首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human beta-defensin-2 (hBD2) is A small cationic peptide with A broad range of antimicrobial activity. An E. coli cell-free system was employed to express the hBD2 fusion protein by using the hBD2 gene with 14 rare codons. The results showed that the expression level of trxA-hBD2 fusion protein was 0.35 mg/ml, which is the same as that obtained with A synthetic codon-optimized gene. By using another fusion partner (GFP), similar high-level expression was also achieved in this cell-free system. This meant that human beta-defensin-2 gene could be directly used to express hBD2 fusion protein efficiently in an E. coli cell-free system without the optimization of codons. The expression level of hBD2 fused with thioredoxin could be further improved up to 2.0 mg/ml by adopting A continuous exchange cell-free system. A simple one-stage affinity purification procedure was also developed to recover this fusion protein efficiently.  相似文献   

2.
Human beta-defensin-2 (hBD2) is a small antimicrobial peptide with potential as a therapeutic agent. The effect of codon usage on the expression of hBD2 in Escherichia coli was studied. Two coding sequences encoding the same hBD2 precursor were both expressed as fusion protein with thioredoxin in E. coli BL21 (DE3). One is the wild-type human cDNA and the other is a gene synthesized by a PCR-based method in which rare codons were altered to those frequently used in E. coli. The expression level of recombinant hBD2 was over 50% of the total cellular protein when the synthetic gene with preferential codons was employed which was a 9-fold enhancement over the wild-type cDNA. The result shows the codon bias of the host was a major barrier in high-level expression of recombinant hBD2 and suggests a similar approach may be used in the expression of other defensins in E. coli.  相似文献   

3.
Human beta-defensin-4 (hBD4) is a cationic 50-amino acid antimicrobial peptide with three conserved cysteine disulfide bonds. It exhibits a broad antimicrobial spectrum. This study describes the synthesis of hBD4 gene, the heterologous fusion expression of the peptide in Escherichia coli, and the bioactive assay of released hBD4. A PCR-based gene SOEing (splicing by overlap extension) synthesis method was used in the synthesis of the hBD4 gene with optimized codons. By constructing the expression plasmid (pET32-smhBD4), high concentration of soluble hBD4 fusion protein (1.9 g/l) can be obtained in E. coli. Further optimization studies showed that the expression system was very efficient to produce soluble target protein, and the solubility of the target protein could attain more than 99% even when the culture temperature was as high as 37°C. The highest productivity (2.68 g/l) of the hBD4 fusion protein was achieved by cultivating the E. coli (pET32-smhBD4) in MBL medium at 34°C, inducing the culture at the mid-exponential phase with 0.4-mM isopropyl β-d-galactopyranoside (IPTG), and collecting the broth after 6-h expression. The soluble target protein accounted for 64.6% of the total soluble proteins, and the mature hBD4 expression level was stoichiometrically estimated to be 0.689 g/l. This fusion protein was then purified and cleaved to get the mature hBD4 peptide that showed antimicrobial activity against E. coli and Pseudomonas aeruginosa.  相似文献   

4.
人β防御素3在大肠杆菌中可溶性表达及其生物活性的鉴定   总被引:3,自引:0,他引:3  
根据大肠杆菌对精氨酸密码子使用的偏好,设计引物并通过酶促法合成了人β防御素3(hBD-3)全基因序列,克隆进pGEX-4T-2中构建pGEX-4T-2-hBD-3融合表达载体.将表达载体转化Ecoli宿主菌DH5α,进行IPTG诱导表达.控制诱导条件,提高可溶性蛋白的表达量.将菌体进行反复冻溶使细胞膜穿孔,释放可溶性蛋白.融合蛋白GST-hBD-3经凝血酶切割得到重组人防御素蛋白.用琼脂孔穴扩散抑菌法检测表明,重组人β防御素3对金黄色葡萄球菌有抑菌活性.  相似文献   

