首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 745 毫秒
1.
The deinhibitor protein, responsible for the decreased sensitivity of the ATP,Mg-dependent protein phosphatase to inhibitor-1 and the modulator protein, is inactivated by cyclic AMP-dependent protein kinase and reactivated by dephosphorylation. The specificity of this reaction was tested with the ATP,Mg-dependent phosphatase in its activated or spontaneously active form, four different forms of polycation-stimulated phosphatases (PCSH, PCSM, PCSL and PCSC) and calcineurin. Only the high -Mr polycation-stimulated protein phosphatase (PCSH), but not its catalytic subunit (PCSC), shows a high degree of specificity for the deinhibitor protein. Deinhibitor phosphatase activity of PCSH is affected neither by polycations nor by Mn ions.  相似文献   

2.
Protein kinase C can autophosphorylate in vitro and has also been shown to be phosphorylated in vivo. In order to investigate the factors that may determine the phosphorylation state of protein kinase C in vivo, we determined the ability of the ATP + Mg2+-dependent phosphatase and the polycation-stimulated (PCS) phosphatases to dephosphorylate protein kinase C in vitro. These studies show that all the oligomeric forms of the PCS phosphatases (PCSH1, PCSH2, PCSM and PCSL phosphatases) are effective in the dephosphorylation of protein kinase C, showing 34-82% of the activity displayed with phosphorylase a as substrate. In contrast both the catalytic subunit of the PCS phosphatase and that of the ATP+Mg2+-dependent phosphatase showed only weak activity with protein kinase C as substrate. All these phosphatases, however, were activated by protamine (Ka 14-16 micrograms/ml) through what appears to be a substrate-directed effect. The relative role of these phosphatases in the control of protein kinase C is discussed.  相似文献   

3.
The substrate specificity of the different forms of the polycation-stimulated (PCS, type 2A) protein phosphatases and of the active catalytic subunit of the ATP, Mg-dependent (type 1) phosphatase (AMDC) was investigated, using synthetic peptides phosphorylated by either cyclic-AMP-dependent protein kinase or by casein kinase-2. The PCS phosphatases are very efficient toward the Thr(P) peptides RRAT(P)VA and RRREEET(P)EEE when compared with the Ser(P) analogues RRAS(P)VA and RRREEES(P)EEEAA. Despite their distinct sequence, both Thr(P) peptides are excellent substrates for the PCSM and PCSH1 phosphatases, being dephosphorylated faster than phosphorylase a. The slow dephosphorylation of RRAS(P)VA by the PCS phosphatases could be increased substantially by the insertion of N-terminal (Arg) basic residues. In contrast with the latter, the AMDC phosphatase shows very poor activity toward all the phosphopeptides tested, without preference for either Ser(P) or Thr(P) peptides. However, N-terminal basic residues also favor the dephosphorylation of otherwise almost inert substrates by the AMDC phosphatase. Hence, while the dephosphorylation of Thr(P) substrates by the PCS phosphatases is highly favored by the nature of the phosphorylated amino acid, phosphatase activity toward Ser(P)-containing peptides may require specific determinants in the primary structure of the phosphorylation site.  相似文献   

4.
The activation of the ATP,Mg-dependent protein phosphatase [Fc.M] has been shown to involve a transient phosphorylation of the modulator subunit (M) and consequent isomerization of the catalytic subunit (Fc) into its active conformation (Jurgensen, S., Shacter, E., Huang, C. Y., Chock, P. B., Yang, S. -D., Vandenheede, J. R., and Merlevede, W. (1984) J. Biol. Chem. 259, 5864-5870). The modulator subunit constitutes the inactivating force for the enzyme, but the slow intramolecular inactivation of the phosphatase can be prevented or blocked by the addition of either the phosphorylated inhibitor-1 or Mg2+ ions. Autodephosphorylation of the modulator subunit is not prevented by the phosphoinhibitor-1, suggesting that the ATP,Mg-dependent phosphatase binds the phosphomodulator subunit in a very specific manner, different from the way it binds exogenous phosphoprotein substrates. Alternatively, the autodephosphorylation of the modulator subunit is catalyzed at a separate active site on the enzyme, which is not influenced by the binding of phosphoinhibitor-1. The phosphoinhibitor-1 does not prevent the activation of the enzyme by kinase FA when added at concentrations that totally inhibit the potential phosphorylase phosphatase activity. These results, together with other already published information, suggest separate autonomic controls of the ATP,Mg-dependent phosphatase activity by inhibitor-1 and the modulator protein through the presence of specific regulatory subunits on the enzyme.  相似文献   

