首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Potential roles of ultra high pressure (UHP) in starch granule reactivity and properties of acetylated starch were investigated. Corn starch was substituted with acetic anhydride at pressure range of 0.1–400 MPa for 15 min; also, conventional reaction (30 °C, 60 min) was conducted as reaction control. Native and acetylated corn starches were assessed with respect to degree of substitution (DS), X-ray diffraction pattern/relative crystallinity, starch solubility/swelling power, gelatinization, and pasting behavior. For the UHP-assisted acetylated starches, DS values increased along with increasing pressure levels from 200 to 400 MPa, and reaction at 400 MPa exhibited maximum reactivity (though lower than the DS value of the reaction control). Both UHP-assisted and conventional acetylation of starch likely occurred predominantly at amorphous regions within granules. Gelatinization and pasting properties of the UHP-assisted acetylated starches may be less influenced by UHP treatment in acetylation reaction, though restricted starch solubility/swelling were observed.  相似文献   

2.
The degree of gelatinization (DG) of potato starch after treatment with scCO2 was investigated. A broad range of experimental conditions were applied, including variations in temperature (50–90 °C), pressure (0.1–25 MPa), and the starch water content (16.2–40% wt/wt). Changes in the DG were observed by in situ FT-IR measurements, DSC and confirmed by the XRD analysis. The DG increases at higher temperatures and pressures. A maximum DG of about 14% was achieved at the highest pressure (25 MPa) and temperature in the range (90 °C). A series of experiments under N2 pressure confirms that scCO2 plays a special role in the gelatinization process.  相似文献   

3.
Acetylation of α-chitin using acetic anhydride in an ionic liquid, 1-allyl-3-methylimidazolium bromide (AMIMBr), was performed. First, a mixture of chitin and AMIMBr (2% w/w) was heated at 100 °C for 24 h for dissolution. Then, acetic anhydride (5–20 equiv) was added to the solution and the mixture was heated with stirring at desired temperatures for 24 h. The product was precipitated by the addition of the reaction mixture into methanol. The IR spectrum of the product indicated the progress of acetylation. The degrees of substitution (DS), which were determined from the IR spectra, increased with increasing the amounts of acetic anhydride used for the reaction. The highest DS was 1.86, which was obtained by the reaction using 20 equiv of acetic anhydride at 100 °C. The product with this DS value was soluble in DMSO, and thus the structure of the product was further confirmed by 1H NMR spectroscopy in DMSO-d6. The DS value estimated by the integrated ratio of signals due to acetyl protons to a signal due to anomeric protons was in good agreement with that determined from the IR spectrum.  相似文献   

4.
Glycosides and thioglycosides based on monosaccharides in reaction with benzaldehyde dimethylacetal or p-methoxybenzaldehyde dimethyl acetal undergo FeCl3-catalyzed (20 mol %) regioselective 4,6-O-arylidenation producing the corresponding acetals in high yields. FeCl3 also mediates acetalation of glycosides and thioglycosides of cellobiose, maltose, and lactose affording the corresponding 4′,6′-O-benzylidene acetals, which were isolated after their acetylation in situ with acetic anhydride and pyridine. The combined yields (two steps) of these final products are also high (61–84%). The procedure is applicable to a wide variety of functional groups including –OBn.  相似文献   

5.
We present an efficient method for the production of N-acetyl-l-phosphinothricin (N-AcPt) from commercial dl-phosphinothricin (DL-PPT) by organic acetylation for use as a negative selection agent (NSA) that induces cell death in argE transgenic rice. DL-PPT was efficiently converted into N-AcPt with tetrahydrofuran (THF) and acetic anhydride (Ac2O). Chemical changes were confirmed using NMR and ATR-FTIR analyses. DL-PPT was toxic but N-AcPt did not show cytotoxic effects on leaf discs or seed germination of wild-type rice. Conversely, in argE–hpt transgenic rice, non-toxic N-AcPt showed the negative selection (NS) effect by inducing cell destruction in leaf discs and restricting seed germination. For inducing NS, ?0.1 mg ml−1 and ?0.5 mg ml−1 of N-AcPt were effective in leaf and seed assays, respectively. Further, the NS effect occurred faster in the leaf assay compared with the seed germination assay, again indicating the leaf assay was a more sensitive indicator of N-AcPt as an NSA to argE transgenic rice than the seed germination assay. This negative selection approach could be useful for the development of selectable marker free transgenic plants in the economically important monocot species and its commercialization for multiple gene transformation.  相似文献   

