首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An NADPH-dependent carbonyl reductase (PsCR) gene from Pichia stipitis was cloned. It contains an open reading frame of 849 bp encoding 283 amino acids whose sequence had less than 60% identity to known reductases that produce ethyl (S)-4-chloro-3-hydroxybutanoates (S-CHBE). When expressed in Escherichia coli, the recombinant PsCR exhibited an activity of 27 U/mg using ethyl 4-chloro-3-oxobutanoate (COBE) as a substrate. Reduction of COBE to (S)-CHBE by transformants in an aqueous mono-phase system for 18 h, gave a molar yield of 94% and an optical purity of the (S)-isomer of more than 99% enantiomeric excess.  相似文献   

2.
We compared the induction of gene mutations and chromosomal aberrations by ethylating agents in lacZ transgenic mice (Muta™Mouse). Chromosomal aberrations were detected by the peripheral blood micronucleus assay. Gene mutations were detected in the lacZ transgene. A small amount of blood was sampled from a tail vessel during the expression time for fixation of gene mutations in vivo; this enabled us to detect and compare clastogenicity and gene mutations in the identical mouse. Single intraperitoneal injections of ENU (50–200 mg/kg) and EMS (100–400 mg/kg) strongly induced micronucleated reticulocytes (MN) detectable in peripheral blood 48 h after treatment. The maximum MN frequencies induced were 6.6% and 3.3% for ENU (100 mg/kg) and EMS (400 mg/kg), respectively (the control value was 0.3%). lacZ mutant frequency (MF) was analyzed in bone marrow and liver 7 days after treatment. Spontaneous MFs were 2.0–4.6x10−6. MF in bone marrow was increased by ENU to 3.4x10−5 at 200 mg/kg and induced by EMS to 1.8x10−5 at 400 mg/kg. In liver, however, both chemicals at their highest doses induced only slight increases in MF. The induction of both micronuclei and lacZ mutations in bone marrow by both ENU and EMS correlated better with O6-ethylguanine adducts than with N7-ethylguanine adducts. The mutants (19 for ENU and 12 for EMS) were subjected to DNA sequence analysis. Among EMS-induced mutations, 75% were GC to AT transitions, which were probably caused by O6-ethylguanine. Among ENU-induced mutations, in contrast, 40% occurred as AT base pair substitutions (6 AT to TA transversions and 2 AT to GC transitions) (no such mutations were induced by EMS). These results, together with the known reactivity of ENU to thymine suggest that thymine adducts play a significant role in the ENU mutagenesis.  相似文献   

3.
For the unequivocal proof of the use of a nerve agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX), a rapid, accurate and sensitive method which allows us to identify its main hydrolysis product ethyl methylphosphonic acid (EMPA) in human serum was explored by GC-MS. GC-MS analysis was performed after solvent extraction with acetonitrile in acidic conditions from the serum sample, which was previously deproteinized by micro-ultrafiltration, and subsequent tert.-butyldimethylsilyl derivatization with N-methyl-N-(tert.-butyldimethylsilyl)trifluoroacetamide (MTBSTFA) with 1% tert.-butyldimethylsilyl chloride (t-BDMSC). Linear calibration curves were obtained in the concentration range from 50 to 500 ng/ml for EMPA in the full-scan EI mode and from 5 to 50 ng/ml for EMPA in the SIM EI mode. The relative standard deviation obtained at a sample concentration of 50 ng/ml was 8.4% in the full-scan mode and 7.3% in the SIM mode. Upon applying the full-scan EI and CI mode, 40 ng/ml and 80 ng/ml were the detection limits. Using the SIM-EI mode, in which the ion at m/z 153 was chosen, the limit was 3 ng/ml.  相似文献   

