首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article presents a comprehensive review of large and highly diverse superfamily of nucleotidyltransferase fold proteins by providing a global picture about their evolutionary history, sequence-structure diversity and fulfilled functional roles. Using top-of-the-line homology detection method combined with transitive searches and fold recognition, we revised the realm of these superfamily in numerous databases of catalogued protein families and structures, and identified 10 new families of nucleotidyltransferase fold. These families include hundreds of previously uncharacterized and various poorly annotated proteins such as Fukutin/LICD, NFAT, FAM46, Mab-21 and NRAP. Some of these proteins seem to play novel important roles, not observed before for this superfamily, such as regulation of gene expression or choline incorporation into cell membrane. Importantly, within newly detected families we identified 25 novel superfamily members in human genome. Among these newly assigned members are proteins known to be involved in congenital muscular dystrophy, neurological diseases and retinal pigmentosa what sheds some new light on the molecular background of these genetic disorders. Twelve of new human nucleotidyltransferase fold proteins belong to Mab-21 family known to be involved in organogenesis and development. The determination of specific biological functions of these newly detected proteins remains a challenging task.  相似文献   

2.
MOTIVATION: The completion of the Arabidopsis genome offers the first opportunity to analyze all of the membrane protein sequences of a plant. The majority of integral membrane proteins including transporters, channels, and pumps contain hydrophobic alpha-helices and can be selected based on TransMembrane Spanning (TMS) domain prediction. By clustering the predicted membrane proteins based on sequence, it is possible to sort the membrane proteins into families of known function, based on experimental evidence or homology, or unknown function. This provides a way to identify target sequences for future functional analysis. RESULTS: An automated approach was used to select potential membrane protein sequences from the set of all predicted proteins and cluster the sequences into related families. The recently completed sequence of Arabidopsis thaliana, a model plant, was analyzed. Of the 25,470 predicted protein sequences 4589 (18%) were identified as containing two or more membrane spanning domains. The membrane protein sequences clustered into 628 distinct families containing 3208 sequences. Of these, 211 families (1764 sequences) either contained proteins of known function or showed homology to proteins of known function in other species. However, 417 families (1444 sequences) contained only sequences with no known function and no homology to proteins of known function. In addition, 1381 sequences did not cluster with any family and no function could be assigned to 1337 of these.  相似文献   

3.

Background  

The hot dog fold has been found in more than sixty proteins since the first report of its existence about a decade ago. The fold appears to have a strong association with fatty acid biosynthesis, its regulation and metabolism, as the proteins with this fold are predominantly coenzyme A-binding enzymes with a variety of substrates located at their active sites.  相似文献   

4.
Identification of novel argonaute-associated proteins   总被引:1,自引:0,他引:1  
RNA silencing processes are guided by small RNAs known as siRNAs and microRNAs (miRNAs) . They reside in ribonucleoprotein complexes, which guide the cleavage of complementary mRNAs or affect stability and translation of partial complementary mRNAs . Argonaute (Ago) proteins are at the heart of silencing effector complexes and bind the single-stranded siRNA and miRNA . Our biochemical analysis revealed that Ago2 is present in a pre-miRNA processing complex that is able to transfer the miRNA into a target-mRNA cleaving complex. To gain insight into the function and composition of RNA silencing complexes, we purified Ago1- and Ago2-containing complexes from human cells. Several known Ago1- and/or Ago2-associated proteins including Dicer were identified, but also two novel factors, the putative RNA helicase MOV10, and the RNA recognition motif (RRM)-containing protein TNRC6B/KIAA1093. The new proteins localize, similar to Ago proteins, to mRNA-degrading cytoplasmic P bodies, and they are functionally required to mediate miRNA-guided mRNA cleavage.  相似文献   