6.
In this work, a simple electrochemical immunosensor was developed for the detection of carcinoembryonic antigen (CEA) based on rhombic dodecahedral Cu2O nanocrystals–graphene oxide–gold nanoparticles (rCu2O–GO–AuNPs). GO as the template and surfactant resulting in rCu2O exhibit improved rhombic dodecahedral structure uniformity and excellent electrochemical performance. Moreover, GO was found to be able to effectively improve the long stability of rCu2O on the electrode response. Under optimal conditions, the immunosensor showed a low limit of detection (0.004 ng ml−1) and a large linear range (0.01–120 ng ml−1). This work presents a potential alternative for the diagnostic applications of GO-supported special morphology materials in biomedicine and biosensors.  相似文献   

7.
Remote measurements of body temperature (Tb) in animals require implantation of relatively large temperature-sensitive radio-transmitters or data loggers, whereas rectal temperature (Trec) measurements require handling and therefore may bias the results. We investigated whether ∼0.1 g temperature-sensitive subcutaneously implanted transponders can be reliably used to quantify thermal biology and torpor use in small mammals. We examined (i) the precision of transponder readings as a function of temperature and (ii) whether subcutaneous transponders can be used to remotely record subcutaneous temperature (Tsub). Five adult male dunnarts (Sminthopsis macroura, body mass 24 g) were implanted with subcutaneous transponders to determine Tsub as a function of time and ambient temperature (Ta), and in comparison to thermocouple readings of Trec. Transponder temperature was highly correlated with water bath temperature (r2=0.96–0.99) over a range of approximately 10.0–40.0 °C. Transponders provided reliable data (±0.6 °C) over the Tsub of 21.4–36.9 °C and could be read from a distance of up to 5 cm. Below 21.4 °C, accuracy was reduced to ±2.8 °C, but individual transponder accuracy varied. Consequently, small subcutaneous transponders are useful to remotely quantify thermal physiology and torpor patterns without having to disturb the animal and disrupt torpor. Even at Tsub<21.4 °C where the accuracy of the temperature readings was reduced, transponders do provide reliable data on whether and when torpor is used.  相似文献   

8.
Microwave-assisted methylation of cassava starch with dimethyl carbonate   总被引:1,自引:0,他引:1  
Hou C  Chen Y  Chen W  Li W 《Carbohydrate research》2011,346(9):1178-1181
A novel and environmentally friendly process for the methylation of cassava starch with dimethyl carbonate (DMC) could be accelerated by employing a combined strategy: using disodium hydrogen phosphate (Na2HPO4) as the catalyst (chemical means) and microwave irradiation as the energy source (physical means). By varying the volume of 5% sodium chloride aqueous solution between 50 and 150 mL, the amount of Na2HPO4 between 0 and 1.25 g, the volume of DMC between 75 and 200 mL, and the microwave time from 5 to 20 min, methyl cassava starch with degree of substitution (DS) values in the range of 0.033 and 1.087 was prepared. The chemical structure of methyl cassava starch was analyzed by 1H NMR spectroscopy.  相似文献   