4.
Fermented fruit and beverages frequently contain ethyl carbamate (EC), a potentially carcinogenic compound that can be formed by the reaction of urea with ethanol. Both are produced by the yeast Saccharomyces cerevisiae with ethanol as the major end product of hexose fermentation and urea as a by-product in arginine catabolism. In spirit production, EC can also be derived from cyanide introduced by stone fruit. To determine the relative contribution of yeast metabolism to EC production, we genetically engineered a diploid laboratory strain to reduce the arginase activity, thus blocking the pathway to urea production. For this purpose, strains with either a heterozygous CAR1/car1 deletion or a homozygous defect (car1/car1) were constructed. These strains were compared to the parental wild type and to an industrial yeast strain in cherry mash fermentations and spirit production. The strain with the homozygous car1 deletion showed a significant reduction of EC in the final spirits in comparison to the non-engineered controls. Nevertheless, using this strain for fermentation of stoneless cherry mashes did not completely impede EC formation. This indicates another, as yet unidentified, source for this compound.  相似文献   

5.
Summary The vermilion gene was used as a target to determine the mutational specificity of ethyl methanesulfonate (EMS) in germ cells of Drosophila melanogaster. To study the impact of DNA repair on the type of mutations induced, both excision-repair-proficient (exr +) and excision-repair-deficient (exr ) strains were used for the isolation of mutant flies. In all, 28 mutants from the exr + strain and 24 from the exr strain, were characterized by sequence analysis. In two mutants obtained from the exr + strain, small deletions were observed. All other mutations were caused by single base-pair changes. In two mutants double base-pair substitutions had occurred. Of the mutations induced in the exr + strain, 22 (76%) were GCAT transitions, 3 (10%) ATTA transversions, 2 (6%) GCTA transversions and 2 (6%) were deletions. As in other systems, the mutation spectrum of EMS in Drosophila is dominated by GCAT transitions. Of the mutations in an exr background, 12 (48%) were GCAT transitions, 7 (28%) ATTA transversions, 5 (20%) GCTA transversions and 1 (4%) was a ATGC transition. The significant increase in the contribution of transversion mutations obtained in the absence of an active maternal excision-repair mechanism, clearly indicates efficient repair of N-alkyl adducts (7-ethyl guanine and 3-ethyl adenine) by the excision-repair system in Drosophila germ cells.  相似文献   

6.
A protected trihydroxyindolizidine 3-carboxylate was prepared by a 6-endo epoxide cleavage, which in turn was intermediately formed from the hetero-Diels–Alder adduct of ethyl 2-nitrosoacrylate to a d-ribose-derived exo-glycal.  相似文献   

7.
Bioassays were performed to investigate the effects of the novel allelochemical, ethyl 2-methylacetoacetate (EMA), isolated from the reed (Phragmitis australis) on the growth of three common species of algae; Scenedesmus obliquus, Selenastrum capricornutum and Chlamydomonas reinhardtii. The results demonstrated that EMA has three quite different types of effect on these three species of algae. The growth of S. capricornutum was significantly inhibited by EMA during the whole cultivation period. The EC50 values of EMA on S. capricornutum was 0.6 mg L−1(7 days). However, the inhibitory effect of EMA on S. obliquus was apparent during the first 4 days of batch cultivation and then the inhibitory effect disappeared, and a stimulating effect was observed instead. The EC50 value of EMA on S. obliquus was 0.43 mg L−1(4 days). In addition, following the addition of EMA, the cells of S. obliquus and S. capricornutum became significantly larger than the normal untreated one and the algal cells changed morphologically. The microstructure of the algal cells was disrupted by the addition of EMA. There was no significant inhibition of the growth of C. reinhardtii by EMA, but cell motility was affected.  相似文献   

8.
Lipase Pseudomonas cepacia (PS) catalyzed transesterification of ethyl 3-phenylpropanoate with eleven alcohols was investigated in three ionic liquids [ILs], [Bmim]BF4, [Bmim]PF6, and [Bmim]Tf2N, consisting of an identical cation and different anions. The yields were higher in hydrophobic ILs [Bmim]Tf2N (55–96%) and [Bmim]PF6 (22–95%), than in hydrophilic [Bmim]BF4 (0–19%). The incubation of lipase PS in hydrophobic ILs for a period of 20–300 days at room temperature resulted in an increased yield of 62–98% in [Bmim]Tf2N and 45–98% in [Bmim]PF6, respectively. The lipase PS-hydrophobic IL mixture was recycled five times without any decrease in the yield of the products. In another set of experiments, the hydrolytic activity of the enzyme was determined after incubation in each of the three ILs and in hexane for 20 days at room temperature. It was found to be 1.8- and 1.6-fold higher in [Bmim]Tf2N and [Bmim]PF6, respectively, remained unchanged in [Bmim]BF4 and was 1.6 times lower in hexane as compared to the non-incubated enzyme.  相似文献   

