首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Removal of a basic dye (Methylene Blue) from aqueous solution was investigated using a cross-linked succinyl-chitosan (SCCS) as sorbent. The chemical structures of chitosan and its derivatives were testified by FT-IR. X-ray diffraction, DTG analysis and swelling measurements were conducted to clarify the characteristics of the chemically modified chitosan. The effect of process parameters, such as pH of the initial solution, and concentrations of dyes on the extent of Methylene Blue (MB) adsorption was investigated. The Langmuir isotherm model was used to fit the equilibrium experimental data, giving a maximum sorption capacity of 289.02 mg/g at 298 K. Kinetic studies showed that the kinetic data were well described by the pseudo-second-order kinetic model. Thermodynamic parameters such as enthalpy change (ΔH°), free energy change (ΔG°) and entropy change (ΔS°) were determined to be −25.32 kJ mol−1, −6.76 kJ mol−1 and −62.36 J mol−1 K−1, respectively, which leads to a conclusion that the adsorption process is spontaneous and exothermic.  相似文献   

2.
In the present study a novel biomass, derived from the pulp of Saccharum bengalense, was used as an adsorbent material for the removal of Pb (II) ions from aqueous solution. After 50 minutes contact time, almost 92% lead removal was possible at pH 6.0 under batch test conditions. The experimental data was analyzed using Langmuir, Freundlich, Timken and Dubinin-Radushkevich two parameters isotherm model, three parameters Redlich—Peterson, Sip and Toth models and four parameters Fritz Schlunder isotherm models. Langmuir, Redlich—Peterson and Fritz-Schlunder models were found to be the best fit models. Kinetic studies revealed that the sorption process was well explained with pseudo second-order kinetic model. Thermodynamic parameters including free energy change (ΔG°), enthalpy change (ΔH°) and entropy change (ΔS°) have been calculated and reveal the spontaneous, endothermic and feasible nature of the adsorption process. The thermodynamic parameters of activation (ΔG #, ΔH #and ΔS #) were calculated from the pseudo-second order rate constant by using the Eyring equation. Results showed that Pb (II) adsorption onto SB is an associated mechanism and the reorientation step is entropy controlled.  相似文献   

3.
Tetraethylenepentamine (TEPA) modified sugarcane bagasse (SB), a novel biosorbent (TEPA-MSB), was proved to be an effective adsorbent for anionic dyes due to the introduced functional amino groups. FTIR, TG and DSC analysis were employed to characterize the sorbent. The effects of pH, temperature, contact time and initial concentration of dye on the adsorption of eosin Y were investigated. The experimental data fit very well to the Langmuir model, giving a maximum sorption capacity of 399.04 mg/g at 25 °C. And the kinetic data were well described by the pseudo-second-order kinetic model. pH 6 was the optimal pH for eosin Y adsorption, and the maximum adsorption capacity of TEPA-MSB calculated by Langmuir model was 18 times higher than that of SB.  相似文献   

4.
The cyanobacterium Arthrospira (Spirulina) platensis was used to study the process of silver biosorption. Effects of various parameters such as contact time, dosage of biosorbent, initial pH, temperature, and initial concentration of Ag(I) were investigated for a batch adsorption system. The optimal biosorption conditions were determined as pH 5.0, biosorbent dosage of 0.4 g, and initial silver concentration of 30 mg/L. Equilibrium adsorption data were analyzed by the Langmuir and Freundlich models – however, the Freundlich model provided a better fit to the experimental data. The kinetic data fit the pseudo-second-order model well, with a correlation coefficient of 0.99. The analysis of thermodynamic parameters (ΔG°, ΔH° and ΔS°) revealed that the adsorption process of silver ion by spirulina biomass was exothermic and spontaneous (ΔG° < 0), and exothermic (ΔH° < 0) process. The biosorption capacity of biomass A. platensis serves as a basis for the development of green technology for environmental remediation.  相似文献   

5.
The kinetic, thermodynamic and isotherm modeling studies were carried out on adsorptive removal of Victoria blue (VB) dye using activated carbon, Ba/alginate and modified carbon/Ba/alginate polymer beads. The feasibility of sorption process was determined by varying the experimental parameters viz., dye concentration (4–20 mg L−1), contact time (10–90 min), pH (3–10), adsorbent dose (0.5–2.5 g) and temperature (303–343 K). Freundlich and Langmuir isotherms were determined and ascertained with the dimensionless separation factor (RL). Lagergren's pseudo-first order, pseudo-second order and intraparticle diffusion model equations were used to analyze the kinetics of the adsorption process. The thermodynamic consistency of adsorption was found with Gibbs free energy (ΔG°), changes in enthalpy (ΔH°) and entropy (ΔS°) were calculated using the Van’t Hoff plot. The polymer beads were characterized using Fourier Transform Infrared Spectroscopy (FTIR) and their morphology was determined by scanning electron microscopy (SEM).  相似文献   