5.
The HER2/neu proto-oncogene encodes a 185-kDa trans-membrane glycoprotein kinase with extensive homology to the epidermal growth factor receptor and plays a key role in the transformation and growth of malignant tumors. To date, two antibody drugs targeting HER2/neu have been developed successfully. In order to reduce the cost and the time of clinical treatment, we produced a fusion protein composed of human beta defensin 2 (hBD2) and anti-HER2/neu single-chain variable fragment (scFv 4D5), which is capable of specifically targeting, significantly inhibiting, and promptly killing HER2/neu-positive cancer cells. The recombinant protein was expressed in Escherichia coli using the small ubiquitin-related modifier (SUMO) as the molecular chaperone, and the optimal expression level reached to 40.2 % of the total supernatant protein. After purifying by Ni-NTA affinity chromatography, the fusion protein was cleaved with a SUMO-specific protease to obtain hBD2–4D5, which was further purified by Ni-NTA affinity chromatography. The purity of hBD2–4D5 was higher than 95 %, and the yield was 19?±?2 mg/L in flask fermentation. The cell number count and flow cytometry results showed that hBD2–4D5 exerted cytotoxic and anti-proliferative effects on HER2/neu-positive breast cancer cell line, SKBR-3. The results of scanning electron microscope and transmission electron microscope observation indicated that hBD2–4D5 could induce intracellular ultrastructure changes and cell necrosis by disrupting the cell membrane. Immunofluorescence analysis showed that hBD2–4D5 could bind to SKBR-3 cells and further be internalized into the cytoplasm. Moreover, hBD2–4D5 could also mediate apoptosis of SKBR-3 cells by up-regulating the ratio of Bax to Bcl-2.  相似文献   

6.
The human beta defensins-4 (hBD4) exhibit a broad range of antimicrobial properties and are thought to be ideal therapeutic agents because of their potential ability to circumvent the problems of acquired resistance often observed with other antimicrobial therapies. We report here the application of small ubiquitin-related modifier (SUMO) fusion technology to the expression and purification of cationic antibacterial peptide hBD4. The fusion protein expressed in a soluble form was purified to a purity of 90% by Ni-IDA chromatography and 637 mg protein of interest was obtained per liter of fermentation culture. After the SUMO-hBD4 fusion protein was cleaved by the SUMO protease at 30 °C for 1 h, the cleaved sample was re-applied to a Ni-IDA. Finally, about 166 mg recombinant hBD4 was obtained from 1 L fermentation culture with no less than 96% purity and the recombinant hBD4 had similar antimicrobial properties to the synthetic hBD4. Thus, the SUMO-mediated peptide expression and purification system potentially could be employed for the production of recombinant cytotoxic peptides.  相似文献   

7.
Human beta-defensin-2 (hBD2) is a cysteine-rich cationic antimicrobial peptide with low molecular weight that exhibits a broad range of antimicrobial activity. To improve the expression level of hBD2 in Escherichia coli, tandem repeats of mature hBD2 gene were constructed and expressed as fusion proteins (TrxA-nmhBD2, n=1, 2, 4, 8) by constructing the vectors of pET32-nsmhBD2 (n=1, 2, 4, 8). The results showed that the tandem repeats of mhBD2 gene were highly expressed in our constructed system. Comparing the expression levels of soluble mhBD2, BL21(DE3)/pET32-2smhBD2 was selected as an ideal recombinant strain for mature hBD2 production. Under the optimized conditions of cultivation and isopropylthiogalactoside (IPTG) induction, the maximum expression level of soluble mature hBD2 (0.76 g/l) with the highest percentage of fusion protein in soluble proteins (62.2%) was obtained in the present work, which was the highest yield of hBD2 reported so far.  相似文献   

8.
A new bioproduction route for a novel antimicrobial peptide   总被引:1,自引:0,他引:1  
Beta defensins are antimicrobial peptides (AMPs) with a broad spectrum antimicrobial behavior against pathogens while having minimal tendency to incur pathogen resistance. Human β-defensin 28 (hBD28) is a strongly cationic AMP and hence hypothesized to be highly effective in permeabilizing negatively-charged pathogen membranes. However, the scarcity of hBD28 in vivo has impeded detailed structure and antimicrobial studies of hBD28. Chemical synthesis of hBD28 rendered extremely poor yields due to inefficient cysteine oxidation. In this study, a rapid and scalable production route to produce bioactive hBD28 in Escherichia coli (E. coli) is reported. The design of a dual fusion tag expression construct was pivotal in enhancing soluble expression and easing purification of hBD28. The final hBD28 (purity >95%) displayed significant antimicrobial activity against E. coli K12 and showed dose-dependent killing kinetics. Circular dichroism spectroscopy confirmed the presence of both β-sheet and α-helix conformations in the secondary structure of hBD28.  相似文献   

