首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Mechanisms of epithelial fusion and repair   总被引:2,自引:0,他引:2  
One of the principal functions of any epithelium in the embryonic or adult organism is to act as a self-sealing barrier layer. From the earliest stages of development, embryonic epithelia are required to close naturally occurring holes and to fuse wherever two free edges are brought together, and at the simplest level that is precisely what the epidermis must do to repair itself wherever it is damaged. Parallels can be drawn between the artificially triggered epithelial movements of wound repair and the naturally occurring epithelial movements that shape the embryo during morphogenesis. Recent in vitro and in vivo wound-healing studies and analysis of paradigm morphogenetic movements in genetically tractable embryos, like those of Drosophila and Caenorhabditis elegans, have begun to identify both the signals that initiate these movements and the cytoskeletal machinery that drives motility. We are also gaining insight into the nature of the brakes and stop signals, and the mechanisms by which the confronting epithelial sheets knit together to form a seam.  相似文献   

2.
3.
Visualizing and analyzing shape changes at various scales, ranging from single molecules to whole organisms, are essential for understanding complex morphogenetic processes, such as early embryonic development. Embryo morphogenesis relies on the interplay between different tissues, the properties of which are again determined by the interaction between their constituent cells. Cell interactions, on the other hand, are controlled by various molecules, such as signaling and adhesion molecules, which in order to exert their functions need to be spatiotemporally organized within and between the interacting cells. In this review, we will focus on the role of cell adhesion functioning at different scales to organize cell, tissue and embryo morphogenesis. We will specifically ask how the subcellular distribution of adhesion molecules controls the formation of cell-cell contacts, how cell-cell contacts determine tissue shape, and how tissue interactions regulate embryo morphogenesis.  相似文献   

4.
Diverse mechanisms of morphogenesis generate a wide variety of animal forms. In this work, we discuss two ways that the mechanical properties of embryonic tissues could guide one of the earliest morphogenetic movements in animals, gastrulation. First, morphogenetic movements are a function of both the forces generated by cells and the mechanical properties of the tissues. Second, cells could change their behavior in response to their mechanical environment. Theoretical studies of gastrulation indicate that different morphogenetic mechanisms differ in their inherent sensitivity to tissue mechanical properties. Those few empirical studies that have investigated the mechanical properties of amphibian and echinoderm gastrula-stage embryos indicate that there could be high embryo-to-embryo variability in tissue stiffness. Such high embryo-to-embryo variability would imply that gastrulation is fairly robust to variation in tissue stiffness. Cell culture studies demonstrate a wide variety of cellular responses to the mechanical properties of their microenvironment. These responses are likely to be developmentally regulated, and could either increase or decrease the robustness of gastrulation movements depending on which cells express which responses. Hence both passive physical and mechanoregulatory processes will determine how sensitive gastrulation is to tissue mechanics. Addressing these questions is important for understanding the significance of diverse programs of early development, and how genetic or environmental perturbations influence development. We discuss methods for measuring embryo-to-embryo variability in tissue mechanics, and for experimentally perturbing those mechanical properties to determine the sensitivity of gastrulation to tissue mechanics.  相似文献   

5.
Successful completion of development requires coordination of patterning events with morphogenetic movements. Environmental variability challenges this coordination. For example, developing organisms encounter varying environmental temperatures that can strongly influence developmental rates. We hypothesized that the mechanics of morphogenesis would have to be finely adjusted to allow for normal morphogenesis across a wide range of developmental rates. We formulated our hypothesis as a simple model incorporating time-dependent application of force to a viscoelastic tissue. This model suggested that the capacity to maintain normal morphogenesis across a range of temperatures would depend on how both tissue viscoelasticity and the forces that drive deformation vary with temperature. To test this model we investigated how the mechanical behavior of embryonic tissue (Xenopus laevis) changed with temperature; we used a combination of micropipette aspiration to measure viscoelasticity, electrically induced contractions to measure cellular force generation, and confocal microscopy to measure endogenous contractility. Contrary to expectations, the viscoelasticity of the tissues and peak contractile tension proved invariant with temperature even as rates of force generation and gastrulation movements varied three-fold. Furthermore, the relative rates of different gastrulation movements varied with temperature: the speed of blastopore closure increased more slowly with temperature than the speed of the dorsal-to-ventral progression of involution. The changes in the relative rates of different tissue movements can be explained by the viscoelastic deformation model given observed viscoelastic properties, but only if morphogenetic forces increase slowly rather than all at once.  相似文献   

