首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ab initio RHF/4–31G molecular-orbital calculations have been conducted on methoxymethyl formate and methoxymethyl acetate as models for examining the anomeric effect and stereochemistry of 1-O-acetylglycopyranoses. The results indicate that, as with the methyl glycopyranosides, the α-4C1(D) configurations are more stable than the β-4C1(D), except that the energy difference is more dependent on the disposition about the glycosidic bond. The lowest-energy conformations occur with glycosidic torsion-angles of ?  180°, where the anomeric energy is about 4 kcal/mol. There is a secondary energy-minimum at ?  90°, for which the anomeric energy is less, about 2 kcal/mol. This orientation corresponds to the conformation most commonly observed in the crystal structures of peracetylated glycopyranoses. Small differences in the CO single-bond lengths, which are observed experimentally in both the α and β anomers, are reproduced by the theoretical calculations.  相似文献   

2.
The anomers of 1-O-n-octyl-D-glucopyranosides exhibit different crystal packing and thermodynamic properties. Crystallization either from solution or by epitaxy of the α-anomer resembles that of other amphiphiles, such as lysolecithin, and is isostructural to the decyl homologue. The β-anomer crystallizes into a unique form, independent of conditions, with the longest cyrstallographic axis parallel to the best developed crystal face. Both compounds exhibit two phase transitions, one near 70°C, the other above 100°C. The latter corresponds to melting to an isotropic liquid for both forms, but the former is distinctly different for the two anomers. Thus, birefringence is lost only with the β-anomer, while the enthalpy change is two-fold larger for the α-anomer. The crystal packing of the two compounds are thus clearly different.  相似文献   

3.
Lu Y  Guo J 《Carbohydrate research》2006,341(5):610-615
A single-crystal of SmCl3·C5H10O5·5H2O was obtained from methanol-water solution and its structure determined by X-ray. Two forms of the complex as a pair of anomers and related conformers were found in the single-crystal in a disordered state. One ligand is α-d-ribopyranose in the 4C1 conformation and the other one is β-d-ribopyranose. The anomeric ratio is 1:1. Both ligands provide three hydroxyl groups in ax-eq-ax orientation for coordination. The Sm3+ ion is nine-coordinated with five Sm-O bonds from water molecules, three Sm-O bonds from hydroxyl groups of the d-ribopyranose and one Sm-Cl bond. The hydroxyl groups, water molecules and chloride ions form an extensive hydrogen-bond network. The IR spectral C-C, O-H, C-O, and C-O-H vibrations were observed to be shifted in the complex and the IR results are in accord with those of X-ray diffraction.  相似文献   

4.
O-Peracetylated or -perbenzoylated C-(1-bromo-1-deoxy-d-glycopyranosyl)formamides of d-gluco, d-galacto, and d-arabino configuration were reacted with Ag(I)-salts or HgO in nitrile solvents to give N-acyl-1-cyano-d-glycopyranosylamines with an axial C–N bond at the anomeric centre. In the presence of HgBr2, Hg(CN)2, or InCl3 the anomer of the above glycosylamine with an equatorial C–N bond was also isolated or detected. In CH3NO2 solutions as few as 5–10 equiv of the nitrile were sufficient to get acceptable yields for the products. Under similar conditions N-substituted C-(2,3,4,6-tetra-O-acetyl-1-bromo-1-deoxy-β-d-galactopyranosyl)formamides gave anomeric spiro-oxazoline derivatives which, upon mild acidic hydrolysis, opened up to di- and tripeptides of anomeric α-amino acids.  相似文献   