5.
6.
Shaw E  McCue LA  Lawrence CE  Dordick JS 《Proteins》2002,47(2):163-168
The alpha/beta hydrolases constitute a large protein superfamily that mainly consists of enzymes that catalyze a diverse range of reactions. These proteins exhibit the alpha/beta hydrolase fold, the essential features of which have recently been delineated: the presence of at least five parallel beta-strands, a catalytic triad in a specific order (nucleophile-acid-histidine), and a nucleophilic elbow. Because of the difficulties experimentally in identifying protein structures, we have used a Bayesian computational algorithm (PROBE) to identify the members of this superfamily based on distant sequence relationships. We found that the presence of five sequence motifs, which contain residues important for substrate binding and stabilization of the fold, are required for membership in this superfamily. The superfamily consists of at least 909 members, including the N-myc downstream regulated proteins, which are believed to be involved in cell differentiation. Unlike most of the other superfamily members, the N-myc downstream regulated proteins have never been proposed to possess the alpha/beta hydrolase fold and do not appear to be hydrolases.  相似文献   

7.
Proteins might have considerable structural similarities even when no evolutionary relationship of their sequences can be detected. This property is often referred to as the proteins sharing only a "fold". Of course, there are also sequences of common origin in each fold, called a "superfamily", and in them groups of sequences with clear similarities, designated "family". Developing algorithms to reliably identify proteins related at any level is one of the most important challenges in the fast growing field of bioinformatics today. However, it is not at all certain that a method proficient at finding sequence similarities performs well at the other levels, or vice versa.Here, we have compared the performance of various search methods on these different levels of similarity. As expected, we show that it becomes much harder to detect proteins as their sequences diverge. For family related sequences the best method gets 75% of the top hits correct. When the sequences differ but the proteins belong to the same superfamily this drops to 29%, and in the case of proteins with only fold similarity it is as low as 15%. We have made a more complete analysis of the performance of different algorithms than earlier studies, also including threading methods in the comparison. Using this method a more detailed picture emerges, showing multiple sequence information to improve detection on the two closer levels of relationship. We have also compared the different methods of including this information in prediction algorithms.For lower specificities, the best scheme to use is a linking method connecting proteins through an intermediate hit. For higher specificities, better performance is obtained by PSI-BLAST and some procedures using hidden Markov models. We also show that a threading method, THREADER, performs significantly better than any other method at fold recognition.  相似文献   

8.
9.
Set of novel, conserved proteins fold pre-messenger RNA into ribonucleosomes   总被引:26,自引:0,他引:26  
S Y Chung  J Wooley 《Proteins》1986,1(3):195-210
  相似文献   

10.
The structure of Mth677, a hypothetical protein from Methanobacterium thermoautotrophicum (Mth), has been determined by using heteronuclear nuclear magnetic resonance (NMR) methods on a double-labeled (15)N-(13)C sample. Mth677 adopts a novel alpha+beta fold, consisting of two alpha-helices (one N terminal and one C terminal) packed on the same side of a central beta-hairpin. This structure is likely shared by its three orthologs, detected in three other Archaebacteria. There are no clear features in the sequences of these proteins or in the genome organization of Mth to make a reliable functional assignment to this protein. However, the structural similarity to Escherichia coli MinE, the protein which controls that division occurs at the midcell site, lends support to the proposal that Mth677 might be, in Mth, the counterpart of the topological specificity domain of MinE in E. coli.  相似文献   

11.
12.
Thermococcales (phylum Euryarchaeota) are model organisms for physiological and molecular studies of hyperthermophiles. Here we describe three new plasmids from Thermococcales that could provide new tools and model systems for genetic and molecular studies in Archaea. The plasmids pTN2 from Thermococcus nautilus sp. 30-1 and pP12-1 from Pyrococcus sp. 12-1 belong to the same family. They have similar size (∼12 kb) and share six genes, including homologues of genes encoded by the virus PAV1 from Pyrococcus abyssi. The plasmid pT26-2 from Thermococcus sp. 26-2 (21.5 kb), that corresponds to another plasmid family, encodes many proteins having homologues in virus-like elements integrated in several genomes of Thermococcales and Methanococcales. Our analyses confirm that viruses and plasmids are evolutionary related and co-evolve with their hosts. Whereas all plasmids previously isolated from Thermococcales replicate by the rolling circle mechanism, the three plasmids described here probably replicate by the theta mechanism. The plasmids pTN2 and pP12-1 encode a putative helicase of the SFI superfamily and a new family of DNA polymerase, whose activity was demonstrated in vitro, whereas pT26-2 encodes a putative new type of helicase. This strengthens the idea that plasmids and viruses are a reservoir of novel protein families involved in DNA replication.  相似文献   