9.
《Process Biochemistry》2007,42(3):423-428
Human β-defensin-3 and 4 (HBD-3–4) are two low molecular weight cationic peptides with three conserved cysteine disulfide bonds, and exhibit a broad range of antimicrobial activity and do not acquire any microbial resistance. In order to produce these uneasily detectable, degradable and toxic polypeptide efficiently, an alternative approach based on the Escherichia coli cell-free biosynthesis system was proposed. The polypeptide of interest is synthesized as a fusion protein linked to trxA or green fluorescent protein (GFP) through a cleavable spacer. With batch mode operation, significant amount of hBD3–4 fused with trxA or GFP can be expressed in this cell-free system, and the product is soluble and stable. Furthermore, the GFP moiety provides directly visuable and quantitative monitoring of the polypeptide synthesis. This work will be helpful to rapid and visuable expression of other similar defensins using in vitro cell-free system.  相似文献   

10.
Human β-defensin-2 (hBD2) is a short cationic peptide with a broad antimicrobial spectrum. The coding sequence of hBD2 was cloned into pET-32a (+) to construct a fusion expression plasmid, pET32–hBD2, which was transformed into E. coli BL21 (DE3) for expression. The cultivation parameters of the expression vector harboring strain were optimized to produce the fusion protein in soluble form efficiently and to avoid the formation of insoluble inclusion bodies. The optimal conditions were determined as following: cultivation at 28 °C in MBL medium, induction at middle stage of exponential growth with 0.8 mM IPTG, and post-induction expression for 8 h. Under the above conditions, a high percentage of the target fusion protein (≥92.3%) was expressed in soluble form and the volumetric productivity of soluble fusion protein reached 1.3 g/l. The culture process was successfully scaled up in a 10 l bench-top fermentor.  相似文献   

11.
The fusion of the N-terminal 461 bp of the human interferon-alpha 2 (INF) in frame to the beta-galactosidase gene from Escherichia coli is described. The presence of the expected DNA sequence was shown by restriction mapping and DNA sequencing. A fusion protein was demonstrated in crude extracts of E. coli by Western blots using polyclonal anti-beta-galactosidase and monoclonal anti-IFN antibodies. Using monoclonal antibodies specific for the N-terminal region of IFN-alpha and cell-free extracts from an E. coli strain containing the fusion protein, we set up a simple competitive enzyme-linked immunosorbent assay for human interferon. The test described here was linear down to a lower detection limit of at least 1000 Units, or 5 ng human IFN.  相似文献   

12.
While cell-free systems are increasingly used for protein expression in structural and functional studies, several proteins are difficult to express or expressed only at low levels in cell-free lysates. Here, we report that fusion of the human immunoglobulin kappa light chain constant domain (Ckappa) at the C terminus of four representative proteins dramatically improved their production in the Escherichia coli S30 system, suggesting that enhancement of cell-free protein expression by Ckappa fusion will be widely applicable.  相似文献   