6.
An acetyl-11-keto-β-boswellic acid (AKBA) is potent anti-inflammatory agent found in Boswellia serrata oleogum resin. Adsorption characteristics of AKBA from B. serrata were studied using macroporous adsorbent resin to understand separation and adsorption mechanism of targeted molecules. Different macroporous resins were screened for adsorption and desorption of AKBA and Indion 830 was screened as it showed higher adsorption capacity. The kinetic equations were studied and results showed that the adsorption of AKBA on Indion 830 was well fitted to the pseudo first-order kinetic model. The influence of two parameters such as temperature (298, 303, and 308?K) and pH (5–8) on the adsorption process was also studied. The experimental data was further investigated using Langmuir, Freundlich, and Temkin isotherm models. It was observed that Langmuir isotherm model was found to be the best fit for AKBA adsorption by Indion 830 and highest adsorption capacity (50.34?mg/g) was obtained at temperature of 303?K. The values of thermodynamic parameters such as the change of Gibbs free energy (ΔG*), entropy (ΔS*), and enthalpy (ΔH*), indicated that the process of adsorption was spontaneous, favourable, and exothermic.  相似文献   

7.
Laboratory investigation of the potential use of Penicillium sp. as biosorbent for the removal of acid violet dye from aqueous solution was studied with respect to pH, temperature, biosorbent, initial dye concentrations. Penicillium sp. decolourizes acid violet (30 mg l−1) within 12 h agitation of 150 rpm at pH 5.7 and temperature of 35 °C. The pellets exhibited a high dye adsorption capacity (5.88 mg g−1) for acid violet dye over a pH range (4–9); the maximum adsorption was obtained at pH 5.7. The increase of temperature favored biosorption for acid violet, but the optimum temperature was 35 °C. Adsorption kinetic data were tested using pseudo-first-order, pseudo-second-order and kinetic studies showed that the biosorption process follows pseudo-first-order rate kinetics with an average rate constant of 0.312 min−1. Isotherm experiments were conducted to determine the sorbent–desorption behavior of examined dye from aqueous solutions using Langmuir and Freundlich equations. Langmuir parameter indicated a maximum adsorption capacity of 4.32 mg g−1 for acid violet and RL value of 0.377. Linear plot of log qe vs log Ce shows that applicability of Freundlich adsorption isotherm model. These results suggest that this fungus can be used in biotreatment process as biosorbent for acid dyes.  相似文献   

8.
Low-cost activated carbon was prepared from Spartina alterniflora by phosphoric acid activation for the removal of Pb(II) from dilute aqueous solution. The effect of experimental parameters such as pH, initial concentration, contact time and temperature on the adsorption was studied. The obtained data were fitted with the Langmuir and Freundlich equations to describe the equilibrium isotherms. The kinetic data were fitted with the Lagergren-first-order, pseudo-second-order and Elovich models. It was found that pH played a major role in the adsorption process. The maximum adsorption capacity for Pb(II) on S. alterniflora activated carbon (SAAC) calculated from Langmuir isotherm was more than 99 mg g−1. The optimum pH range for the removal of Pb(II) was 4.8–5.6. The Freundlich isotherm model was found to best describe the experimental data. The kinetic rates were best fitted to the pseudo-second-order model. Thermodynamic study showed the adsorption was a spontaneous exothermic process.  相似文献   

9.
A thermodynamic study of the inclusion process between 2-chlorobenzophenone (2ClBP) and cyclomaltoheptaose (β-cyclodextrin, β-CD) was performed using UV–vis spectroscopy, reversed-phase liquid chromatography (RP-HPLC), and molecular modeling (PM6). Spectrophotometric measurements in aqueous solutions were performed at different temperatures. The stoichiometry of the complex is 1:1 and its apparent formation constant (Kc) is 3846 M−1 at 30 °C. Temperature dependence of Kc values revealed that both enthalpy (ΔH° = −10.58 kJ/mol) and entropy changes (ΔS° = 33.76 J/K mol) are favorable for the inclusion process in an aqueous medium. Encapsulation was also investigated using RP-HPLC (C18 column) with different mobile-phase compositions, to which β-CD was added. The apparent formation constants in MeOH–H2O (KF) were dependent of the proportion of the mobile phase employed (50:50, 55:45, 60:40 and 65:35, v/v). The KF values were 419 M−1 (50% MeOH) and 166 M−1 (65% MeOH) at 30 °C. The thermodynamic parameters of the complex in an aqueous MeOH medium indicated that this process is largely driven by enthalpy change (ΔH° = −27.25 kJ/mol and ΔS° = −45.12 J/K mol). The results of the study carried out with the PM6 semiempirical method showed that the energetically most favorable structure for the formation of the complex is the ‘head up’ orientation.  相似文献   