9.
An NADH-dependent (S)-specific 3-oxobutyryl-CoA reductase from Clostridium tyrobutyricum was purified 15-fold with a yield of 46%. It was homogeneous by gel electrophoresis after three chromatographic steps. The apparent molecular mass was estimated by column chromatography to be 240 kDa. SDS-gel electrophoresis revealed the presence of 33 kDa subunits. Substrates of the enzyme were ethyl and methyl 3-oxobutyrate, 3-oxobutyryl-N-acetylcysteamine thioester, and 3-oxobutyryl coenzyme A. The specific activities were 340 and 10 U (mg protein)-1 for the reduction of 3-oxobutyryl coenzyme A and ethyl 3-oxobutyrate, respectively; the Michaelis constants were 300 M and 300 mM, respectively. The identity of 12 N-terminal amino acid residues was determined. The ezmyme was used in a preparative reduction of substrate, yielding ethyl (S)-3-hydroxybutyrate (>99% enantiomeric excess).  相似文献   

10.
Summary The evolution of the cell and must contents of three short-chain fatty acids (C6, C8 and C10) and their ethyl esters during fermentations withSaccharomyces cerevisiae racescerevisiae, bayanus andcapensis were studied. The former is a fermentative yeast and the last two are flor film yeasts. The acid concentrations in the musts increased throughout the alcoholic fermentations, and maximum cell concentrations of the fatty acids were reached after 48 h of fermentation. Maximum ester concentrations in the cells were attained after 48–72 h of fermentation. In the musts, ethyl octanoate and ethyl decanoate reached a peak also at this point, and ethyl hexanoate after 10 days. After 134 days,S. cerevisiae racecapensis formed a thick flor film whileS. cerevisiae racebayanus developed a thin film andS. cerevisiae racecerevisiae formed no film. At this point, acid contents remained constant in the wines produced byS. cerevisiae racescerevisiae andbayanus, and decreased in those obtained with racecapensis. The ethyl ester contents tended to decrease with the exception of ethyl decanoate in the fermentations carried out byS. cerevisiae racescerevisiae andbayanus.  相似文献   

11.
Lipase-catalyzed transesterification of 1-O-octadecyl glycerol (batyl alcohol) with ethyl butyrate has been studied. The effect of vacuum on the rate of both transesterification and distillation of ethyl butyrate has also been investigated and at different reaction conditions, more than 85% of 1-O-octadecyl glycerol was consumed in only 5 min giving rise to the monoester. Then the monoester is again acylated to produce the diesterified product. In addition, the transesterification reactions were effected in solvent free reaction medium and it has been scaled-up to produce up to ca. 500 g of 2,3-dibutyroil-1-O-alkylglycerols in three consecutive cycles reutilizing the same batch of lipase. An efficient evaporation of ethanol was necessary to significantly reduce the reaction times of the transesterification reaction. Finally, a kinetics model describing both the rate of transesterification and the rate of inactivation of the immobilized lipase has been developed. The results indicate that the operational stability of the immobilized lipase confined into the mesh baskets (according to the value of kd attained), was very high and that provides a half-life of the lipase higher than 1500 h.The present procedure is intended to be used for the synthesis of homogeneous alkylglycerols with biological activities and/or precursors of structured alkylglycerols.  相似文献   

12.
Two glucose dehydrogenase (E.C. 1.1.1.47) genes, gdh223 and gdh151, were cloned from Bacillus megaterium AS1.223 and AS1.151, and were inserted into pQE30 to construct the expression vectors, pQE30-gdh223 and pQE30-gdh151, respectively. The transformant Escherichia coli M15 with pQE30-gdh223 gave a much higher glucose dehydrogenase activity than that with the plasmid pQE30-gdh151. Thus it was used to optimize the expression of glucose dehydrogenase. An proximately tenfold increase in GDH activity was achieved by the optimization of culture and induction conditions, and the highest productivity of glucose dehydrogenase (58.7 U/ml) was attained. The recombinant glucose dehydrogenase produced by E. coli M15 (pQE30-gdh223) was then used to regenerate NADPH. NADPH was efficiently regenerated in vivo and in vitro when 0.1 M glucose was supplemented concomitantly in the reaction system. Finally, this coenzyme-regenerating system was coupled with a NADPH-dependent bioreduction for efficient synthesis of ethyl (R)-4-chloro-3-hydroxybutanoate from ethyl 4-chloro-3-oxobutanoate.  相似文献   