13.
We have developed an efficient cell-free protein synthesis system for the production of soluble and active eukaryotic proteins that are predominantly produced as inclusion bodies in bacteria. S30 extracts (indicating the supernatant of cell homogenate when centrifuged at 30,000g) for cell-free protein synthesis were prepared from Escherichia coli that was modified to overexpress a set of chaperones (GroEL/ES or DnaK/J-GrpE) and disulfide isomerase (leader sequence-free mature DsbC expressed in the cytoplasm). The solubility and biological activity concentration (biological activity per unit volume of cell-free protein synthesis reaction mixture) of the protein synthesized by the new cell-free protein synthesis system showed a dramatic improvement. Solubility enhancement was most dramatic with the existence of DnaK/J-GrpE. It shows that the co-translational interaction with DnaK/J-GrpE prior to folding trial is important in maintenance of the aggregation-prone protein in a folding-competent soluble state. For maximizing the biological activity concentration of the expressed protein, the additional presence of GroEL/ES and DsbC was required. When human erythropoietin was expressed in the developed cell-free protein synthesis system including endogenously overexpressed chaperones and/or DsbC, the biological activity concentration of erythropoietin was enhanced by 700%. It implies that the post-translational folding and disulfide bond reshuffling as well as co-translational folding are important in acquiring functionally active protein from cell-free expression system. This is the first report of using S30 extracts including endogenously overexpressed chaperones and/or disulfide isomerase for the efficient production of soluble and active proteins in cell-free protein synthesis. This new cell-free protein synthesis system was capable of introducing much larger amounts of chaperones and disulfide isomerase compared to a conventional method that supplements them separately. The developed cell-free protein synthesis system supported efficient expression of the eukaryotic proteins in soluble and active forms without the need of any exogenous addition or coexpression of folding effectors.  相似文献   

14.
The cytoplasmic domain of the medicinal mushroom Cordyceps militaris β-1,3-glucan synthase catalytic subunit Fks1 was expressed as a fusion protein with an N-terminal hexahistidine tag and glutathione S-transferase in an Escherichia coli cell-free translation system, and was assayed for binding specificity. The recombinant cytoplasmic domain bound specifically to UDP-agarose and lichenan (β-glucan), but not to ADP-agarose, GDP-agarose, or other carbohydrates.  相似文献   

15.
We previously showed that human corneal epithelial cells (HCECs) express Toll-like receptors (TLRs), which recognize gram-positive bacteria and respond to Staphylococcus aureus infection by the expression and secretion of proinflammatory cytokines and beta-defensin-2 (hBD2). In this study, we further elucidated the underlying mechanisms regulating hBD-2 expression and its role in innate defense in HCECs in response to S. aureus challenge. Exposure of HUCL cells, a telomerase-immortalized HCEC line, to S. aureus, its exoproducts (1:10 dilution), or synthetic lipopeptide Pam3Cys (10 microg/ml) resulted in the up-regulation of hBD-2, but not hBD1 and hBD3. Similar to HUCL cells, primary HCECs responded to S. aureus-exoproducts and Pam3Cys challenge by expressing hBD2 mRNA and secreting hBD2 into the culture media. Furthermore, these stimuli induced the expression of TLR2 at both mRNA and protein levels. Consistently with its role as a major pattern-recognizing receptor, TLR2 was located at the cell surface by cell surface biotinylation. The treatment of HUCL cells with TLR2 neutralizing antibody resulted in a significant decrease in Pam3Cys-induced hBD2 production as well as IL-6, IL-8, and TNF-alpha secretion. The Pam3Cys-induced hBD2 expression was completely blocked by NF-kappaB inhibitors and partially inhibited by p38 MAP kinase and the JNK inhibitors. Conditioned media derived from HCECs challenged with S. aureus-exoproducts or Pam3Cys exhibited antibacterial activity against S. aureus, Pseudomonas aeruginosa and Escherichia coli. These findings suggest that S. aureus induces hBD2 production through TLR2-mediated pathways in HCECs and that pathogen-challenged, TLR-activated HCECs possess antimicrobial activity. Thus, the epithelium might play a role in innate defense against bacterial infection by directly killing bacteria in the cornea.  相似文献   

16.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is an important cytokine in the mammalian immune system. It has been expressed in Escherichia coli with the same biological activity as the native protein. Here, we report the synthesis of a murine recombinant GM-CSF in an E. coli cell-free protein synthesis system with a high yield. Since there are two disulfide bonds in the native structure of GM-CSF, an oxidizing redox potential of the reaction mixture was required. By pretreating the cell extract with iodoacetamide (IAM), the reducing activity of the cell extract was inactivated, and upon further application of an oxidized glutathione buffer, most of the synthesized GM-CSF was found in its oxidized form. However, the GM-CSF thus formed showed low activity because of poor folding. With the addition of DsbC, the periplasmic disulfide isomerase from E. coli, a high yield of active GM-CSF was produced in the cell-free reaction. Finally, successful folding of the cell-free synthesized GM-CSF-his6 was confirmed by its cell-proliferation activity after purification with a Ni2+ chelating column.  相似文献   