10.
The test fungus Trichoderma harzianum was isolated from the Western Ghats area of Tamilnadu, India. The study involves the feasibility of using T.harzianum to remove erioglaucine from an aqueous solution in batch mode. The batch mode experimental parameters such as effect of agitation time and initial dye concentration, adsorbent mass and pH were determined. The results revealed that, the fungal biomass at 1.5 g/50 ml adsorbent mass removed 75.67–88.05% of dye (10–50 mg/l) in 105 min at pH 4.0. The adsorption equilibrium data followed both Langmuir and Freundlich isotherms. From the Langmuir isotherm, the adsorbent had adsorption capacity (Q 0 ) of 3.09 mg/g. Pseudo first and second order rate kinetic equations were applied to the experimental adsorption data. The results indicate that the adsorbent system followed second order rate kinetics.  相似文献   

11.
In this study, a low-cost biosorbent, dead mushroom biomass (DMB) granules, was used for investigating the optimum conditions of Pb(II), Cu(II), and Ni(II) biosorption from aqueous solutions. Various physicochemical parameters, such as initial metal ion concentration, equilibrium time, pH value, agitation speed, particles diameter, and adsorbent dosage, were studied. Five mathematical models describing the biosorption equilibrium and isotherm constants were tested to find the maximum uptake capacities: Langmuir, Freundlich, Redlich-Peterson, Sips, and Khan models. The best fit to the Pb(II) and Ni(II) biosorption results was obtained by Langmuir model with maximum uptake capacities of 44.67 and 29.17 mg/g for these two ions, respectively, whereas for Cu(II), the corresponding value was 31.65 mg/g obtained with Khan model. The kinetic study demonstrated that the optimum agitation speed was 400 rpm, at which the best removal efficiency and/or minimum surface mass transfer resistance (MSMTR) was achieved. A pseudo-second-order rate kinetic model gave the best fit to the experimental data (R2 = 0.99), resulting in MSMTR values of 4.69× 10?5, 4.45× 10?6, and 1.12× 10?6 m/s for Pb(II), Cu(II), and Ni(II), respectively. The thermodynamic study showed that the biosorption process was spontaneous and exothermic in nature.  相似文献   

12.
13.
This work describes the potential applicability of chemically and thermally treated date stones for removing drin pesticides (aldrin, dieldrin and endrin) from aqueous solutions. The effect of several parameters, such as sorbent particle size, adsorbent dose, shaking speed, shaking time, concentration of pesticide solution and temperature, was evaluated by batch experiments. Pesticide determination was carried out using stir bar sorptive extraction and gas chromatography coupled with mass spectroscopy. Maximum removal efficiency (93%) was reached using 0.1 g of acid-treated date stones (ATDS) (63–100 μm) and 100 mL of aldrin (0.5 mg L−1). The removal efficiency of drin pesticides decreased in the order of aldrin, dieldrin and endrin, and decreased as the temperature rose. Adsorption data were processed according to various kinetic models. Lagergren and Morris-Weber equations were applied to fit the kinetic results. The second order model was the most suitable on the whole, and intra-particle diffusion was found to be the rate-controlling the adsorption process. According to adsorption kinetic data, 3.5 h were considered as the equilibrium time for determining adsorption isotherms. Adsorption data were analyzed by the Langmuir, Freundlich and Dubinin–Radushkevich adsorption approaches. Experimental results showed that the Freundlich isotherm model best described the adsorption process. In addition, thermodynamic parameters such as ΔH, ΔS and ΔG were calculated. Negative values of ΔH and ΔG indicate the exothermic and spontaneous nature of pesticide adsorption on ATDS.  相似文献   

