首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Human mesenchymal stem cells (hMSCs) have tremendous promise for use in a variety of clinical applications. The ability of these cells to self-renew and differentiate into multiple tissues makes them an attractive cell source for a new generation of cell-based regenerative therapies. Encouraging results from clinical trials have also generated growing enthusiasm regarding MSC therapy and related treatment, but gaps remain in understanding MSC tissue repair mechanisms and in clinical strategies for efficient cell delivery and consistent therapeutic outcomes. For these reasons, discoveries from basic research and their implementation in clinical trials are essential to advance MSC therapy from the laboratory bench to the patient's bedside.  相似文献   

2.
全球终末期肝病、肝衰竭的发病率和死亡率逐年升高,且目前肝移植是唯一疗效确切的治疗选择,但是,肝移植的使用受到肝源供体严重不足,长期存活率低,医疗费用昂贵等缺点使得原位肝移植的应用受限,绝大多数患者无法受益。为了克服肝脏器官短缺,干细胞替代治疗策略逐渐成为另一个肝病治疗的重要选择,干细胞治疗,特别是间充质干细胞(MSC)提供了一个新的肝病治疗选择。MSC是一群贴壁生长的成纤维细胞样细胞,由于MSC能够分化为多种类型的细胞,能够产生多种的细胞因子和生长因子,具有造血支持和免疫调节和抗炎功能,MSC被认为在再生医学领域具有重大的科学和实用价值。另外,由于MSC应用于治疗实验性肝损伤能明显提高动物存活率,明显改善肝功能。此外,一些临床前研究和临床研究也表明MSC对肝损伤性疾病具有显著地疗效。因此MSC在损伤性和退行性肝脏疾病的治疗具有广阔的应用前景。本文综述了MSC在肝损伤疾病治疗应用的进展,并对MSC在肝病治疗中的应用前景进行了展望。  相似文献   

3.
Cancer treatment generally relies on tumor ablative techniques that can lead to major functional or disfiguring defects. These post-therapy impairments require the development of safe regenerative therapy strategies during cancer remission. Many current tissue repair approaches exploit paracrine (immunomodulatory, pro-angiogenic, anti-apoptotic and pro-survival effects) or restoring (functional or structural tissue repair) properties of mesenchymal stem/stromal cells (MSC). Yet, a major concern in the application of regenerative therapies during cancer remission remains the possible triggering of cancer recurrence. Tumor relapse implies the persistence of rare subsets of tumor-initiating cancer cells which can escape anti-cancer therapies and lie dormant in specific niches awaiting reactivation via unknown stimuli. Many of the components required for successful regenerative therapy (revascularization, immunosuppression, cellular homing, tissue growth promotion) are also critical for tumor progression and metastasis. While bi-directional crosstalk between tumorigenic cells (especially aggressive cancer cell lines) and MSC (including tumor stroma-resident populations) has been demonstrated in a variety of cancers, the effects of local or systemic MSC delivery for regenerative purposes on persisting cancer cells during remission remain controversial. Both pro- and anti-tumorigenic effects of MSC have been reported in the literature. Our own data using breast cancer clinical isolates have suggested that dormant-like tumor-initiating cells do not respond to MSC signals, unlike actively dividing cancer cells which benefited from the presence of supportive MSC. The secretome of MSC isolated from various tissues may partially diverge, but it includes a core of cytokines (i.e. CCL2, CCL5, IL-6, TGFβ, VEGF), which have been implicated in tumor growth and/or metastasis. This article reviews published models for studying interactions between MSC and cancer cells with a focus on the impact of MSC secretome on cancer cell activity, and discusses the implications for regenerative therapy after cancer.  相似文献   