5.
Treatment of α-L-fucose with sulfuryl chloride at low temperature gave mainly 2,3,4-tri-O-chlorosulfonyl-β-L-fucopyranosyl chloride (1) and a small proportion of the α-anomer (2). Both compounds adopt a 1C4 chair conformation. Methanolysis of 1 in the presence of silver carbonate and anhydrous calcium sulfate gave methyl 2,3,4-tri-O-chlorosulfonyl-α-L-fucopyranoside (the β-anomer being only present in small proportion), further converted into methyl α-L-fucopyranoside by treatment with a basic resin and a catalytic amount of sodium iodide. Methanolysis of 1 in the presence of sodium iodide gave directly methyl α-L-fucopyranoside, in a more rapid but less stereoselective way. Methanolysis of 2 in the presence of silver carbonate is very slow and gave, after removal of the chlorosulfonyl groups, methyl β-L-fucopyranoside with a rather poor stereoselectivity.  相似文献   

6.
We report herein the first crystal structures of (4-carboxy-1,3-thiazolidin-2-yl)pentitols [2-(polyhydroxyalkyl)thiazolidine-4-carboxylic acids], condensation products of l-cysteine with d-galactose and d-mannose: 2-(d-galacto-pentahydroxypentyl)thiazolidine-4-carboxylic acid hydrate, Gal-Cys·H2O (1), and 2-(d-manno-pentahydroxypentyl)thiazolidine-4-carboxylic acid hydrate, Man-Cys·H2O (2). In 1 and 2 the compounds crystallize as zwitterions, with the carboxylic groups deprotonated and the thiazolidine N atoms protonated. The sugar moiety and carboxylate group are in a cis configuration relative to the thiazolidinium ring, which adopts different conformation: twisted (T) on Cβ–S in 1, and S-puckered envelope (E) in 2. The carbon chain of the galactosyl/mannosyl moiety remains in an extended zig-zag conformation. The orientation of the sugar O2 atom with respect to the thiazolidinium S and N atoms is trans–gauche in 1 and gauche–gauche in 2. The molecular conformation is stabilized by the intramolecular N–H?OCys contacts in both 1 and 2 and by the additional N–H?OMan interaction in 2. The crystal packing of orthorhombic 1 and monoclinic 2 is determined mainly by N/O/C–H?O hydrogen bonds forming ribbons linked to each other by direct and water-mediated O/C–H?O/S contacts.  相似文献   

7.
The molecular and crystal structures of one derivative and three homopeptides (from the di-to the tetrapeptide level) of the chiral, Cα, α-disubstituted glycine Cα-methyl, Cα-benzylglycine [(αMe)Phe], have been determined by x-ray diffraction. The derivative is mClAc-D -(αMe)Phe-OH, and the peptides are pBrBz-[D -(αMe)Phe]2-NHMe, pBrBz-[D -(αMe)Phe]3-OH hemihydrate, and pBrBz-[D -(αMe)Phe]4-OtBu sesquihydrate. All (αMe)Phe residues prefer ?,ψ torsion angles in the helical region of the conformational map. The dipeptide methylamide and the tripeptide carboxylic acid adopt a β-turn conformation with a 1 ← 4 C?O…?H? N intramolecular H bond. The structure of the tripeptide carboxylic acid is further stabilized by a 1 ← 4 C?O…?H? O intramolecular H bond, forming an “oxy-analogue” of a β-turn. The tetrapeptide ester is folded in a regular (incipient) 310-helix. In general, the relationship between (αMe)Phe chirality and helix screw sense is opposite to that exhibited by protein amino acids. A comparison is made with the conclusions extracted from published work on homopeptides from other Cα-methylated α-amino acids. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
Abstract

The silylated pyrimidine bases IIa-d were condensed with the benzyl 3,5-di-O-benzyl-2-deoxy-1,4-dithio-d-erythro-pentofuranoside III in acetonitrile under activation by N-iodosuccinimide, giving ca 1.5: 1/α: β anomeric mixtures of the blocked nucleosides IVa-d and Va-d. in yields of 55–58%. After the separation on a silica column the pure anomers were deprotected by BCI3 or TiCI4, providing the free nucleosides VIa-d and VIIa,c,d in moderate to good overall yields. The β- or α-anomeric configuration, anti-glycosidic conformation and prevailing C2′endo(S) thiosugar pucker in the synthesized compounds were established by the combined use of the 1H, 13C NMR and X-ray crystallography.