6.
Little is known about how protocadherins function in cell adhesion and tissue development. Paraxial protocadherin (PAPC) controls cell sorting and morphogenetic movements in the Xenopus laevis embryo. We find that PAPC mediates these functions by down-regulating the adhesion activity of C-cadherin. Expression of exogenous C-cadherin reverses PAPC-induced cell sorting and gastrulation defects. Moreover, loss of endogenous PAPC results in elevated C-cadherin adhesion activity in the dorsal mesoderm and interferes with the normal blastopore closure, a defect that can be rescued by a dominant-negative C-cadherin mutant. Importantly, activin induces PAPC expression, and PAPC is required for activin-induced regulation of C-cadherin adhesion activity and explant morphogenesis. Signaling through Frizzled-7 is not required for PAPC regulation of C-cadherin, suggesting that C-cadherin regulation and Frizzled-7 signaling are two distinct branches of the PAPC pathway that induce morphogenetic movements. Thus, spatial regulation of classical cadherin adhesive function by local expression of a protocadherin is a novel mechanism for controlling cell sorting and tissue morphogenesis.  相似文献   

7.
Wound healing and inflammation: embryos reveal the way to perfect repair   总被引:9,自引:0,他引:9  
Tissue repair in embryos is rapid, efficient and perfect and does not leave a scar, an ability that is lost as development proceeds. Whereas adult wound keratinocytes crawl forwards over the exposed substratum to close the gap, a wound in the embryonic epidermis is closed by contraction of a rapidly assembled actin purse string. Blocking assembly of this cable in chick and mouse embryos, by drugs or by inactivation of the small GTPase Rho, severely hinders the re-epithelialization process. Live studies of epithelial repair in GFP-actin-expressing Drosophila embryos reveal actin-rich filopodia associated with the cable, and although these protrusions from leading edge cells appear to play little role in epithelial migration, they are essential for final zippering of the wound edges together-inactivation of Cdc42 prevents their assembly and blocks the final adhesion step. This wound re-epithelialization machinery appears to recapitulate that used during naturally occurring morphogenetic episodes as typified by Drosophila dorsal closure. One key difference between embryonic and adult repair, which may explain why one heals perfectly and the other scars, is the presence of an inflammatory response at sites of adult repair where there is none in the embryo. Our studies of repair in the PU. 1 null mouse, which is genetically incapable of raising an inflammatory response, show that inflammation may indeed be partly responsible for scarring, and our genetic studies of inflammation in zebrafish (Danio rerio) larvae suggest routes to identifying gene targets for therapeutically modulating the recruitment of inflammatory cells and thus improving adult healing.  相似文献   

8.
9.
During embryonic development tissues remain malleable to participate in morphogenetic movements but on completion of morphogenesis they must acquire the toughness essential for independent adult life. Desmosomes are cell-cell junctions that maintain tissue integrity especially where resistance to mechanical stress is required. Desmosomes in adult tissues are termed hyper-adhesive because they adhere strongly and are experimentally resistant to extracellular calcium chelation. Wounding results in weakening of desmosomal adhesion to a calcium-dependent state, presumably to facilitate cell migration and wound closure. Since desmosomes appear early in mouse tissue development we hypothesised that initial weak adhesion would be followed by acquisition of hyper-adhesion, the opposite of what happens on wounding. We show that epidermal desmosomes are calcium-dependent until embryonic day 12 (E12) and become hyper-adhesive by E14. Similarly, trophectodermal desmosomes change from calcium-dependence to hyper-adhesiveness as blastocyst development proceeds from E3 to E4.5. In both, development of hyper-adhesion is accompanied by the appearance of a midline between the plasma membranes supporting previous evidence that hyper-adhesiveness depends on the organised arrangement of desmosomal cadherins. By contrast, adherens junctions remain calcium-dependent throughout but tight junctions become calcium-independent as desmosomes mature. Using protein kinase C (PKC) activation and PKCα-/- mice, we provide evidence suggesting that conventional PKC isoforms are involved in developmental progression to hyper-adhesiveness. We demonstrate that modulation of desmosomal adhesion by PKC can regulate migration of trophectoderm. It appears that tissue stabilisation is one of several roles played by desmosomes in animal development.  相似文献   