14.
Chromium(VI) was removed from aqueous solution using sulfuric- and phosphoric-acid-activated Strychnine tree fruit shells (SSTFS and PSTFS) as biosorbents. Effects of various parameters such as adsorbent dose (0.02–0.1 g/L), temperature (303–333 K), agitation speed, solution pH (2–9), contact time, and initial Cr(VI) concentration (50–250 mg/L) were studied for a batch adsorption system. The optimum pH range for Cr(VI) adsorption was determined as 2. Equilibrium adsorption data were analyzed with isotherm models and the Langmuir and Freundlich models got best fitted values for SSTFS (R2 value – 0.994) and PSTFS (R2 value – 0.996), respectively. The maximum adsorption capacities of SSTFS and PSTFS were 100 and 142.85 mg/g, respectively. The biosorption process was well explained by pseudo-second-order kinetic model with higher R2 value (SSTFS – 0.996, PSTFS – 0.990) for both biosorbents. Characterization of biosorbents was done using Fourier transform infrared spectroscopy, scanning electron microscopy, elemental analysis, energy-dispersive X-ray analysis, and thermogravimetric analysis. Thermodynamic studies revealed the spontaneous, endothermic, and randomness in nature of the Cr(VI) adsorption process. Different concentrations of NaOH solutions were used to perform the desorption studies. The results demonstrated that both SSTFS and PSTFS can be used as an effective and low-cost biosorbent for removal of Cr(VI) from aqueous solutions.  相似文献   

15.
A novel magnetic nano-adsorbent was prepared by covalently binding polyacrylic acid (PAA) on Fe3O4 superparamagnetic nanoparticles (13.2 nm) via carbodiimide activation. The maximum weight ratio of PAA to Fe3O4 was 0.12 (i.e., average of two PAA molecules on a magnetic nanoparticle). The magnetic nano-adsorbent possessed a high ionic exchange capacity of 1.64 meq g–1 and was efficient for the recovery of lysozyme. The lysozyme could be completely adsorbed in 0.1 M phosphate buffer at pH 3–5 and completely desorbed in NaSCN solution (>1 M) within 1 min, and retained 95% activity after adsorption/desorption. In addition, the adsorption behavior followed the Langmuir adsorption isotherm with a maximum adsorption amount of 0.224 mg mg–1 and a Langmuir adsorption equilibrium constant of 10 ml mg–1 at 25 °C. The change of enthalpy at 15–35 °C was –4.2 kJ ml mol–1 mg–1.  相似文献   

16.
The adsorption behavior of drin pesticides from aqueous solution onto acid treated olive stones (ATOS) was investigated using stir bar sorptive extraction and gas chromatography coupled with mass spectroscopy. The effects of sorbent particle size, adsorbent dose, contact time, concentration of pesticide solution and temperature on the adsorption processes were systematically studied in batch shaking sorption experiments. Maximum removal efficiency (94.8%) was reached for aldrin (0.5 mg L−1) using the fraction 63–100 μm of ATOS (solid/liquid ratio: 1 g L−1). Experimental data were modeled by Langmuir, Freundlich and Dubinin–Radushkevich (D–R) isotherms. The Freundlich isotherm model (R2 = 0.98–0.99) fitted the equilibrium data better than the Langmuir and D–R isotherm models, with low sum of error values (SE = 1.4–9.2%). The mean adsorption free energy derived from the D–R isotherm model (R2 = 0.95–0.99) showed that the adsorption of drin pesticides was taken place by weak physical forces, such as van der Waals forces and hydrogen bonding. The calculated thermodynamic parameters, ΔH, ΔS and ΔG prove that drin pesticides adsorption on ATOS was feasible, spontaneous and exothermic under examined conditions. The pseudo first order, pseudo second order kinetic and the intra-particle diffusion models were used to describe the kinetic data and rate constants were evaluated.  相似文献   

17.
Fe3O4 (Fe3O4-CS) coated with magnetic chitosan was prepared as an adsorbent for the removal of Orange I from aqueous solutions and characterized by FTIR, XRD, SEM, TEM and TGA measurements. The effects of pH, initial concentration and contact time on the adsorption of Orange I from aqueous solutions were investigated. The decoloration rate was higher than 94% in the initial concentration range of 50–150 mg L−1 at pH 2.0. The maximum adsorption amount was 183.2 mg g−1 and was obtained at an initial concentration of 400 mg L−1 at pH 2.0. The adsorption equilibrium was reached in 30 minutes, demonstrating that the obtained adsorbent has the potential for practical application. The equilibrium adsorption isotherm was analyzed by the Freundlich and Langmuir models, and the adsorption kinetics were analyzed by the pseudo-first-order and pseudo-second-order kinetic models. The higher linear correlation coefficients showed that the Langmuir model (R2 = 0.9995) and pseudo-second-order model (R2 = 0.9561) offered the better fits.  相似文献   