4.
Adult mesenchymal stem cells possess a remarkably diverse array of immunosuppressive characteristics. The capacity to suppress the regular processes of allogeneic rejection, have allowed the use of tissue mismatched cells as therapeutic approaches in regenerative medicine and as agents of immune deviation. This review describes recent advances in understanding the mechanistic basis of mesenchymal stromal or stem cells (MSC) interaction with innate immunity. Particular emphasis is placed on the effect of Toll-like receptor signalling on MSC and a hypothesis that innate immune signals induce a 'licensing switch' in MSC is put forward. The mechanisms underlying MSC suppression of T cell responses and induction of regulatory populations are surveyed. Conflicting data regarding the influence of MSC on B cell function are outlined and discussed. Finally the limits to MSC mediated immune modulation are discussed with reference to the future clinical application of novel cell therapies.  相似文献   

5.
Mesenchymal stem cells (MSC) show great promise in a wide array of therapeutic applications due mainly to their capacity to suppress immune and inflammatory reactions and instigate normal tissue repair processes. The secretion of bioactive factors is thought to play a predominant role in the mechanisms of action for these clinically relevant functions. As such, a large body of MSC research has focussed on characterization of the MSC secretome; including both soluble factors and factors released in extracellular vesicles (e.g., exosomes and microvesicles). This review provides an overview of our current knowledge of the MSC secretome in the context of determining the clinical relevance of these cells. In addition, the review summarizes various approaches that have been utilized to identify proteins secreted by MSC and discusses the advantages and limitations of different proteomic methods. Finally, we discuss issues that must be addressed before the clinical relevance of research into the MSC secretome can be realized.  相似文献   

6.
The first non-hematopoietic mesenchymal stem cells (MSCs) were discovered by Friedenstein in 1976, who described clonal, plastic adherent cells from bone marrow capable of differentiating into osteoblasts, adipocytes, and chondrocytes. More recently, investigators have now demonstrated that multi-potent MSCs can be recovered from a variety of other adult tissues and differentiate into numerous tissue lineages including myoblasts, hepatocytes and possibly even neural tissue. Because MSCs are multipotent and easily expanded in culture, there has been much interest in their clinical potential for tissue repair and gene therapy and as a result, numerous studies have been carried out demonstrating the migration and multi-organ engraftment potential of MSCs in animal models and in human clinical trials. This review describes the recent advances in the understanding of MSC biology.  相似文献   

7.
Mesenchymal stromal cells(MSCs) are currently being investigated for use in a wide variety of clinical applications. For most of these applications, systemic delivery of the cells is preferred. However, this requires the homing and migration of MSCs to a target tissue. Although MSC hominghas been described, this process does not appear to be highly efficacious because only a few cells reach the target tissue and remain there after systemic administration. This has been ascribed to low expression levels of homing molecules, the loss of expression of such molecules during expansion, and the heterogeneity of MSCs in cultures and MSC culture protocols. To overcome these limitations, different methods to improve the homing capacity of MSCs have been examined. Here, we review the current understanding of MSC homing, with a particular focus on homing to bone marrow. In addition, we summarize the strategies that have been developed to improve this process. A better understanding of MSC biology, MSC migration and homing mechanisms will allow us to prepare MSCs with optimal homing capacities. The efficacy of therapeutic applications is dependent on efficient delivery of the cells and can, therefore, only benefit from better insights into the homing mechanisms.  相似文献   

8.
脐血CD-34单个核细胞来源间充质干细胞研究   总被引:2,自引:0,他引:2  
目的 :探讨分离培养脐血CD-3 4 细胞来源间充质干细胞 (MSC)及研究其生物学特征。方法 :取足月妊娠健康产妇胎儿脐血 ,分离其中单个核细胞 (MNC) ,去除CD 3 4 细胞 ,体外用低糖型DMEM培养基培养。观察细胞形态、测定生长曲线、利用流式细胞仪对培养细胞进行表型测定、细胞周期分析、体外诱导分化实验以及检测造血因子的表达情况。结果 :脐血CD-3 4 细胞中可培养出间充质干细胞 ,可诱导向成骨和脂肪细胞分化并表达IL 6、SCF和SDF 1等造血生长因子。结论 :从足月妊娠健康产妇脐血CD-3 4 细胞可分离培养出间充质干细胞 ,具有与其它来源MSC类似的表型及分化潜能 ,在体外传代可保持其低分化状态并表达造血因子 ,可作为组织工程的种子细胞和具有促进造血作用  相似文献   