13.
To produce stable mutants from Mankeumbyeo, a japonica rice (Oryza sativa L.) variety, we estimated the mutation efficiency of ethyl methane sulfonate (EMS) and N-methyl-N-nitrosourea (MNU) on fertilized egg cells using doubled haploids (DHs) derived from anther culture of M1 plants. M1 seed production and germination were higher in 1 mM MNU than in 94.2 mM EMS. A total of 68 DHs (35.4%) were regenerated by anther culture of M1 plants. Twenty-one DHs (30.9%) were stable mutants, 14 DHs (20.6%) were unstable mutants, and the remainder (48.5%) were normal. The frequencies of stable mutants following EMS and MNU treatments were 20.7% (three semidwarfs, one early maturation and one glabrous line) and 38.5% (three semidwarfs, two early maturation, four glabrous and one long grain line), respectively. In a field trial of seven stable mutants for yield potential, five mutants did not show a significant difference in yield as compared with the original variety. Among these five, three glabrous mutants (MK-MAC 1, MK-MAC 4 and MK-MAC 26) with a smooth leaf and hull may be considered to be improved mutant lines because of the health benefits (reduced skin damage and generation of less dust compared to the original variety) to farmers handling the plant materials. MK-MAC 26, a glabrous mutant, had also less shattering resistance than that of the original variety. These stable mutants could be used as new breeding materials.Communicated by P.P. Kumar  相似文献   

14.
Summary Treatment of tomato seeds with ethyl methanesulphonate (EMS) followed by allyl alcohol selection of M2 seeds has led to the identification of one plant (B15-1) heterozygous for an alcohol dehydrogenase (Adh) null mutation. Genetic analysis and expression studies indicated that the mutation corresponded to the structural gene of the Adh-1 locus on chromosome 4. Homozygous Adh-1 null mutants lacked ADH-1 activity in both pollen and seeds. Using an antiserum directed against ADH from Arabidopsis thaliana, which crossreacts with ADH-1 and ADH-2 proteins from tomato, no ADH-1 protein was detected in seeds of the null mutant. Northern blot analysis showed that Adh-1 mRNA was synthesized at wild-type levels in immature seeds of the null mutant, but dropped to 25% in mature seeds. Expression of the Adh-2 gene on chromosome 6 was unaffected. The potential use of the Adh-1 null mutant in selecting rare transposon insertion mutations in a cross with mutable Adh-1 + tomato lines is discussed.  相似文献   

15.
Wu M  Tang C  Li J  Zhang H  Guo J 《Carbohydrate research》2011,(14):2149-2155
A parent strain Aspergillus niger LW-1 was mutated by the compound mutagenesis of vacuum microwave (VMW) and ethyl methane sulfonate (EMS). A mutant strain, designated as A. niger E-30, with high- and stable-yield β-mannanase was obtained through a series of screening. The β-mannanase activity of the mutant strain E-30, cultivated on the basic fermentation medium at 32 °C for 96 h, reached 36,675 U/g dried koji, being 1.98-fold higher than that (18,501 U/g dried koji) of the parent strain LW-1. The purified E-30 β-mannanase, a glycoprotein with a carbohydrate content of 19.6%, had an apparent molecular weight of about 42.0 kDa by SDS–PAGE. Its optimal pH and temperature were 3.5 and 65 °C, respectively. It was highly stable at a pH range of 3.5–7.0 and at a temperature of 60 °C and below. The kinetic parameters Km and Vmax, toward locust bean gum and at pH 4.8 and 50 °C, were 3.68 mg/mL and 1067.5 U/mg, respectively. The β-mannanase activity was not significantly affected by an array of metal ions and EDTA, but strongly inhibited by Ag+ and Hg2+. In addition, the hydrolytic conditions of konjak glucomannan using the purified E-30 β-mannanase were optimized as follows: konjak gum solution 240 g/L (dissolved in deionized water), hydrolytic temperature 50 °C, β-mannanase dosage 120 U/g konjak gum, and hydrolytic time 8 h.  相似文献   