5.
Four types of polycation-stimulated (PCS) phosphorylase phosphatases have been isolated from rabbit skeletal muscle. They are called PCSH (390 kDa), PCSM (250 kDa), and PCSL (200 kDa) phosphatase according to the apparent molecular weight of the native enzymes in gel filtration. Two forms of PCSH phosphatase could be separated by Mono Q fast protein liquid chromatography: PCSH1 and PCSH2. In the absence of polycations, the specific activities of the PCSH1, PCSH2, PCSM, and PCSL phosphatase were 400, 680, 600, and 3000 units/mg, respectively, using phosphorylase a as a substrate. They all contain a 62-65- and a 35-kDa subunit, the latter being the catalytic subunit. In addition PCSH1 phosphatase contains a 55-kDa subunit and the PCSM phosphatase a 72-75-kDa subunit in a substoichiometric ratio. All the PCS phosphatases are insensitive to Ca2+ calmodulin, inhibitor-1, and modulator protein. They display a high specificity for the alpha-subunit of phosphorylase kinase and a broad substrate specificity. The PCSH1 and PCSH2 phosphatases, but not the catalytic subunit (PCSC phosphatase), show a high degree of specificity for the deinhibitor protein. During the purification the phosphorylase to inhibitor-1 phosphatase activity ratio (10:1) remained constant for the PCSH and PCSL enzymes but decreased for the PCSM phosphatase. The stimulation observed with low concentrations of polycations is enzyme directed. The different enzyme forms show a characteristic concentration optimum and degree of stimulation. At higher concentrations, polycations become inhibitory and a time-dependent deactivation of the phosphatases is observed.  相似文献   

6.
A mechanism of activation of the ATP.Mg-dependent protein phosphatase (FC.M) has been proposed (Jurgensen, S., Shacter, E., Huang, C. Y., Chock, P. B., Yang, S.-D., Vandenheede, J. R., and Merlevede, W. (1984) J. Biol. Chem. 259, 5864-5870) in which a transient phosphorylation by the kinase FA of the modulator subunit (M) is the driving force for the transition of the inactive catalytic subunit (FC) into its active conformation. Incubation of FC.M with kinase FA and Mg2+ and adenosine 5'-(gamma-thio)triphosphate results in thiophosphorylation of M and also a conformational change in the phosphatase catalytic subunit; however, the enzyme remains inactive. Proteolysis of this inactive, thiophosphorylated complex causes proteolytic destruction of the modulator subunit and yields an active phosphorylase phosphatase species. Similar treatment of the native inactive enzyme does not yield active phosphatase. Evidence is presented, suggesting that a molecule of modulator is bound at an "inhibitory site" on the native enzyme. This modulator does not prevent the conformational change in the phosphatase catalytic subunit upon incubation with kinase FA and ATP.Mg but does partially inhibit the expression of the phosphorylase phosphatase activity.  相似文献   

7.
The activation of the ATP, Mg-dependent phosphatase [FCM] by kinase FA has been shown to involve the phosphorylation or thiophosphorylation of the modulator subunit [M] and the consequent isomerization of the catalytic subunit [FC] into the active conformation. The inactive catalytic subunit [free FC] exhibits substantial activity in the presence of non-physiological concentrations of Mn ions whereas the Mn2+-activation of the intact FCM-enzyme requires the proteolytic destruction of the modulator subunit. The present study points to the importance of Mg2+ in the activation of the phosphatase. The inactive catalytic unit can be activated by millimolar concentrations of Mg2+ and the thiophosphorylated FCM-enzyme only expresses its phosphorylase phosphatase activity after a subsequent trypsin treatment in the presence of Mg ions.  相似文献   

8.
C-protein purified from chicken cardiac myofibrils was phosphorylated with the catalytic subunit of cAMP-dependent protein kinase to nearly 3 mol [32P]phosphate/mol C protein. Digestion of 32P-labeled C-protein with trypsin revealed that the radioactivity was nearly equally distributed in three tryptic peptides which were separated by reversed-phase HPLC. Fragmentation of 32P-labeled C-protein with CNBr showed that the isotope was incorporated at different ratios in three CNBr fragments which were separated on polyacrylamide gels in the presence of sodium dodecyl sulfate. Phosphorylation was present in both serine and threonine residues. Incubation of 32P-labeled C-protein with the catalytic subunit of protein phosphatase 1 or 2A rapidly removed 30-40% of the [32P]phosphate. The major site(s) dephosphorylated by either one of the phosphatases was a phosphothreonine residue(s) apparently located on the same tryptic peptide and on the same CNBr fragment. CNBr fragmentation also revealed a minor phosphorylation site which was dephosphorylated by either of the phosphatases. Increasing the incubation period or the phosphatase concentration did not result in any further dephosphorylation of C-protein by phosphatase 1, but phosphatase 2A at high concentrations could completely dephosphorylate C-protein. These results demonstrate that C-protein phosphorylated with cAMP-dependent protein kinase can be dephosphorylated by protein phosphatases 1 and 2A. It is suggested that the enzyme responsible for dephosphorylation of C-protein in vivo is phosphatase 2A.  相似文献   