9.
Mesenchymal Stem Cells (MSCs) have been shown to be a promising candidate for cell-based therapy. The therapeutic potential of MSCs, towards tissue repair and wound healing is essentially based on their paracrine effects. Numerous pre-clinical and clinical studies of MSCs have yielded encouraging results. Further, these cells have been shown to be relatively safe for clinical applications. MSCs harvested from numerous anatomical locations including the bone marrow, adipose tissue, Wharton’s jelly of the umbilical cord etc., display similar immunophenotypic profiles. However, there is a large body of evidence showing that MSCs secrete a variety of biologically active molecules such as growth factors, chemokines, and cytokines. Despite the similarity in their immunophenotype, the secretome of MSCs appears to vary significantly, depending on the age of the host and niches where the cells reside. Thus, by implication, proteomics-based profiling suggests that the therapeutic potential of the different MSC populations must also be different. Analysis of the secretome points to its influence on varied biological processes such as angiogenesis, neurogenesis, tissue repair, immunomodulation, wound healing, anti-fibrotic and anti-tumour for tissue maintenance and regeneration. Though MSC based therapy has been shown to be relatively safe, from a clinical standpoint, the use of cell-free infusions can altogether circumvent the administration of viable cells for therapy. Understanding the secretome of in vitro cultured MSC populations, by the analysis of the corresponding conditioned medium, will enable us to evaluate its utility as a new therapeutic option. This review will focus on the accumulating evidence that points to the therapeutic potential of the conditioned medium, both from pre-clinical and clinical studies. Finally, this review will emphasize the importance of profiling the conditioned medium for assessing its potential for cell-free therapy therapy.  相似文献   

10.
Radiotherapy may induce irreversible damage on healthy tissues surrounding the tumor. It has been reported that the majority of patients receiving pelvic radiation therapy show early or late tissue reactions of graded severity as radiotherapy affects not only the targeted tumor cells but also the surrounding healthy tissues. The late adverse effects of pelvic radiotherapy concern 5% to 10% of them, which could be life threatening. However, a clear medical consensus concerning the clinical management of such healthy tissue sequelae does not exist. Although no pharmacologic interventions have yet been proven to efficiently mitigate radiotherapy severe side effects, few preclinical researches show the potential of combined and sequential pharmacological treatments to prevent the onset of tissue damage. Our group has demonstrated in preclinical animal models that systemic mesenchymal stromal cell (MSC) injection is a promising approach for the medical management of gastrointestinal disorder after irradiation. We have shown that MSCs migrate to damaged tissues and restore gut functions after irradiation. We carefully studied side effects of stem cell injection for further application in patients. We have shown that clinical status of four patients suffering from severe pelvic side effects resulting from an over-dosage was improved following MSC injection in a compationnal situation.  相似文献   

11.
Mesenchymal stem cells (MSC) are non-haematopoietic stem cells that are capable of differentiating into tissues of mesodermal origin. MSC play an important role in supporting the development of fetal and adult haematopoiesis. More recently, MSC have also been found to exhibit inhibitory effect on T cell responses. However, there is little information on the mechanism of this immunosuppression and our study addresses this issue by targeting T cell functions at various level of immune responses. We have generated MSC from human adult bone marrow (BM) and investigated their immunoregulatory function at different phases of T cell responses. MSC showed the ability to inhibit mitogen (CD3/CD28 microbeads)-activated T cell proliferation in a dose-dependent manner. In order to evaluate the specificity of this immunosuppression, the proliferation of CD4+ and CD8+ cells were measured. MSC equally inhibit CD4+ and CD8+ subpopulations of T cells in response to PHA stimulation. However, the antiproliferative effect of MSC is not due to the inhibition of T cell activation. The expression of early activation markers of T cells, namely CD25 and CD69 were not significantly altered by MSC at 24, 48 and 72 h. Furthermore, the immunosuppressive effect of MSC mainly targets T cell proliferation rather than their effector function since cytotoxicity of T cells is not affected. This work demonstrates that the immunosuppressive effect of MSC is exclusively a consequence of an anti-proliferative activity, which targets T cells of different subpopulations. For this reason, they have the potential to be exploited in the control of unwanted immune responses such as graft versus host disease (GVHD) and autoimmunity.  相似文献   