13.
We report herein the NMR structure of Tm0979, a structural proteomics target from Thermotoga maritima. The Tm0979 fold consists of four beta/alpha units, which form a central parallel beta-sheet with strand order 1234. The first three helices pack toward one face of the sheet and the fourth helix packs against the other face. The protein forms a dimer by adjacent parallel packing of the fourth helices sandwiched between the two beta-sheets. This fold is very interesting from several points of view. First, it represents the first structure determination for the DsrH family of conserved hypothetical proteins, which are involved in oxidation of intracellular sulfur but have no defined molecular function. Based on structure and sequence analysis, possible functions are discussed. Second, the fold of Tm0979 most closely resembles YchN-like folds; however the proteins that adopt these folds differ in secondary structural elements and quaternary structure. Comparison of these proteins provides insight into possible mechanisms of evolution of quaternary structure through a simple mechanism of hydrophobicity-changing mutations of one or two residues. Third, the Tm0979 fold is found to be similar to flavodoxin-like folds and beta/alpha barrel proteins, and may provide a link between these very abundant folds and putative ancestral half-barrel proteins.  相似文献   

14.
Lpg0189 is a type II secretion system-dependent extracellular protein with unknown function from Legionella pneumophila. Herein, we determined the crystal structure of Lpg0189 at 1.98 Å resolution by using single-wavelength anomalous diffraction (SAD). Lpg0189 folds into a novel chair-shaped architecture, with two sheets roughly perpendicular to each other. Bioinformatics analysis suggests Lpg0189 and its homologues are unique to Legionellales and evolved divergently. The interlinking structural and bioinformatics studies provide a better understanding of this hypothetical protein.  相似文献   

15.
Xc17L, a lactose-utilizing mutant of Xanthomonas campestris pv. campestris previously isolated by mutagenesis with nitrous acid, displays a level of beta-galactosidase 3.5-fold higher than that in the parental Xc17. In this study, the gene encoding the enzyme displaying a higher specific activity in Xc17L was inactivated by mini-Tn5 transposition.Sequencing revealed that the product (579 aa, 63.5 kDa) of this gene, designated galD, was previously annotated to encode a hypothetical protein on the genome. Mutation of the gene by marker exchange, complementation test and Western blot analysis together confirmed that galD is indeed the gene involved in beta-galactosidase elevation in Xc17L. With only the N-terminal region possessing similarity to the known beta-galactosidases and partially conserved consensus motif, GalD is recognized as a member of the glycosyl hydrolase family 35. Insertion with GmOmega, which causes polar effects, into the upstream genes followed by Western blotting showed that galD is cotranscribed with the upstream genes and expressed constitutively. Mutation in galD causes no significant changes including pathogenicity in the bacterium.  相似文献   

16.
Nature selected certain regions of the genome for encoding proteins. Most of the sequences were used to encode only RNA. What happened to the remaining sections of the genome? It is possible that some sequences were retired and retained as non-functional entities called pseudogenes. Though several evolutionary prospects with functional endpoints exist, we looked at the possibility of hypothetical proteins correlating with the emergence of pseudogenes and potential of such genes to make novel synthetic molecules. In this commentary, we consider two key aspects: (1) does any correlation exist between hypothetical proteins and pseudogenes and (2)—can we make novel and functional proteins from pseudogenes?  相似文献   

17.
Sirtuins are a family of protein lysine deacetylases, which regulate gene silencing, metabolism, life span, and chromatin structure. Sirtuins utilize NAD(+) to deacetylate proteins, yielding O-acetyl-ADP-ribose (OAADPr) as a reaction product. The macrodomain is a ubiquitous protein module known to bind ADP-ribose derivatives, which diverged through evolution to support many different protein functions and pathways. The observation that some sirtuins and macrodomains are physically linked as fusion proteins or genetically coupled through the same operon, provided a clue that their functions might be connected. Indeed, here we demonstrate that the product of the sirtuin reaction OAADPr is a substrate for several related macrodomain proteins: human MacroD1, human MacroD2, Escherichia coli YmdB, and the sirtuin-linked MacroD-like protein from Staphylococcus aureus. In addition, we show that the cell extracts derived from MacroD-deficient Neurospora crassa strain exhibit a major reduction in the ability to hydrolyze OAADPr. Our data support a novel function of macrodomains as OAADPr deacetylases and potential in vivo regulators of cellular OAADPr produced by NAD(+)-dependent deacetylation.  相似文献   

