首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The combination of the pH-metric and NMR studies is used to examine the stabilities and coordination modes as well as related structural aspects of zinc(II), magnesium(II) and calcium(II) complexation to piperyd-1-yl-methane-1,1-diphosphonic acid (1) and its derivatives containing a topologically modified piperidine ring (2-7). The studied compounds coordinate metal ions exclusively via the phosphonate functions with a nitrogen atom remaining protonated over the whole range of studied pH. Compounds 1-6 readily form soluble multinuclear complexes of type [M(3)(HL)(2)] and [M(3)(HL)(3)](3-) with Zn(2+) or [M(2)(H(2)L)(2)] with Ca(2+) and Mg(2+). These species are formed based on dimers consisting of two head-to-head arranged molecules linked by strong symmetrical hydrogen bonds. The placement of the two methyl groups at 2- and 6-positions on the piperidine ring precludes the molecular recognition via similar hydrogen bonds and accounts for different complexation properties of 7 compared to 1-6. The role that the metal coordination plays on conformation dynamics in 1-7 is also discussed.  相似文献   

2.
A procedure for the preparation of the fully reduced Cu(I) form of galactose oxidase, GOase(red), involving reduction of GOase(semi) (or GOase(ox)) with non-coordinating [Ru(NH(3))(6)](2+) (51 mV vs. nhe) is described. Air-free conditions and a two-fold excess of [Ru(NH(3))(6)](2+) give a stable product with no further UV-Vis changes over >1.5 h. Rate constants for the reduction of GOase(semi) (k(f)=860 M(-1) s(-1)) give a first-order [H(+)]-dependence (pK(1a)=7.9), but the reverse process involving [Ru(NH(3))(6)](3+) oxidation of GOase(red) (k(b)=18.6 M(-1) s(-1)) is independent of pH (5.5 to 9.5). The reduction potential E(2)(o)' (vs. nhe) for the GOase(semi)/GOase(red) (i.e. Cu(II)/Cu(I)) couple is 149 mV at pH 7.5, which varies from 160 mV (pH 5.5) to 120 mV (pH 10.5), suggesting pK(1a) (GOase(semi)) and pK(2a) (GOase(red)) acid dissociation constants both involving Tyr-495. It is concluded that pK(2a) is for acid dissociation of uncoordinated H(+)Tyr-495. Consistent with this interpretation rate constants/M(-1) s(-1) for the GOase(semi) Tyr495 Phe variant, k(f)=1.59x10(3) and k(b)=16.1, respectively, are independent of pH and give a reduction potential of 169 mV. Comparisons are made of reduction potentials (E(1)(o)'/mV pH 7.5) for the GOase(ox)/GOase(semi) (i.e. Tyr(.)/Tyr) couple, and are for the Cys228Gly variant (630), for enzyme with N(3)(-) for H(2)O at the substrate binding exogenous site (393), and for apo-protein (570). These compare with previously reported values for the variants Trp290His (730) and Tyr495Phe (450), and together serve to quantify different contributions to the unusually small E(1)(o)' of 400 mV for the Tyr(.)/Tyr couple. At pH 7.5 the reduction potential for the two-equivalent GOase(ox)/GOase(red) couple is calculated to be 275 mV. The rate constant for the reaction of GOase(red) with GOase(ox) is 4.4x10(3) M(-1) s(-1) at pH 7.5.  相似文献   

3.
Mucoid exopolysaccharide (MEP) obtained from Pseudomonas aeruginosa 579 was suspended in 10 mM N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) pH 7.2 containing 0.1-10.0 mM of CaCl2.2H2O or MgCl2.4H2O. MEP treated with HEPES or < 5.0 mM of the Ca2+ or Mg2+ salts remained soluble and bound tobramycin in an equilibrium dialysis bioassay. MEP treated with 5.0 or 10.0 mM of the Ca2+ or Mg2+ salts did not bind tobramycin. Five and 10 mM Ca(2+)-treated MEP precipitated but Mg(2+)-treated MEP did not. Pseudomonas aeruginosa 579 biofilms formed using a defined growth medium having < 1 mM Ca2+ or Mg2+ were treated for 1 h with 10 mM HEPES +/- 5.0 mM CaCl2.2H2O or MgCl2.4H2O, prior to an 8-h exposure to HEPES, or the defined growth medium, +/- 125 micrograms/mL of tobramycin. The tobramycin kill kinetics for the HEPES-, Mg(2+)-, and Ca(2+)-treated biofilms were similar and gradual from T = 0-6 h. The viability of the HEPES- and Mg(2+)-treated populations declined sharply (from 6 to 8 h). Bacteria dispersed from the MEP in control biofilms at 0 and 8 h did not grow in the presence of 7.81 micrograms/mL of tobramycin. Thus, binding of tobramycin of P. aeruginosa 579 MEP may not be as influential to the impediment of tobramycin diffusion as is the steric hindrance imposed by the Ca2+ condensation of the polymer.  相似文献   