12.
Mesenchymal stem cells (MSCs) have received significant attention in recent years due to their large potential for cell therapy. Indeed, they secrete a wide variety of immunomodulatory factors of interest for the treatment of immune-related disorders and inflammatory diseases. MSCs can be extracted from multiple tissues of the human body. However, several factors may restrict their use for clinical applications: the requirement of invasive procedures for their isolation, their limited numbers, and their heterogeneity according to the tissue of origin or donor. In addition, MSCs often present early signs of replicative senescence limiting their expansion in vitro, and their therapeutic capacity in vivo. Due to the clinical potential of MSCs, a considerable number of methods to differentiate induced pluripotent stem cells (iPSCs) into MSCs have emerged. iPSCs represent a new reliable, unlimited source to generate MSCs (MSCs derived from iPSC, iMSCs) from homogeneous and well-characterized cell lines, which would relieve many of the above mentioned technical and biological limitations. Additionally, the use of iPSCs prevents some of the ethical concerns surrounding the use of human embryonic stem cells. In this review, we analyze the main current protocols used to differentiate human iPSCs into MSCs, which we classify into five different categories: MSC Switch, Embryoid Body Formation, Specific Differentiation, Pathway Inhibitor, and Platelet Lysate. We also evaluate common and method-specific culture components and provide a list of positive and negative markers for MSC characterization. Further guidance on material requirements to produce iMSCs with these methods and on the phenotypic features of the iMSCs obtained is added. The information may help researchers identify protocol options to design and/or refine standardized procedures for large-scale production of iMSCs fitting clinical demands.  相似文献   

13.
Current techniques to improve bone regeneration following trauma or tumour resection involve the use of autograft bone or its substitutes supplemented with osteoinductive growth factors and/or osteogenic cells such as mesenchymal stem cells(MSCs).Although MSCs are most commonly grown in media containing fetal calf serum,human platelet lysate(PL) offers an effective alternative.Bone marrow- derived MSCs grown in PLcontaining media display faster proliferation whilst maintaining good osteogenic differentiation capacity.Limited pre-clinical investigations using PL-expanded MSCs seeded onto osteoconductive scaffolds indicate good potential of such constructs to repair bone in vivo.In an alternative approach,nude PL-coated scaffolds without seeded MSCs have been proposed as novel regenerative medicine devices.Even though methods to coat scaffolds with PL vary,in vitro studies suggest that PL allows for MSC adhesion,migration and differentiation inside these scaffolds.Increased new bone formation and vascularisation in comparison to uncoated scaffolds have also been observed in vivo.This review outlines the state-of-the-art research in the field of PL for ex vivo MSC expansion and in vivo bone regeneration.To minimise inconsistency between the studies,further work is required towards standardisation of PL preparation in terms of the starting material,platelet concentration,leukocyte depletion,and the method of platelet lysis.PL quality control procedures and its "potency" assessment are urgently needed,which could include measurements of key growth and attachment factors important for MSC maintenance and differentiation.Furthermore,different PL formulations could be tailor-made for specific bone repair indications.Such measures would undoubtedly speed up clinical translation of PL-based treatments for bone regeneration.  相似文献   

14.
Mesenchymal stem cells (MSC) have been characterized as multipotent cells which are able to differentiate into several mesodermal and nonmesodermal lineage cells and this feature along with their extensive growth and comprehensive immunomodulatory properties establish them as a promising tool for therapeutic applications, including cell-based tissue engineering and treatment of immune-mediated disorders. Although bone marrow (BM) is the most common MSC source, cells with similar characteristics have been shown to be present in several other adult tissues. Adipose tissue (AT), large quantities of which can be easily obtained, represents an attractive alternative to BM in isolating adipose tissue-derived MSC (AT-MSC). BM-MSCs and AT-MSCs share some immunomodulatory properties as they are both not inherently immunogenic and suppress the proliferation of alloantigen- or mitogen-stimulated T-cells. Our purpose was to comparatively examine under appropriate in vitro conditions, phenotypes, morphology and some functional properties of BM-MSCs and AT-MSCs, such as differentiation potential and especially the ability to suppress the immunoglobulin production by mitogen-stimulated B-cells. While the morphological, immunophenotypical, colony-forming and adipogenic characteristics of both types of cells were almost identical, AT-MSCs showed less potential for osteogenic differentiation than BM-MSCs. We found that AT-MSCs not only inhibited the Ig-production but also suppressed this B-cell function to a much greater extent compared to BM-MSC. This finding supports the potential role of AT-MSCs as an alternative to BM-MSCs for clinical purposes.  相似文献   