10.
Cell migration during development is fundamental to the establishment of the embryonic architecture. Depending on the context, cells may move either as integrated sheets of tissue or individually. Recently, molecules that are involved in both these types of cell behaviour have been identified, helping us to understand developmental processes as important as gastrulation and neural crest formation, and ultimately, the morphogenetic movements that shape the embryo.  相似文献   

11.
Maintenance of apico-basal polarity is essential for epithelial integrity and requires particular reinforcement during tissue morphogenesis, when cells are reorganised, undergo shape changes and remodel their junctions. It is well established that epithelial integrity during morphogenetic processes depends on the dynamic exchange of adherens junction components, but our knowledge on the dynamics of other proteins and their dynamics during these processes is still limited. The early Drosophila embryo is an ideal system to study membrane dynamics during morphogenesis. Here, morphogenetic activities differ along the anterior-posterior axis, with the extending germband showing a high degree of epithelial remodelling. We developed a Fluorescence Recovery After Photobleaching (FRAP) assay with a higher temporal resolution, which allowed the distinction between a fast and a slow component of recovery of membrane proteins during the germband extension stage. We show for the first time that the recovery kinetics of a general membrane marker, SpiderGFP, differs in the anterior and posterior parts of the embryo, which correlates well with the different morphogenetic activities of the respective embryonic regions. Interestingly, absence of crumbs, a polarity regulator essential for epithelial integrity in the Drosophila embryo, decreases the fast component of SpiderGFP and of the apical marker Stranded at Second-Venus specifically in the anterior region. We suggest that the defects in kinetics observed in crumbs mutant embryos are the first signs of tissue instability in this region, explaining the earlier breakdown of the head epidermis in comparison to that of the trunk, and that diffusion in the plasma membrane is affected by the absence of Crumbs.  相似文献   

12.
The yolk extension (YE) appears to be a novel developmental module that has been inserted into the phylotypic period of teleostean development, specifically in the order Cypriniformes. The zebrafish YE informs the study of morphogenetic movements reshaping ventral tissues because (1) this trait is easily visible, so disruptions are easy to score; (2) its ontogenesis occurs quickly; and (3) the yolk cell isolates the tissues elongating the ventrum from the rest of the embryo, serving as a three-dimensional in vivo "tissue culture." We determined that three histological compartments comprise the structural components of the YE: (1) the internal yolk cell; (2) the mesendodermal mantle external to the yolk cell; and (3) the external embryonic integument, consisting of an embryonic epidermis plus enveloping layer cells. These structural components interact with one another in a hierarchical manner, resulting in the morphogenesis of the elongated and tubular embryonic zebrafish ventrum as the cylindrical YE forms. Time-lapse videomicroscopy and experimental manipulation show that the yolk mass is a cohesive, viscoelastic foam, which resists compression. Moreover, as the mesodermal mantle participates in tubulation of the posterior trunk, Kupffer's Vesicle, the organ of laterality in teleosts, separates from the posterior pole of the yolk syncytial layer. Additionally, the embryonic integument becomes contractile over the posterior yolk cell, constricting the yolk mass to form the YE. These findings constitute an initial assessment of the morphogenetic mechanics underlying formation of the YE developmental module in zebrafish.  相似文献   

13.
14.
MORPHOGENESIS OF THE COLLAGENOUS STROMA IN THE CHICK CORNEA   总被引:14,自引:7,他引:7       下载免费PDF全文
The embryonic chick corneal epithelium produces a highly structured acellular matrix beneath its basal surface during early development. This matrix, which contains collagen, serves as a morphogenetic template for subsequent stromal development in that the three-dimensional architecture of the adult corneal stroma is initially established, in miniature, in this epithelially derived connective tissue. Examination of the early corneal epithelium and matrix in both the light and electron microscope suggests that self assembly of the matrix may be one of several important factors in the morphogenesis of this early connective tissue.  相似文献   