  相似文献   

9.
The σ-charges on various atoms of methyl glycosides have been computed by using the MO-LCAO method of Del Re. The potential and free energies of methyl aldohexopyranosides and methyl aldopentopyranosides in their C1(d) and 1C(d) conformations have been calculated. Minimization of the energies of these conformations has been studied by suitably tilting the axial C-C and C-O bonds. Considerable release of strain is achieved when tilts of 4.5 and 3° are given to the axial hydroxymethyl and hydroxyl groups, respectively, that are involved in Hassel-Ottar effect. A tilt of 3° is also found necessary for the axial OMe group involved in the Hassel-Ottar effect. The calculated free-energy values are in accord with experimental ones, after adding a value of 0.8 kcal.mole?1 for the anomeric effect of -OMe group. These studies predict that all of the methyl aldohexopyranosides, except methyl α-d- and methyl β-d-idopyranosides, favour the C1 conformation. On the other hand, the energy calculations also predict that, of the eight methyl aldopentopyranosides studied, only methyl α-d- and methyl β-d-xylopyranosides and methyl α-d -ribopyranoside favour the C1(d) conformation; for the other pentopyranosides, considerable amounts of both C1(d) and 1C(d) conformations are present in the equilibrium mixture. The calculated values of the percentage of α-anomer present in the equilibrium mixture agree fairly well with those obtained experimentally.  相似文献   

10.
The effects of adding D2SO4, and p-toluenesulfonic acid-d to D-cellobiose dissolved in D2O were investigated at 23 °C by plotting 13C NMR chemical shift changes (Δδ) against the acid to D-cellobiose molar ratio. 13C Chemical shifts of all 18 carbon signals from α and β anomers of D-cellobiose showed gradual decreases due to increasing acidity in aqueous D2SO4 medium. The C-1 of the α anomer showed a slightly higher response to increasing D+ concentration in the surrounding. In the aqueous p-toluenesulfonic acid-d medium, C-6′ and C-4′ carbons of both α, and β anomeric forms of D-cellobiose are significantly affected by increasing the sulfonic acid concentrations, and this may be due to a 1:1 interaction of p-toluenesulfonic acid-d with the C-6′, C-4′ region of the cellobiose molecule.  相似文献   

11.
The Fourier transform 13C magnetic resonance spectra of D-fructose 6-phosphate (F6P) and D-fructose 1,6-diphosphate (FDP) were obtained. The signal assignments made on the basis of 13C chemical shifts and 13C-31P spin-spin couplings indicate that the earlier assignments of the C-4 and C-5 resonances of α- and β-fructofuranose in oligosaccharides and D-fructose [Allerhand, A. and Doddrell, D., J. Amer. Chem. Soc., 93, 2777, 2779 (1971)] should be reversed. Integration of signal intensities yields the following equilibrium composition at 35°C: F6P, α-anomer 19±2% and β-anomer 81±2%, FDP, α-anomer 23±4% and β-anomer 77±4%. Less than 1.5% keto or hydrated keto form is present in solutions of either fructose phosphate. The bearing of these findings on the tautomeric specificity of phosphofructokinase is discussed.  相似文献   