4.
The formation and stability of Mg(2+) and Ca(2+)-phytate complexes was studied potentiometrically using an ISE-H(+) electrode. Measurements were performed at 10 degrees C and 25 degrees C in NaCl(aq) in the ionic strength range 0.1< or =I< or =0.75 mol L(-1). For both magnesium and calcium systems, the formation of ten M(i)PhyH(j)((12-2i-j)-) species was observed in the range 3< or =pH< or =7 with i=1, 2, 3 and j=3, 4, 5 (and i=3, j=2). These species are quite stable; here we report for example some quantitative data for the species Ca(i)PhyH(3)((9-2i)-), i=1, 2, 3 (equilibrium iCa(2+)+H(j)Phy((12-j)-)=Ca(i)PhyH(j)((12-j-2i)-): K(ij)) at I=0.25 mol L(-1) and t=25 degrees C: logK(13)=3.42, logK(23)=6.47 and logK(33)=9.41. The speciation of the Ca(2+)-phytate system was also checked by ISE-Ca(2+) measurements. Dependence on ionic strength was modeled using a simple Debye-Hückel type equation and formation constants were calculated at infinite dilution. The stability constants of complexes formed at pH>7 were estimated using an empirical predictive equation. The sequestering ability of phytate towards Mg(2+) and Ca(2+) was calculated in different experimental conditions and compared with those of other chelating agents.  相似文献   

5.
6.
A speciation study was carried out in aqueous solution of the anti-inflammatory drug tenoxicam (Htenox), under quasi-physiological conditions (temperature of 37 degrees C and ionic strength 0.15 M NaCl) in order to determine the acidity constants from spectrophotometric studies, the pK(a) values found being pK(1)=1.143+/-0.008 and pK(2)=4.970+/-0.004. Subsequently, the spectrophotometrical speciation of the different complexes of Cu(II) with the drug was performed under the same conditions of temperature and ionic strength, observing the formation of Cu(Htenox)(2)(2+) with log beta(212)=20.05+/-0.01, Cu(tenox)(2) with log beta(012)=13.6+/-0.1, Cu(Htenox)(2+) with log beta(111)=10.52+/-0.08, as well as Cu(tenox)(+) with log beta(011)=7.0+/-0.2, all of them in solution, and solid species Cu(tenox)(2)(s) with an estimated value of log beta(012)(s) approximately 18.7. The crystalline structure of the complex [Cu(tenox)(2)(py)(2)]. EtOH, was also determined, and it was observed that tenoxicam employs the oxygen of the amide group and the pyridyl nitrogen to bond to the cation.  相似文献   

7.
A spectroscopic study was performed showing that the [Fe(III)(L(2-))(2)](1-) (L(2-)=dopacatecholate) complex reacts with Ni(II), Co(II) and Zn(II) in an aqueous solution containing S(2)O(3)(2-) resulting in the soluble [M(L(1-))(3)](1-) (L(1-)=dopasemiquinone; M=Ni(II), Co(II) or Zn(II) complex species. The Raman and IR spectra of the [CTA][M(L(1-))(3)] complexes, CTA=hexadecyltrimethylammonium cation, in the solid state were obtained. The kinetic constants for the metal substitution reactions were determined at four different temperatures, providing values for DeltaH(not equal), DeltaS(not equal) and DeltaG(not equal). The reactions were slow (k=10(-11) Ms(-1)) and endothermic. The system investigated can be considered as a simplified model to explain some aspects of siderophore chemistry.  相似文献   

8.
9.
Using the low-affinity fluorescent Ca(2+) indicators, Mag-Fura-2 and Mag-Fura Red, we studied light- and InsP(3)-induced Ca(2+) release in permeabilized microvillar photoreceptors of the medicinal leech, Hirudo medicinalis. Two major components of the phosphoinositide signaling pathway, phospholipase-C and the InsP(3) receptor, were characterized immunologically and appropriately localized in photoreceptors. Whereas phospholipase-C was abudantly expressed in photoreceptive microvilli, InsP(3) receptors were found mostly in submicrovillar endoplasmic reticulum (SER). Permeabilization of the peripheral plasma membrane with saponin allowed direct measurements of luminal free Ca(2+) concentration (Ca(L)) changes. Confocal Ca(2+) imaging using Mag-Fura Red demonstrated that Ins(1,4,5)P(3) mobilizes Ca(2+) from SER. As detected with Mag-Fura-2, a brief 50ms light flash activated rapid Ca(2+) depletion of SER, followed by an effective refilling within 1min of dark adaptation after the light flash. Sensitivity to Ins(1,4,5)P(3) of the Ca(2+) release from SER in leech photoreceptors was accompanied by irreversible uncoupling of phototransduction from Ca(2+) release. Depletion of Ca(2+) stores was induced by Ins(1,4,5)P(3)(EC(50)= 4.75 microM) and the hyper-potent agonist adenophostin A (EC(50)/40nM) while the stereoisomer L-myo Ins(1,4,5)P(3) was totally inactive. Ins(1,4,5)P(3)- or adenophostin A-induced Ca(2+) release was inhibited by 0.1-1mg/ml heparin. The Ca(2+) pump inhibitors, cyclopiazonic acid and thapsigargin, in the presence of Ins(1,4,5)P(3), completely depleted Ca(2+) stores in leech photoreceptors.  相似文献   