9.
In rabbit skeletal muscle the polycation-stimulated (PCS) protein phosphatases [Merlevede (1985) Adv. Protein Phosphatases 1, 1-18] are the only phosphatases displaying significant activity toward the deinhibitor protein. Among them, the PCSH protein phosphatase represents more than 80% of the measurable deinhibitor phosphatase activity associated with the PCS phosphatases. The deinhibitor phosphatase activity co-purifies with the PCSH phosphatase to apparent homogeneity. In the last purification step two forms of PCSH phosphatase were separated (PCSH1, containing 62, 55 and 34 kDa subunits, and PCSH2, containing 62 and 35 kDa subunits), both showing the same deinhibitor/phosphorylase phosphatase activity ratio. The activity of the PCSH phosphatase toward the deinhibitor is not stimulated by polycations such as protamine, histone H1 or polylysine, unlike the stimulation observed with phosphorylase as the substrate. The phosphorylase phosphatase activity of PCSH phosphatase is inhibited by ATP, PPi and Pi, whereas the deinhibitor phosphatase activity of the enzyme is much less sensitive to these agents.  相似文献   

10.
The deinhibitor protein: regulation by phosphorylation-dephosphorylation   总被引:2,自引:0,他引:2  
The deinhibitor protein, which protects the multisubstrate protein phosphatase from inhibition by inhibitor-1 and the modulator protein, stabilizes the enzyme in its active conformation preventing its conversion to the ATP,Mg-dependent enzyme form and controls the dephosphorylation of inhibitor-1, was shown to exist under active and inactive forms. It can be inactivated by the catalytic unit of the cyclic AMP-dependent protein kinase and reactivated by an inhibitor-1 phosphatase, also described as histone-H1 ("latent") stimulated protein phosphatase.  相似文献   

11.
The small molecular weight (± 9,000) heat stable deinhibitor protein, isolated from dog liver, not only protects the multisubstrate protein phosphatase from inhibition by inhibitor-1 and the modulator protein. It prevents the conversion of the active enzyme to the ATP,Mg-dependent enzyme form brought about by the modulator protein, and also affects the activation of the ATP,Mg-dependent protein phosphatase, probably by stabilizing the enzyme in its active conformation during the reversible activation by protein kinase FA. Therefore the deinhibitor protein could be an important factor in the process of glycogen synthesis, which requires glycogen synthase and phosphorylase as dephosphorylated enzymes.  相似文献   

12.
The dephosphorylation of phosphorylase beta kinase by the activated ATP, Mg-dependent protein phosphatase, which is highly specific for the beta-subunit, is stimulated by the deinhibitor protein which neutralizes the effect of inhibitor-1 and the modulator protein on the phosphatase. The specific dephosphorylation of the alpha-subunit of phosphorylase beta kinase by a "latent" protein phosphatase isolated from vascular smooth muscle is stimulated by histone H1 but not affected by the deinhibitor protein. These observations show that there is no strict correlation between the insensitivity of a protein phosphatase to inhibitor-1 or modulator protein and the dephosphorylation of the alpha-subunit of phosphorylase beta kinase.  相似文献   

13.
The ATP.Mg-dependent protein phosphatase activating factor (protein kinase FA) was identified to exist in bovine retina. Furthermore, rhodopsin, the visual light pigment associated with rod outer segments in retina, could be well phosphorylated by kinase FA to about 0.9 mol of phosphates per mol of protein. Moreover, more than 90% of the phosphates in [32P]-rhodopsin could be completely removed by ATP.Mg-dependent protein phosphatase and the rhodopsin phosphatase activity was strictly kinase FA-dependent. Taken together, the results provide initial evidence that a cyclic phosphorylation-dephosphorylation of rhodopsin can be controlled by the retina-associated protein kinase FA, representing an efficient cyclic cascade mechanism possibly involved in the rapid regulation of rhodopsin function in retina.  相似文献   

