarity level in RAPD UPGMA clustering. Also, one single profile was identical to turkey isolates at 73% similarity level in ERIC-PCR clustering. The existence of high genetic similarity in some C. jejuni isolates from both hosts suggests the presence of some overlap between isolates from different sources and boosts the power of RAPD-PCR- and ERIC-PCR-based methods in discriminating C. jejuni isolates from various sources.  相似文献   

14.

Key message

Association analyses of resistance to Rhynchosporium commune in a collection of European spring barley germplasm detected 17 significant resistance quantitative trait loci. The most significant association was confirmed as Rrs1.

Abstract

Rhynchosporium commune is a fungal pathogen of barley which causes a highly destructive and economically important disease known as rhynchosporium. Genome-wide association mapping was used to investigate the genetic control of host resistance to R. commune in a collection of predominantly European spring barley accessions. Multi-year disease nursery field trials revealed 8 significant resistance quantitative trait loci (QTL), whilst a separate association mapping analysis using historical data from UK national and recommended list trials identified 9 significant associations. The most significant association identified in both current and historical data sources, collocated with the known position of the major resistance gene Rrs1. Seedling assays with R. commune single-spore isolates expressing the corresponding avirulence protein NIP1 confirmed that this locus is Rrs1. These results highlight the significant and continuing contribution of Rrs1 to host resistance in current elite spring barley germplasm. Varietal height was shown to be negatively correlated with disease severity, and a resistance QTL was identified that co-localised with the semi-dwarfing gene sdw1, previously shown to contribute to disease escape. The remaining QTL represent novel resistances that are present within European spring barley accessions. Associated markers to Rrs1 and other resistance loci, identified in this study, represent a set of tools that can be exploited by breeders for the sustainable deployment of varietal resistance in new cultivars.
  相似文献   

15.
Bipolaris sorokiniana (Sacc.) Shoemaker is a hemi-biotrophic fungal pathogen, which is an anamorph (teleomorph Cochlibolus sativus). It causes spot blotch, root rot and leaf spot diseases in a number of cereals including wheat, barley and other small grain cereals. In the genomics era, the fungus has been subjected to a variety of studies using molecular approaches. Correct chromosome number was determined and molecular karyotypes were prepared using contour-clamped homogeneous electric field. Molecular maps were prepared using markers like RFLPs, SSRs, RAPDs and SNPs. For this purpose, segregating progenies derived from crosses between diverse isolates of the pathogen were used. Whole genome sequencing (WGS) data was collected not only for B. sorokiniana isolates, but also for several species of Cochliobolus. Genes involved in secondary metabolism and virulence were identified from genome sequences. The WGS data has also been utilized for comparative genomics giving useful information about evolutionary trends. A brief account of this information is presented in this review.  相似文献   

16.
Streptococcus dysgalactiae subsp. equisimilis (SDSE), belonging to the group C and G streptococci, are human pathogens reported to cause clinical manifestations similar to infections caused by Streptococcus pyogenes. To scrutinize the distribution of gene coding for S. pyogenes virulence factors in SDSE, 255 isolates were collected from humans infected with SDSE in Vellore, a region in southern India, with high incidence of SDSE infections. Initial evaluation indicated SDSE isolates comprising of 82.35% group G and 17.64% group C. A multiplex PCR system was used to detect 21 gene encoding virulence-associated factors of S. pyogenes, like superantigens, DNases, proteinases, and other immune modulatory toxins. As validated by DNA sequencing of the PCR products, sequences homologous to speC, speG, speH, speI, speL, ssa and smeZ of the family of superantigen coding genes and for DNases like sdaD and sdc were detected in the SDSE collection. Furthermore, there was high abundance (48.12% in group G and 86.6% in group C SDSE) of scpA, the gene coding for C5a peptidase in these isolates. Higher abundance of S. pyogenes virulence factor genes was observed in SDSE of Lancefield group C as compared to group G, even though the incidence rates in former were lower. This study not only substantiates detection of S. pyogenes virulence factor genes in whole genome sequenced SDSE but also makes significant contribution towards the understanding of SDSE and its increasing virulence potential.  相似文献   

17.
A collection of Puccinia triticina isolates was characterized for polymorphism of microsatellite loci and estimated for their differentiation by geographic origin. The collection included 20 isolates from the Ural region, 31 from West Siberia, 53 from Central Europe, 32 from the Northwest region, 32 from the Volga region, and 40 from the North Caucasus (24 from Dagestan and 16 from Krasnodar and Stavropol). The studied isolates were represented by 65 virulence phenotypes. In the polymorphism analysis of 18 microsatellite loci, 69 genotypes were determined. The index values of genetic distances (F st, R st, KB c) between populations for microsatellite loci indicated differentiation of P. triticina isolates according to geographical origin, and they were clustered into three groups: (1) Asian, (2) European, and (3) North Caucasian. The North Caucasian isolates from Krasnodar and Stavropol regions were closer in similarity to European isolates than the Dagestan ones. Current analysis confirmed the assumption made earlier on the basis of the virulence analysis about the existence of several geographic fungi populations in Russia.  相似文献   

18.
19.
The genome of Helicobacter pylori contains many putative genes, including a genetic region known as the Integrating Conjugative Elements of H. pylori type four secretion system (ICEHptfs). This genetic regions were originally termed as “plasticity zones/regions” due to the great genetic diversity between the original two H. pylori whole genome sequences. Upon analysis of additional genome sequences, the regions were reported to be extremely common within the genome of H. pylori. Moreover, these regions were also considered conserved rather than genetically plastic and were believed to act as mobile genetic elements transferred via conjugation. Although ICEHptfs(s) are highly conserved, these regions display great allele diversity, especially on ICEHptfs4, with three different subtypes: ICEHptfs4a, 4b, and 4c. ICEHptfs were also reported to contain a novel type 4 secretion system (T4SS) with both epidemiological and in vitro infection model studies highlighting that this novel T4SS functions primarily as a virulence factor. However, there is currently no information regarding the structure, the genes responsible for forming the T4SS, and the interaction between this T4SS and other virulence genes. Unlike the cag pathogenicity island (PAI), which contains CagA, a gene found to be essential for H. pylori virulence, these novel T4SSs have not yet been reported to contain genes that contribute significant effects to the entire system. This notion prompted the hypothesis that these novel T4SSs may have different mechanisms involving cag PAI.  相似文献   

20.
Species of Alternaria are serious plant pathogens, causing major losses on a wide range of crops. Leaf blight symptoms were observed on tomato leaves, and samples were collected from various regions. Isolation was done from symptomatic tomato leaves, and 15 representatives were selected from a collection of 65 isolates of Alternaria species. The virulence of Alternaria isolates was investigated on detached leaves (DL) and whole plants of tomato cv. Super strain B. A phylogenetic analysis was performed based on three partial gene regions, the glyceraldehyde-3-phosphate dehydrogenase (GAPDH), the RNA polymerase second largest subunit (RPB2) and the Alternaria major allergen gene (Alt a 1). The potentiality of Alternaria isolates to produce toxins was also investigated on the basis of thin-layer chromatography (TLC). Our investigations revealed that Alternaria isolates showed different levels of virulence either on tomato plants or DL. Based on the phylogeny of three genes, Alternaria isolates encompassed two species of small-spored morphospecies: A. alternata (14 isolates) and A. arborescens (single isolate). The produced toxins varied among Alternaria isolates with tenuazonic acid (TeA) being the most abundant mycotoxin produced by most isolates. This study highlighted on other Alternaria species in Egypt that might represent a serious concern for tomato producers as causal agents of leaf blight over other species, i.e. A. solani.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号