12.
α, β-Dehydroamino acids are expected to provide conformational constraint to the peptide backbone. A pentapeptide containing two dehydrophenylalanines (ΔZPhe) separated by one L -amino acid has been synthesized and its solid state conformation determined. The pentapeptide, Boc-Gly-ΔZPhe-Leu-ΔZPhe-Ala-NHCH3, crystallizes from aqueous methanol in the orthorhombic space group P212121. There are four formula units, C35H46N6O7, in a unit cell of dimensions a = 10.155(3), b = 15.175(1), and c = 23.447(2) Å, at room temperature. The structure was solved by direct methods program, SIR88, and refined to a final R = 0.038 based on 3049 reflections with I > 2σ(I). All the peptide links are trans and the backbone conformation of the pentapeptide can be described as a 310-helix, with mean ?, ψ values of ?65.1° and ?22.8° (the value is averaged over the first four residues). There are four intramolecular 4 → 1 type hydrogen bonds characteristic of 310-type helices. In the crystal, the helices are held together by intermolecular N? H…?O?C head-to-tail and lateral hydrogen bonding between symmetry related molecules. This mode of packing is similar to the packing motifs observed so often in other oligopeptides that adopt a 310-helical structure. © 1993 John Wiley & Sons, Inc.  相似文献   

13.
The crystal structure of α-D-Manp-(1→3)-β-D-Manp-(1→4)-α-D-GlcNAcp has been determined by the direct method using the multi-solution, tangent formula, and “magic integer” procedures. The space group is P22, and 2 molecules are in the unit cell with a  9.894 (5), b  10.372 (6), c  11.816 (6) Å, and β  95.03° (6). The structure was refined to R 0.059 for 2099 reflections measured with Mo Kα radiation. Difference synthesis showed all the hydrogen atoms, and indicated a partial (~30%) substitution of the α-anomer molecules by the β-anomer molecules. The D-mannopyranose and the D-glucopyranose have the normal 4C1 conformation; an intramolecular hydrogen-bond O-3″-H.....O-5′ (2.703 Å) stabilises the GlcNAc in relation to β-D-mannopyranose.  相似文献   

14.
A NMR method related to 2D CH correlation with an additional double quantum filter for 31P spin coupling was employed to follow the reaction kinetics of the two anomers of glucose during phosphorylation catalyzed by the enzyme yeast hexokinase. The kinetic parameters according to Michaelis–Menten for these reactions have been determined and it is shown that the β-anomer of glucose is phosphorylated faster by a factor of 1.4 versus the α-anomer. Use of human liver glucokinase as an enzyme yields more complex kinetics.  相似文献   

15.
Condensation between unprotected aldoses and dibenzoylmethane catalyzed by NaHCO3 in the cosolvents EtOH and H2O (4:1) under microwave irradiation gave aryl ketone β-C-glycosides 6bi in higher yields (from 50% with C-riboside 6g up to 99% with C-glucoside 6b) and better anomeric selectivities (β-configuration >95%) in a shorter reaction time (90 min), compared with previous conventional methodologies. This method provides an attractive alternative to the existing means for the preparation of high value ketone β-C-glycosides.  相似文献   

16.
A series of peracetylated O-aryl α,β-d-ribofuranosides have been synthesized and an efficient biocatalytic methodology has been developed for the separation of their anomers which was otherwise almost impossible by column chromatographic or other techniques. The incubation of 2,3,5-tri-O-acetyl-1-O-aryl-α,β-d-ribofuranoside with Lipozyme® TL IM immobilized on silica led to the selective deacetylation of only one acetoxy group, viz the C-5′-O-acetoxy group of the α-anomer over the other acetoxy groups derived from the two secondary hydroxyl groups present in the molecule and also over three acetoxy groups (derived from one primary and two secondary hydroxyls of the β-anomer). This methodology led to the easy synthesis of both, α- and β-anomers of O-aryl d-ribofuranosides. All the arylribofuranosides were screened for inhibition of Src kinase. 1-O-(3-Methoxyphenyl)-β-d-ribofuranoside exhibited the highest activity for inhibition of Src kinase (IC50 = 95.0 μM).  相似文献   