18.
The kinetics of electron transfer from cytochrome c2 to the primary donor (P) of the reaction center from the photosynthetic purple bacterium Rhodobacter sphaeroides have been investigated by time-resolved absorption spectroscopy. Rereduction of P+ induced by a laser pulse has been measured at temperatures from 300 K to 220 K in a series of specifically mutated reaction centers characterized by altered midpoint redox potentials of P+/P varying from 410 mV to 765 mV (as compared to 505 mV for wild type). Rate constants for first-order electron donation within preformed reaction center–cytochrome c2 complexes and for the bimolecular oxidation of free cytochrome c2 have been obtained by multiexponential deconvolution of the kinetics. At all temperatures the rate of the fastest intracomplex electron transfer increases by more than two orders of magnitude as the driving force −ΔG° is varied over a range of 350 meV. The temperature and ΔG° dependences of the rate constant fit the Marcus equation well. Global analysis yields a reorganization energy λ = 0.96 ± 0.07 eV and a set of electronic matrix elements, specific for each mutant, ranging from 1.2 10−4 eV to 2.5 10−4 eV. Analysis in terms of the Jortner equation indicates that the best fit is obtained in the classical limit and restricts the range of coupled vibrational modes to frequencies lower than ∼200 cm−1. An additional slower kinetic component of P+ reduction, attributed to electron transfer from cyt c2 docked in a nonoptimal configuration of the complex, displays a Marcus type dependence of the rate constant upon ΔG°, characterized by a similar value of λ (0.8 ± 0.1 eV) and by an average electronic matrix element smaller by more than one order of magnitude. In all of the mutants, as the temperature is decreased below 260 K, both intracomplex reactions are abruptly inhibited, their rate being negligible at 220 K. The free energy dependence of the second-order rate constant for oxidation of cyt c2 in solution suggests that the collisional reaction is partially diffusion controlled, reaching the diffusion limit at exothermicities between 150 and 250 meV over the temperature range investigated.  相似文献   

19.
This paper provided information on the use of linear sweep anodic stripping voltammetry for evaluating the process of copper biosorption onto Pseudomonas aeruginosa. This technique was suited to determine the concentration of free copper ion on site on the mercaptoethane sulfonate modified gold electrode surface without any pretreatment. It was in favor of the study of kinetic process as the fast changing kinetic data characteristic just after the beginning of biosorption could be accurately depicted. Based on the electrochemical results, the kinetics and equilibrium of biosorption were systematically examined. The pseudo-second-order kinetic model was used to correlate the kinetic experimental data and the kinetic parameters were evaluated. The Langmuir and Freundlich models were applied to describe the biosorption equilibrium. It was found that the Langmuir isotherm fitted the experimental data better than the Freundlich isotherm. Maximum adsorption capacity of copper ion onto Pseudomonas aeruginosa was 0.9355 μmol mg−1 (about 59.4417 mg g−1).  相似文献   

20.
The study explores the adsorption potential of Chrysanthemum indicum biomass for nickel ion removal from aqueous solution. C. indicum flowers in raw (CIF-I) and biochar (CIF-II) forms were used as adsorbents in this study. Batch experiments were conducted to ascertain the optimum conditions of solution pH, adsorbent dosage, contact time, and temperature for varying initial Ni(II) ion concentrations. Surface area, surface morphology, and functionality of the adsorbents were characterized by Brunauer, Emmett, and Teller (BET) surface analysis, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier transform infrared spectroscopy (FTIR). Adsorption kinetics were modeled using pseudo-first order, pseudo-second order, Elovich, intraparticle diffusion, Bangham's, and Boyd's plot. The equilibrium data were modeled using Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich (D-R) isotherm models. Experimental data provided the best fit to pseudo-second-order kinetic model and Langmuir isotherm model for the adsorption of Ni(II) ion on both CIF-I and CIF-II with maximum adsorption capacities of 23.97 and 44.02 mg g?1, respectively. Thermodynamic analysis of the data proved the process to be spontaneous and endothermic in nature. Desorption studies were conducted to evaluate the possibility of reusing the adsorbents. Findings of the present study provide substantial evidence for the use of C. indicum flower as an eco-friendly and potential adsorbent for the removal of Ni(II) ions from aqueous solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号