9.
Rice (Oryza sativa L. cv. IR-30) was grown season-long in outdoor, controlled-environment chambers at 33 Pa CO2 with day/night/paddy-water temperatures of 28/21/25 °C, and at 66 Pa CO2 with five different day/night/paddy-water temperature regimes (25/18/21, 28/21/25, 31/24/28, 34/27/31 and 37/30/34 °C). Sucrose phosphate synthase (SPS) activities in leaf extracts at 21, 48 and 81 days after planting (DAP) were assayed under saturating and selective (limiting) conditions. Diel SPS activity data indicated that rice SPS was light regulated; with up to 2.2-fold higher rates during the day. Throughout the growth season, leaf SPS activities were up-regulated in the CO2-enriched plants, averaging 20 and 12% higher than in ambient-CO2 grown plants in selective and saturating assays, respectively. Similarly, SPS activities increased 2.4% for each 1 °C rise in growth temperature from 25 to 34 °C, but de creased 11.5% at 37 °C. Leaf sucrose content was higher, and mirrored SPS activity better, than starch, although starch was more responsive to CO2 treatment. Leaf sucrose and starch contents were significantly higher throughout the season in plants at elevated CO2, but the N content averaged 6.5% lower. Increasing growth temperatures from 25 to 37 °C caused a linear decrease (62%) in leaf starch content, but not in sucrose. Consequently, the starch:sucrose ratio declined with growth temperature. The data are consistent with the hypothesis that the up-regulation of leaf SPS may be an acclimation response of rice to optimize the utilization and export of organic-C with the increased rates of inorganic-C fixation in elevated CO2 or temperature growth regimes.  相似文献   

10.
Tsevdou MS  Taoukis PS 《Anaerobe》2011,17(6):456-458
High Hydrostatic Pressure (HP) processing has been suggested as an alternative method to improve textural attributes of dairy products. Since, the global market seeks improved functional foods, it is important to investigate whether HP processing can be applied to fermented dairy probiotic products. The inactivation kinetics of Bifidobacterium spp. in a model system of acid pH value under high pressure (100–400 MPa) combined with moderate temperature (20–35 °C) was investigated. Bifidobacterium spp. inactivation followed first order kinetics at all pressure–temperature combinations used. Pressure and temperature were found to act synergistically on the viability loss of the bacterium. The corresponding zT and zP values of inactivation were also estimated and, values of 41.5 °C and 93.5 MPa at reference pressure of 200 MPa and reference temperature of 25 °C were estimated, respectively. HP treatment of 200 MPa at 20–25 °C for 10–15 min, recommended for textural modification, is not detrimental to the viability of the studied probiotic culture and would be suitable for respective fermented probiotic products.  相似文献   

11.
Yang L  Li G  Yang F  Zhang SM  Fan HX  Lv XN 《Carbohydrate research》2011,(14):2304-2307
Conversion of cellulose to 1-(furan-2-yl)-2-hydroxyethanone has been demonstrated in concentrated zinc chloride solution under microwave irradiation. Compared with the conventional oil-bath heating mode, microwave irradiation significantly reduced the reaction time and increased the yield of 1-(furan-2-yl)-2-hydroxyethanone. A typical degradation reaction with cellulose produced 1-(furan-2-yl)-2-hydroxyethanone in 12.0% molar yield in ZnCl2 solution (ZnCl2–H2O ratio = 2.25:1, w/w) with microwave irradiation at 600 W for 5 minutes at 135 °C.  相似文献   

12.
Acylation of chitin with butyric acid was performed in the presence of trifluoroacetic anhydride/phosphoric acid mediated system. The products were characterized by 1H NMR and FT-IR spectroscopy and their solubility was tested in different organic solvents. Inclusion of butyric acid moieties into the parent molecule was confirmed from the 1H NMR and FT-IR spectra. FT-IR analysis revealed that the degree of acid substitution (DS) of the products was in a range of 1.9–2.38, which increased with increasing the amounts of butyric acid added to the reaction system. Degree of N-deacetylation (DD) of the products, as determined by 1H NMR was between 54.2% and 65.6%. The products with DS >2.0 were soluble in dimethyl sulfoxide, N,N-dimethylformamide, tetrahydrofuran, methanol, acetone, chloroform, and acetic acid.  相似文献   