16.
Summary A purified alkaline thermo-tolerant bacterial lipase from Pseudomonas aeruginosa BTS-2 was immobilized on a poly (AAc-co-HPMA-cl-MBAm) hydrogel network. The hydrogel showed approximately 95% binding efficiency for lipase (specific activity 1.96 U mg−1). The immobilized enzyme achieved 65.1% conversion of ethanol and propionic acid (100 mM each) into ethyl propionate in n-nonane at 65 °C in 9 h. When alkane of C-chain length lower than n-nonane was used as the organic solvent, the conversion of ethanol and propionic acid into ethyl propionate decreased with a decrease in the log P value of alkanes. The immobilized lipase retained approximately 30% of its original catalytic activity after five cycles of reuse for esterification of ethanol and propionic acid into ethyl propionate at temperature 65 °C in 3 h. Addition of a molecular sieve (3 ?) to the reaction mixture enhanced the formation of ethyl propionate to 89.3%. Moreover, ethanol and propionic acid when taken a molar ratio of 3:1 further promoted the conversion rate to 94%. However, an increase in the molar ratio of propionic acid with respect to ethanol resulted in a decline of ethyl propionate synthesis.  相似文献   

17.
Streptomycin-resistant mutations were induced in Solanum melongena by exposing seeds to ethyl methane sulphonate (EMS). Seed mutagenesis resulted in a high frequency of chlorophyll-deficient mutations and a low frequency of resistant shoots, both of which retained their resistance on subsequent testing. Reciprocal crosses between streptomycin-resistant and -sensitive plants showed a non-Mendelian transmission of the resistance trait. Streptomycin resistance is the first selectable and maternally inherited organelle marker described in brinjal.  相似文献   

18.
A type of growth inhibitor was successfully isolated and purified from cell-free filtrates of cultural medium at the death phase of Isochrysis galbana, and its chemical structure was confirmed by the methods of FABMS, UV, 1H-NMR, 13C-NMR and 2D NMR, which was 1-[hydroxyl-diethyl malonate]-isopropyl dodecenoic acid, C22H38O7. The results showed that the growth-inhibitor strongly inhibited the growth of Isochrysis galbana, and the growth of the eight species of microalgae (Dunaliella salina, Platymonas elliptica, Chlorella vugralis, Nitzschia closterium, Chaetoceros muelleri, Chaetoceros gracilis, Nitzschia closterium minutissima, Phaeodactylum tricornutum) also could be regulated by the growth-inhibitor in a concentration-dependent manner. The further investigation found that the synthesis process of chlorophyll and protein in the cells of all test microalgae could be inhibited by the growth inhibitor, and the content of chlorophyll and protein significantly decreased.  相似文献   

19.
Tobacco seedlings (Nicotiana tabacum var. xanthi) were treated for 24 h with mono-(2- and 3-CBA), di-(2,5- and 3,4-CBA), and tri-(2,4,6- and 2,3,5-CBA)-chlorobenzoic acids (CBAs) and with the mixture of polychlorinated biphenyls – Delor 103, or cultivated for 1 or 2 weeks in soil polluted with the CBAs. DNA damage in nuclei of leaves and roots was evaluated by the comet assay. A significant increase in DNA damage was observed only at concentrations of CBAs that caused withering of leaves or had lethal effects within 2–4 weeks after the treatments. As the application of CBAs did not induce somatic mutations, the induced DNA migration is probably caused by necrotic DNA fragmentation and not by DNA damage resulting in genetic alteration. In contrast, the application of the monofunctional alkylating agent ethyl methanesulphonate as a positive control resulted in a dose–response increase of DNA damage and an increase of somatic mutations. Thus, the EMS-produced DNA migration is probably associated with genotoxin-induced DNA fragmentation. The data demonstrate that the comet assay in plants should be conducted together with toxicity studies to distinguish between necrotic and genotoxin-induced DNA fragmentation. The content of 2,5-CBA in tobacco seedlings was measured by reverse-phase high pressure liquid chromatography.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号