15.
《Organogenesis》2013,9(4):350-364
Abstract

The tissue scale deformations (≥1mm) required to form an amniote embryo are poorly understood. Here, we studied ~400 μm-sized explant units from gastrulating quail embryos. The explants deformed in a reproducible manner when grown using a novel vitelline membrane-based culture method. Time-lapse recordings of latent embryonic motion patterns were analyzed after disk-shaped tissue explants were excised from three specific regions near the primitive streak: 1) anterolateral epiblast, 2) posterolateral epiblast, and 3) the avian organizer (Hensen's node). The explants were cultured for 8 hours—an interval equivalent to gastrulation. Both the anterolateral and the posterolateral epiblastic explants engaged in concentric radial/centrifugal tissue expansion. In sharp contrast, Hensen's node explants displayed Cartesian-like, elongated, bipolar deformations—a pattern reminiscent of axis elongation. Time-lapse analysis of explant tissue motion patterns indicated that both cellular motility and extracellular matrix fiber (tissue) remodeling take place during the observed morphogenetic deformations. As expected, treatment of tissue explants with a selective Rho-Kinase (p160ROCK) signaling inhibitor, Y27632, completely arrested all morphogenetic movements. Microsurgical experiments revealed that lateral epiblastic tissue was dispensable for the generation of an elongated midline axis— provided that an intact organizer (node) is present. Our computational analyses suggest the possibility of delineating tissue-scale morphogenetic movements at anatomically discrete locations in the embryo. Further, tissue deformation patterns, as well as the mechanical state of the tissue, require normal actomyosin function. We conclude that amniote embryos contain tissue-scale, regionalized morphogenetic motion generators, which can be assessed using our novel computational time-lapse imaging approach. These data and future studies—using explants excised from overlapping anatomical positions—will contribute to understanding the emergent tissue flow that shapes the amniote embryo.  相似文献   

16.
During embryonic development, the vertebrate vasculature is undergoing vast growth and remodeling. Blood vessels can be formed by a wide spectrum of different morphogenetic mechanisms, such as budding, cord hollowing, cell hollowing, cell wrapping and intussusception. Here, we describe the vascular morphogenesis that occurs in the early zebrafish embryo. We discuss the diversity of morphogenetic mechanisms that contribute to vessel assembly, angiogenic sprouting and tube formation in different blood vessels and how some of these complex cell behaviors are regulated by molecular pathways.  相似文献   

17.
18.
Epithelial morphogenesis.   总被引:29,自引:0,他引:29  
B M Gumbiner 《Cell》1992,69(3):385-387
The identification of protein factors, such as epimorphin, scatter factor, and activin, that induce epithelial branching and convergent extension-like movements in embryonic tissues are important breakthroughs in our understanding of the role of mesenchyme in epithelial morphogenesis. Moreover, the development of simple in vitro epithelial cell systems that undergo morphogenesis in response to these factors should provide a means to investigate the cellular and molecular bases of the morphogenetic movements themselves. Although many different cellular processes are involved in such morphogenetic behaviors, cell rearrangement is a particularly intriguing one that will be important to study further. Several considerations lead to the prediction that a dynamic regulation of cell-cell adhesion is likely to play a central role in cell rearrangements and epithelial morphogenesis. Ultimately, a greater issue to be addressed is how the different cellular mechanisms participating in epithelial morphogenesis are coordinated and regulated, so as to generate the diverse patterns found in various epithelia.  相似文献   

19.
20.
In vivo study of embryonic morphogenesis tremendously benefits from recent advances in live microscopy and computational analyses. Quantitative and automated investigation of morphogenetic processes opens the field to high-content and high-throughput strategies. Following experimental workflow currently developed in cell biology, we identify the key challenges for applying such strategies in developmental biology. We review the recent progress in embryo preparation and manipulation, live imaging, data registration, image segmentation, feature computation, and data mining dedicated to the study of embryonic morphogenesis. We discuss a selection of pioneering studies that tackled the current methodological bottlenecks and illustrated the investigation of morphogenetic processes in vivo using quantitative and automated imaging and analysis of hundreds or thousands of cells simultaneously, paving the way for high-content/high-throughput strategies and systems analysis of embryonic morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号