13.
A gas—liquid chromatographic method for the determination of the γ-aminobutyric acid-like drug 1-hydroxy-3-aminopyrrolidone-2 (HA-966) in plasma is described. HA-966 was converted into its diacetyl derivative Ac2HA-966 with acetic anhydride. This compound could be suitably eluted from a capillary OV-17 support-coated open tubular column. A sensitive detection method was achieved by making use of nitrogen—phosphorus-selective flame ionization.  相似文献   

14.
Proper adjustment of thermoregulatory mechanisms ensures the survival of mammals when they are subjected to seasonal changes in their natural environment. To understand the physiological and ecological adaptations of Eothenomys olitor, we measured their metabolic rate, thermal conductance, body temperature (Tb) and evaporative water loss at a temperature range of 5–30 °C in summer. The thermal neutral zone (TNZ) of E. olitor was 20–27.5 °C, and the mean body temperature was 35.81±0.15 °C. Basal metabolic rate (BMR) was 2.81±0.11 ml O2/g h and mean minimum thermal conductance (Cm) was 0.18±0.01 ml O2/g h °C. Evaporative water loss (EWL) in E. olitor increased when the ambient temperature increased. The maximal evaporative water loss was 6.74±0.19 mg H2O/g h at 30 °C. These results indicated that E. olitor have relatively high BMR, low body temperature, low lower critical temperature, and normal thermal conductance. EWL plays an inportant role in temperature regulation. These characteristics are closely related to the living habitat of the species, and represent its adaptive strategy to the climate of the Yunnan-Kweichow Plateau, a low-latitude, high-altitude region where annual temperature fluctuations are small, but daily temperature fluctuations are greater.  相似文献   

15.
Highly substituted sago starch phosphate was synthesized using POCl3 as cross-linking reagent. Titrimetric and Fourier transform infra red (FT-IR) spectral analysis were used to characterize the substitution. Studying the different factors affecting the reaction parameters showed that the optimal conditions for starch phosphorylation were: 4 h reaction time and reagent concentration 1.5% (w/w). The physicochemical properties of cross-linked sago starch (CLSS) were done using Scanning electron micrograph (SEM), X-ray powder diffractometer (XRD and Thermogravimetric analysis (TGA). The results revealed that crystalline nature of native sago starch was transformed after cross-linking. TGA report exhibited higher thermal stability, which makes it suitable for various industrial applications. Swelling behavior showed high swelling at low temperature (30 and 60 °C) as compared to high temperature (90 °C).  相似文献   

16.
Synthesis and properties of fatty acid starch esters   总被引:3,自引:0,他引:3  
Being completely bio-based, fatty acid starch esters (FASEs) are attractive materials that represent an alternative to crude oil-based plastics. In this study, two synthesis methods were compared in terms of their efficiency, toxicity and, especially, product solubility with starch laurate (C12) as model compound. Laurates (DS > 2) were obtained through transesterification of fatty acid vinylesters in DMSO or reaction with fatty acid chlorides in pyridine. The latter lead to higher DS-values in a shorter reaction time. But due to the much better solubility of the products compared to lauroyl chloride esterified ones, vinylester-transesterification was preferred to optimize reaction parameters, where reaction time could be shortened to 2 h. FASEs C6–C18 were also successfully prepared via transesterification. To determine the DS of the resulting starch laurates, the efficient ATR-IR method was compared with common methods (elementary analysis, 1H NMR). Molar masses (Mw) of the highly soluble starch laurates were analyzed using SEC-MALLS (THF). High recovery rates (>80%) attest to the outstanding solubility of products obtained through transesterification, caused by a slight disintegration during synthesis. Particle size distributions (DLS) demonstrated stable dissolutions in CHCl3 of vinyl laurate esterified – contrary to lauroyl chloride esterified starch. For all highly soluble FASEs (C6–C18), formation of concentrated solutions (10 wt%) is feasible.  相似文献   