17.
The idiotype (Id)-granulocyte-macrophage colony-stimulating factor (GM-CSF) fusion proteins are potential vaccines for immunotherapy of B-cell lymphoma. In this study, four vaccine candidates were constructed by fusing murine GM-CSF to the amino- or carboxy-terminus of the 38C13 murine B-lymphocyte Id scFv with two different arrangements of the variable regions of the heavy chain and light chain (VL-VH and VH-VL). scFv (VH-VL) and GM-CSF/scFv fusion proteins were expressed in an Escherichia coli cell-free protein synthesis system. In order to promote disulfide bond formation during cell-free expression, cell extract was pretreated with iodoacetamide (IAM), and a sulfhydryl redox buffer composed of oxidized and reduced glutathione was added. The E. coli periplasmic disulfide isomerase, DsbC, was also added to rearrange incorrectly formed disulfide linkages. The 38C13 B-lymphocyte Id scFv was expressed with 30% of its soluble yield in active form (43 microg/ml) when tested with an anti-idiotypic mAb, S1C5, as the capture antibody in radioimmunoassay. It was found that the amino-terminal GM-CSF fusion proteins, GM-VL-VH and GM-VH-VL, showed much higher activity than the carboxy-terminal GM-CSF fusion proteins, VL-VH-GM and VH-VL-GM, in stimulating the cell proliferation of a GM-CSF-dependent cell line, NFS-60. Between the two amino-terminal GM-CSF fusion proteins, GM-VL-VH showed a higher total and soluble yield than GM-VH-VL.  相似文献   

18.
19.
The effect of methylglyoxal bis(guanylhydrazone) (MGBG), a structural analog of polyamines, on protein synthesis has been studied in the presence and absence of spermidine. The spermidine stimulation of polyphenylalanine- and MS2 RNA-directed RNA replicase synthesis in an Escherichia coli cell-free system and of globin synthesis in a rabbit reticulocyte cell-free system disappeared with the addition of MGBG. The spermidine reduction of misincorporation of leucine during polyphenylalanine synthesis in both E. coli and wheat germ cell-free systems was also disturbed by MGBG. MGBG noncompetitively interfered with polyamine stimulation of polyphenylalanine and globin synthesis, suggesting that MGBG could bind to both RNA and the complex of RNA and polyamine. MGBG was preferentially bound to ribosomal RNA among ribosomal RNA, poly(U), and calf thymus DNA, and strongly inhibited the amount of polyamine bound to ribosomal RNA. These results suggest that MGBG elimination of polyamine effects on protein synthesis may occur through the disturbance of polyamine binding to ribosomal RNA.  相似文献   

20.
We have investigated the requirement for Ca(2+) in the fusion and content mixing of rat hepatocyte late endosomes and lysosomes in a cell-free system. Fusion to form hybrid organelles was inhibited by 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid (BAPTA), but not by EGTA, and this inhibition was reversed by adding additional Ca(2+). Fusion was also inhibited by methyl ester of EGTA (EGTA-AM), a membrane permeable, hydrolyzable ester of EGTA, and pretreatment of organelles with EGTA-AM showed that the chelation of lumenal Ca(2+) reduced the amount of fusion. The requirement for Ca(2+) for fusion was a later event than the requirement for a rab protein since the system became resistant to inhibition by GDP dissociation inhibitor at earlier times than it became resistant to BAPTA. We have developed a cell-free assay to study the reformation of lysosomes from late endosome-lysosome hybrid organelles that were isolated from the rat liver. The recovery of electron dense lysosomes was shown to require ATP and was inhibited by bafilomycin and EGTA-AM. The data support a model in which endocytosed Ca(2+) plays a role in the fusion of late endosomes and lysosomes, the reformation of lysosomes, and the dynamic equilibrium of organelles in the late endocytic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号