14.
The substrate specificity of different forms of polycation-stimulated (PCSH, PCSL, and PCSC) phosphorylase phosphatases and of the catalytic subunit of the MgATP-dependent protein phosphatase from rabbit skeletal muscle was investigated. This was done, with phosphorylase a as the reference substrate, using the synthetic phosphopeptides patterned after the phosphorylated sites of pyruvate kinase (type L) (Arg2-Ala-Ser(32P)-Val-Ala (S2), and its Thr(32P) substitute (T4)), inhibitor-1 (Arg4-Pro-Thr(32P)-Pro-Ala (T5), Arg2-Pro-Thr(32P)-Pro-Ala (T1), and its Ser(32P) substitute (S1)), and some modified phosphopeptides (Arg2-Ala-Thr(32P)-Pro-Ala (T2) and Arg2-Pro-Thr(32P)-Val-Ala (T3)), all phosphorylated by cyclic AMP-dependent protein kinase. In addition, casein(Thr-32P), phosphorylated by casein kinase-2, was also tested. The PCS phosphatases show a striking preference for the T4 configuration, PCSC being the least efficient. The catalytic subunit of the MgATP-dependent phosphatase was almost completely inactive toward all these substrates. As shown for the PCSH phosphatase, and comparing with T4, the two proline residues flanking the Thr(P) in T1 and T5, just as in inhibitor-1, drastically imparied the dephosphorylation by lowering the Vmax and not by affecting the apparent Km. The C-terminal proline (as in T2) by itself represents a highly unfavorable factor in the dephosphorylation. The critical effect of the sequence X-Thr(P)-Pro or Pro-Thr(P)-Pro (T1, T2, T5, and inhibitor-1) can be overcome by manganese ions. The additional finding that this is not the case with the Pro-Ser(P)-Pro sequence (S1) suggests that the effect of Mn2+ is highly substrate specific. These observations show the considerable importance of the primary structure of the substrate in determining the specificity of the protein phosphatases.  相似文献   

15.
Phosphorylation of the ascarid phosphofructokinase with the catalytic subunit of beef heart cyclic AMP-dependent protein kinase results in the incorporation of 1 mol of P/mol of subunit. Accompanying the phosphorylation there is a 3-4-fold increase in catalytic activity when measured at pH 6.8 with inhibitory levels of ATP. Studies on the effect of phosphorylation on the ATP saturation curve demonstrated that phosphorylation decreased the inhibitory action of ATP. The apparent Km of the catalytic subunit for the phosphofructokinase was 11.2 microM. Chymotryptic or subtilisin digestion of the labeled enzyme released distinct but overlapping phosphopeptides that were purified by high pressure liquid chromatography and sequenced by gas phase peptide sequencing. The sequence of the chymotryptic peptide was Ala-Lys-Gly-Arg-Ser-Asp-Ser(P)-Ile-Val-Pro-Thr. Based on these results and earlier observations, it is proposed that phosphorylation of phosphofructokinase plays an important role in the regulation of energy metabolism in the parasitic helminth.  相似文献   

16.
The catalytic subunit of type-1 protein phosphatase (PP1) was phosphorylated by the tyrosine kinase v-abl as follows: (i) cytosolic PP1 was phosphorylated more (0.73 mol/mol) than PP1 obtained from the glycogen particles (0.076 mol/mol), while free catalytic subunit isolated in the active or inactive form from cytosolic PP1 was phosphorylated even less and catalytic subunit complexed with inhibitor-2 was not phosphorylated; (ii) phosphorylation stoichiometry was dependent on the concentration of PP1 and 3 h incubation at 30 degrees C was required for maximal phosphorylation; (iii) phosphorylation was on a tyrosine residue located in the C-terminal region of PP1 which is lost during proteolysis; (iv) phosphorylation did not affect enzyme activity but allowed conversion from the active to the inactive form upon incubation with inhibitor-2 of a PP1 form that in its dephospho-form did not convert.  相似文献   

17.
The phosphorylation in vitro, on serine residues by endogenous casein kinase 2, of the clathrin beta light chain (33 kDa) of rat liver coated vesicles requires the presence of poly(L-lysine) which acts through binding to the beta light chain. The phosphorylation of other proteins is also increased in the presence of poly(L-lysine) and casein kinase 2. In contrast, the phosphorylation of the upper band of the 50-kDa protein doublet from rat liver coated vesicles is inhibited. Rat liver coated vesicles display a protein phosphatase activity which preferentially dephosphorylates clathrin beta light chain. This activity is different from the protein phosphatase which dephosphorylates the 50-kDa protein. This enzyme seems to be unrelated to the ATP/Mg-dependent protein phosphatase, or the polycation-stimulated protein phosphatases, which dephosphorylate the 50-kDa protein and beta light chain very efficiently, but with a different specificity. After dissociation of coated vesicles the beta-light-chain phosphatase activity is recovered in the membrane fraction. This phosphatase activity is inhibited by 50 microM orthovanadate and 5 mM p-nitrophenyl phosphate but not by 10 mM EDTA.  相似文献   