17.
Thermopreference, tolerance and oxygen consumption rates of early juveniles Octopus maya (O. maya; weight range 0.38–0.78 g) were determined after acclimating the octopuses to temperatures (18, 22, 26, and 30 °C) for 20 days. The results indicated a direct relationship between preferred temperature (PT) and acclimated temperature, the PT was 23.4 °C. Critical Thermal Maxima, (CTMax; 31.8±1.2, 32.7±0.9, 34.8±1.4 and 36.5±1.0) and Critical Thermal Minima, (CTMin; 11.6±0.2, 12.8±0.6, 13.7±1.0, 19.00±0.9) increased significantly (P<0.05) with increasing acclimation temperatures. The endpoint for CTMax was ink release and for CTMin was tentacles curled, respectively. A thermal tolerance polygon over the range of 18–30 °C resulted in a calculated area of 210.0 °C2. The oxygen consumption rate increased significantly α=0.05 with increasing acclimation temperatures between 18 and 30 °C. Maximum and minimum temperature quotients (Q10) were observed between 26–30 °C and 22–26 °C as 3.03 and 1.71, respectively. These results suggest that O. maya has an increased capability for adapting to moderate temperatures, and suggest increased culture potential in subtropical regions southeast of México.  相似文献   

18.
The acetolysis of several perbenzylated 6-deoxyhexose methyl glycosides under two mild conditions (10 equiv ZnCl2 in 2:1 v/v Ac2O-AcOH at 5 °C; 10:10:1 v/v/v Ac2O-AcOH-TFA at 70 °C) was studied. We focused on the effect of sugar configuration on the competition between mechanisms with activation at exocyclic or endocyclic oxygen site. No effect was detected in acetolysis using the TFA protocol promoting an exo-activation mechanism, which affords 1-O-Ac-pyranosides regardless of sugar configuration. On the contrary, it has a primary role in determining the endo- versus exo-product distribution on ZnCl2-promoted acetolysis.  相似文献   

19.
Cellulose–SiO2 composite hydrogel was prepared by combining the NaOH/thiourea/H2O solvent system and the immersion method with controlling the hydrolysis–fasculation rate of tetraethyl orthosilicate (TEOS). The hydrophobic composite aerogels were obtained through the freeze-drying technology and the cold plasma modification technology. Composite SiO2 could obviously reduce the thermal conductivity of cellulose aerogel. The thermal conductivity could be as low as 0.026 W/(mK). The thermal insulation mechanism of the aerogel material was discussed. Composite SiO2 reduced hydrophilicity of cellulose aerogel, but environmental humidity had a significant influence on heat insulation performance. After hydrophobic modification using CCl4 as plasma was conducted, the surface of composite aerogel was changed from hydrophilic to hydrophobic and water contact angle was as high as 132°. The modified composite aerogel still kept good heat insulation performance. This work provided a foundation for the possibility of applying cellulose–SiO2 composite aerogel in the insulating material field.  相似文献   

20.
A central composite design of response surface method was used to optimize H2SO4-catalyzed hydrothermal pretreatment of rapeseed straw, in respect to acid concentration (0.5–2%), treatment time (5–20 min) and solid content (10–20%) at 180 °C. Enzymatic hydrolysis and fermentation were also measured to evaluate the optimal pretreatment conditions for maximizing ethanol production. The results showed that acid concentration and treatment time were more significant than solid content for optimization of xylose release and cellulose recovery. Pretreatment with 1% sulfuric acid and 20% solid content for 10 min at 180 °C was found to be the most optimal condition for pretreatment of rapeseed straw for ethanol production. After pretreatment at the optimal condition and enzymatic hydrolysis, 75.12% total xylan and 63.17% total glucan were converted to xylose and glucose, respectively. Finally, 66.79% of theoretical ethanol yielded after fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号