18.
As part of the Northeast Structural Genomics Consortium pilot project focused on small eukaryotic proteins and protein domains, we have determined the NMR structure of the protein encoded by ORF YML108W from Saccharomyces cerevisiae. YML108W belongs to one of the numerous structural proteomics targets whose biological function is unknown. Moreover, this protein does not have sequence similarity to any other protein. The NMR structure of YML108W consists of a four-stranded beta-sheet with strand order 2143 and two alpha-helices, with an overall topology of betabetaalphabetabetaalpha. Strand beta1 runs parallel to beta4, and beta2:beta1 and beta4:beta3 pairs are arranged in an antiparallel fashion. Although this fold belongs to the split betaalphabeta family, it appears to be unique among this family; it is a novel arrangement of secondary structure, thereby expanding the universe of protein folds.  相似文献   

19.
Rieske proteins and Rieske ferredoxins are present in the three domains of life and are involved in a variety of cellular processes. Despite their functional diversity, these small Fe–S proteins contain a highly conserved all-β fold, which harbors a [2Fe–2S] Rieske center. We have identified a novel subtype of Rieske ferredoxins present in hyperthermophilic archaea, in which a two-cysteine conserved SKTPCX(2–3)C motif is found at the C-terminus. We establish that in the Acidianus ambivalens representative, Rieske ferredoxin 2 (RFd2), these cysteines form a novel disulfide bond within the Rieske fold, which can be selectively broken under mild reducing conditions insufficient to reduce the [2Fe–2S] cluster or affect the secondary structure of the protein, as shown by visible circular dichroism, absorption, and attenuated total reflection Fourier transform IR spectroscopies. RFd2 presents all the EPR, visible absorption, and visible circular dichroism spectroscopic features of the [2Fe–2S] Rieske center. The cluster has a redox potential of +48 mV (25 °C and pH 7) and a pK a of 10.1 ± 0.2. These shift to +77 mV and 8.9 ± 0.3, respectively, upon reduction of the disulfide. RFd2 has a melting temperature near the boiling point of water (T m = 99 °C, pH 7.0), but it becomes destabilized upon disulfide reduction (ΔT m = −9 °C, ΔC m = −0.7 M guanidinium hydrochloride). This example illustrates how the incorporation of an additional structural element such as a disulfide bond in a highly conserved fold such as that of the Rieske domain may fine-tune the protein for a particular function or for increased stability.  相似文献   

20.
Diverse proteins with similar structures are grouped into families of homologs and analogs, if their sequence similarity is higher or lower, respectively, than 20%–30%. It was suggested that protein homologs and analogs originate from a common ancestor and diverge in their distinct evolutionary time scales, emerging as a consequence of the physical properties of the protein sequence space. Although a number of studies have determined key signatures of protein family organization, the sequence-structure factors that differentiate the two evolution-related protein families remain unknown. Here, we stipulate that subtle structural changes, which appear due to accumulating mutations in the homologous families, lead to distinct packing of the protein core and, thus, novel compositions of core residues. The latter process leads to the formation of distinct families of homologs. We propose that such differentiation results in the formation of analogous families. To test our postulate, we developed a molecular modeling and design toolkit, Medusa, to computationally design protein sequences that correspond to the same fold family. We find that analogous proteins emerge when a backbone structure deviates only 1–2 Å root-mean-square deviation from the original structure. For close homologs, core residues are highly conserved. However, when the overall sequence similarity drops to ~25%–30%, the composition of core residues starts to diverge, thereby forming novel families of protein homologs. This direct observation of the formation of protein homologs within a specific fold family supports our hypothesis. The conservation of amino acids in designed sequences recapitulates that of the naturally occurring sequences, thereby validating our computational design methodology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号