18.
The major active protein phosphatase present in a rabbit skeletal muscle extract is associated with the glycogen particle and migrates in sucrose density gradient centrifugation as a Mr = 70,000 protein and contains modulator activity. Addition of extra modulator protein causes a time- and concentration-dependent conversion of the enzyme to an inactive FA-ATP, Mg-dependent form. The intrinsic modulator in the active phosphatase is destroyed by limited proteolysis without an appreciable change in the phosphatase activity. The proteolyzed active enzyme has a lower molecular weight (Mr = 40,000) and it reassociates with the modulator producing a FA-ATP, Mg-dependent enzyme form (Mr = 60,000). The modulator protein is used stoichiometrically in the activation of the ATP, Mg-dependent phosphatase. This is in agreement with the presence of one unit of modulator activity per unit of native spontaneously active phosphatase.  相似文献   

19.
The glycogen-associated form of protein phosphatase-1 (PP-1G) is a heterodimer comprising a 37-kDa catalytic (C) subunit and a 161-kDa glycogen-binding (G) subunit, the latter being phosphorylated by cAMP-dependent protein kinase at two serine residues (site 1 and site 2). Here the amino acid sequence surrounding site 2 has been determined and this phosphoserine shown to lie 19 residues C-terminal to site 1 in the primary structure. The sequence in this region is: (sequence; see text) At physiological ionic strength, phosphorylation of glycogen-bound PP-1G was found to release all the phosphatase activity from glycogen. The released activity was free C subunit, and not PP-1G, while the phospho-G subunit remained bound to glycogen. Dissociation reflected a greater than or equal to 4000-fold decrease in affinity of C subunit for G subunit and was readily reversed by dephosphorylation. Phosphorylation and dephosphorylation of site 2 was rate-limiting for dissociation and reassociation of C subunit. Release of C subunit was also induced by the binding of anti-site-1 Fab fragments to glycogen-bound PP-1G. At near physiological ionic strength, PP-1G and glycogen concentration, site 2 was autodephosphorylated by PP-1G with a t0.5 of 2.6 min at 30 degrees C, approximately 100-fold slower than the t0.5 for dephosphorylation of glycogen phosphorylase under the same conditions. Site 2 was a good substrate for all three type-2 phosphatases (2A, 2B and 2C) with t0.5 values less than those toward the alpha subunit of phosphorylase kinase. At the levels present in skeletal muscle, the type-2A and type-2B phosphatases are potentially capable of dephosphorylating site 2 in vivo within seconds. Site 1 was at least 10-fold less effective than site 2 as a substrate for all four phosphatases. In conjunction with information presented in the following paper in this issue of this journal, the results substantiate the hypothesis that PP-1 activity towards the glycogen-metabolising enzymes is regulated in vivo by reversible phosphorylation of a targetting subunit (G) that directs the C subunit to glycogen--protein particles. The efficient dephosphorylation of site 2 by the Ca2+/calmodulin-stimulated protein phosphatase (2B) provides a potential mechanism for regulating PP-1 activity in response to Ca2+, and represents an example of a protein phosphatase cascade.  相似文献   

20.
A protein (FA) has been isolated from rabbit muscle which has two functions: one is the activation of the ATP x Mg-dependent phosphatase (see previous paper) (1) and the second is the phosphorylation and concomitant inactivation of glycogen synthase, independent from cyclic AMP or Ca ions. The two activities co-purify throughout the purification scheme, and reside in the single protein band that the purified preparation shows in discontinuous acrylamide gel electrophoresis. Heat inactivation experiments with the purified protein showed a parallel decrease of both activities with time. GTP could efficiently replace the ATP in both reactions. Sodium dodecyl sulfate-gel electrophoresis also shows a single protein-stained band corresponding to a Mr = approximately 50,000 and sucrose density gradient centrifugation gave a value of 45,000. The enzyme incorporates only 1 mol of phosphate/mol of synthase monomer (85,000 daltons) and brings the activity ratio (+/- glucose-6-P) down to less than 0.05. Kinetic studies suggest that FA exerts its two activities in quite different ways: the activation of the ATP x Mg-dependent phosphatase is bought about by a protein-protein interaction (FA x FC complex formation) with ATP x Mg as a necessary cofactor, whereas for the inactivation of synthase, FA is a cyclic AMP- and Ca-independent kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号