15.
16.
17.
Mesenchymal stem cells (MSCs) are non-hematopoietic stem cells with the capacity to differentiate into tissues of both mesenchymal and non-mesenchymal origin. MSCs can differentiate into osteoblastic, chondrogenic, and adipogenic lineages, although recent studies have demonstrated that MSCs are also able to differentiate into other lineages, including neuronal and cardiomyogenic lineages. Since their original isolation from the bone marrow, MSCs have been successfully harvested from many other tissues. Their ease of isolation and ex vivo expansion combined with their immunoprivileged nature has made these cells popular candidates for stem cell therapies. These cells have the potential to alter disease pathophysiology through many modalities including cytokine secretion, capacity to differentiate along various lineages, immune modulation and direct cell-cell interaction with diseased tissue. Here we first review basic features of MSC biology including MSC characteristics in culture, homing mechanisms, differentiation capabilities and immune modulation. We then highlight some in vivo and clinical evidence supporting the therapeutic roles of MSCs and their uses in orthopedic, autoimmune, and ischemic disorders.  相似文献   

18.
间充质干细胞(MSCs)存在于许多组织中,在组织出现损伤时会迁移到受伤部位进行修复。而癌症可以被看作是"永远不会愈合的伤口",在肿瘤微环境中MSCs会被持续募集成为肿瘤微环境的一部分。最近出现了一种肿瘤相关间充质干细胞(TA-MSCs),它可以激活肿瘤的发生,促进肿瘤的发展与转移。本文讨论了MSCs与TA-MSCs之间的关系;探讨对TA-MSCs的最新认识及其调节癌细胞生存、增殖、迁移与耐药能力。而且,讨论了把TA-MSCs作为癌症治疗上游或者下游的靶点或者用MSCs做载体来传递癌症因子将会发展为癌症治疗的新手段。  相似文献   

19.
Mesenchymal stem cells (MSC) are a group of cells present in bone-marrow stroma and the stroma of various organs with the capacity for mesoderm-like cell differentiation into, for example, osteoblasts, adipocytes, and chondrocytes. MSC are being introduced in the clinic for the treatment of a variety of clinical conditions. The aim of this review is to provide an update regarding the biology of MSC, their identification and culture, and mechanisms controlling their proliferation and differentiation. We also review the current status of their clinical use. Areas in which research is needed to enhance the clinical use of MSC are emphasized. This work was supported by grants from the Danish Medical Research Council, Danish Center for Stem Cell Research, and Novo Nordisk Foundation.  相似文献   

20.
Multipotent mesenchymal stromal cells [also referred to as mesenchymal stem cells(MSCs)] are a heterogeneous subset of stromal cells. They can be isolated from bone marrow and many other types of tissue. MSCs are currently being tested for therapeutic purposes(i.e., improving hematopoietic stem cell engraftment, managing inflammatory diseases and regenerating damaged organs). Their tropism for tumors and inflamed sites and their context-dependent potential for producing trophic and immunomodulatory factors raises the question as to whether MSCs promote cancer and/or infection. Thisarticle reviews the effect of MSCs on tumor establishment, growth and metastasis and also susceptibility to infection and its progression. Data published to date shows a paradoxical effect regarding MSCs, which seems to depend on isolation and expansion, cells source and dose and the route and timing of administration. Cancer and infection may thus be adverse or therapeutic effects arising form MSC administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号