17.
Endo–1,4-β-mannanases (β-mannanases) randomly hydrolyse the mannosidic bonds within the main chain of various mannans and heteromannans. Some of these polysaccharides are hemicelluloses, a major part of the plant cell-wall. The β-mannanases have been assigned to family 5 and 26 of the glycoside hydrolase clan A. This work presents a detailed kinetic analysis of the family 26 β-mannanase CfMan26A from the soil-bacterium Cellulomonas fimi. The full-length enzyme consists of five modules: a family 26 catalytic module, an immunoglobulin-like module, a mannan-binding module, a surface layer homology-module and a module of unknown function. A truncated variant consisting of the catalytic module and the immunoglobulin-like module was used in these studies. The degradation of mannotriose, mannotetraose and mannopentaose was studied by 1H-NMR. First, the mutarotation of one of the hydrolysis products (mannose) was determined to be 1.7 10?5s?1 at 5°C and pH 5.0. As expected for a family 26 glycoside hydrolase, the hydrolysis was shown to proceed with overall retention of the anomeric configuration. Many ‘retaining’ enzymes can perform transglycosylation reactions. However, no transglycosylation could be detected. Kinetic constants were calculated from progress curves using computer simulation. It was revealed that the ?3 subsite had a greater impact on the apparent kcat/Km ratio (the catalytic efficiency) than the +2 subsite. The β-anomer of mannotriose was hydrolysed 1000-times more efficiently than the α-anomer indicating selectivity for the β- over the α-anomer in the +1 subsite. With background information from the previous published 3D-structure of the truncated variant of Man26A, a structural explanation for the observations is discussed.  相似文献   

18.
The crystal structures of α-d-glucopyranosyl β-d-psicofuranoside and α-d-galactopyranosyl β-d-psicofuranoside were determined by a single-crystal X-ray diffraction analysis, refined to R1 = 0.0307 and 0.0438, respectively. Both disaccharides have a similar molecular structure, in which psicofuranose rings adopt an intermediate form between 4E and 4T3. Unique molecular packing of the disaccharides was found in crystals, with the molecules forming a layered structure stacked along the y-axis.  相似文献   

19.
Examination of a variety of arabinose containing C-glycosylflavones has shown that the sign and intensity of the CD band at 250–275 nm (charge-transfer band) reflect not only the point of attachment of the sugar to the flavone but also depend upon the absolute and anomeric configuration, ring-size and ring-conformation in addition to the preferred rotameric conformation of the sugar about the C-aryl, C-l″ bond. A change in stereochemistry of arabinose from the α to β anomer resulted in sign inversion of the 250–275 nm CD band for 6-C-l-arabinosylflavones. Furthermore, a 6-C-arabinosylflavone containing α-l-arabinose exhibited an oppositely signed charge-transfer CD band in comparison to one which contained α-d-arabinose. 6,8-Di-C-glycosylflavones containing arabinose and glucose exhibited CD bands resulting from contributions due to both sugars, if the arabinose was not present as the β-pyranose form (1C4, conformation).  相似文献   

20.
We report on a 13C NMR and a single-crystal X-ray diffraction study of N-(1-deoxy-β-d-fructopyranos-1-yl)-N-allylaniline (d-fructose-N-allylaniline). In solution, an equilibrium of α-pyranose, β-pyranose, α-furanose, β-furanose, and acyclic keto tautomers of the carbohydrate was detected in the following respective proportions: 2.2%, 47.4%, 4.5%, 33.6%, and 12.3%. In the crystalline state, the compound exists exclusively as the β-pyranose form, in the normal 2C5 chair conformation. Bond lengths and valence angles compare well with the average values from a number of β-fructopyranose derivatives. The structure displays two unusual features for this class of compounds. First, the molecule assumes an eclipsed conformation around the C1-C2 bond, apparently stabilized by an intramolecular O2-H···N hydrogen bond. Second, the O3, O4, and O5 hydroxyl groups are involved in an intermolecular hydrogen bonding, which forms 12-membered homodromic cycles. In the cycles, each determined hydrogen atom site is half occupied, possibly due to the ···H-O···H-O··· ? ···O-H···O-H··· flip-flop type disorder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号