10.
The antitumor antibiotic Altromycin H was studied using electronic absorption (UV-Vis.) and circular dichroism (CD) spectroscopy. The dissociation constants of the phenolic groups on C(5) and C(11) were estimated as pK(1)=6.7 and pK(2)=11.8 at 25 degrees C, respectively, and a complete assignment of the CD and UV-Vis. bands is proposed. The interaction of Cu(II) ions with the Altromycin H has been also investigated by UV-Vis., CD and electron paramagnetic resonance (EPR) spectroscopy. A pH depended stepwise complex formation was observed. At pH<4 no copper-Altromycin H interactions were detected. At the 4相似文献   

11.
The effects of Mg(2+) on reactive oxygen species (ROS) and cell Ca(2+) during reoxygenation of hypoxic rat cardiomyocytes were studied. Oxidation of 2',7'-dichlorodihydrofluorescein (DCDHF) to dichlorofluorescein (DCF) and of dihydroethidium (DHE) to ethidium (ETH) within cells were used as markers for intracellular ROS levels and were determined by flow cytometry. DCDHF/DCF is sensitive to H(2)O(2) and nitric oxide (NO), and DHE/ETH is sensitive to the superoxide anion (O(2)(-).), respectively. Rapidly exchangeable cell Ca(2+) was determined by (45)Ca(2+) uptake. Cells were exposed to hypoxia for 1 h and reoxygenation for 2 h. ROS levels, determined as DCF fluorescence, were increased 100-130% during reoxygenation alone and further increased 60% by increasing extracellular Mg(2+) concentration to 5 mM at reoxygenation. ROS levels, measured as ETH fluorescence, were increased 16-24% during reoxygenation but were not affected by Mg(2+). Cell Ca(2+) increased three- to fourfold during reoxygenation. This increase was reduced 40% by 5 mM Mg(2+), 57% by 10 microM 3,4-dichlorobenzamil (DCB) (inhibitor of Na(+)/Ca(2+) exchange), and 75% by combining Mg(2+) and DCB. H(2)O(2) (25 and 500 microM) reduced Ca(2+) accumulation by 38 and 43%, respectively, whereas the NO donor S-nitroso-N-acetyl-penicillamine (1 mM) had no effect. Mg(2+) reduced hypoxia/reoxygenation-induced lactate dehydrogenase (LDH) release by 90%. In conclusion, elevation of extracellular Mg(2+) to 5 mM increased the fluorescence of the H(2)O(2)/NO-sensitive probe DCF without increasing that of the O(2)(-).-sensitive probe ETH, reduced Ca(2+) accumulation, and decreased LDH release during reoxygenation of hypoxic cardiomyocytes. The reduction in LDH release, reflecting the protective effect of Mg(2+), may be linked to the effect of Mg(2+) on Ca(2+) accumulation and/or ROS levels.  相似文献   

12.
The thionucleoside 2-thiocytidine (C2S) occurs in nature in transfer RNAs; it receives attention in diverse fields like drug research and nanotechnology. By potentiometric pH titrations we measured the acidity constants of H(C2S)(+) and the stability constants of the M(C2S)(2+) and M(C2S-H)(+) complexes (M(2+) = Zn(2+), Cd(2+)), and we compared these results with those obtained previously for its parent nucleoside, cytidine (Cyd). Replacement of the (C2)=O unit by (C2)=S facilitates the release of the proton from (N3)H(+) in H(C2S)(+) (pK (a) = 3.44) somewhat, compared with H(Cyd)(+) (pK (a) = 4.24). This moderate effect of about 0.8 pK units contrasts with the strong acidification of about 4 pK units of the (C4)NH(2) group in C2S (pK (a) = 12.65) compared with Cyd (pK (a) approximately 16.7); the reason for this result is that the amino-thione tautomer, which dominates for the neutral C2S molecule, is transformed upon deprotonation into the imino-thioate form with the negative charge largely located on the sulfur. In the M(C2S)(2+) complexes the (C2)S group is the primary binding site rather than N3 as is the case in the M(Cyd)(2+) complexes, though owing to chelate formation N3 is to some extent still involved in metal ion binding. Similarly, in the Zn(C2S-H)(+) and Cd(C2S-H)(+) complexes the main metal ion binding site is the (C2)S(-) unit (formation degree above 99.99% compared with that of N3). However, again a large degree of chelate formation with N3 must be surmised for the M(C2S-H)(+) species in accord with previous solid-state studies of related ligands. Upon metal ion binding, the deprotonation of the (C4)NH(2) group (pK (a) = 12.65) is dramatically acidified (pK (a) approximately 3), confirming the very high stability of the M(C2S-H)(+) complexes. To conclude, the hydrogen-bonding and metal ion complex forming capabilities of C2S differ strongly from those of its parent Cyd; this must have consequences for the properties of those RNAs which contain this thionucleoside.  相似文献   

13.
We studied the effects of increased Ca(2+) influx on alpha(1)-adrenoceptor-stimulated InsP formation in adult rat cardiac myocytes. We further examined if such effects could be mediated through a specific alpha(1)-adrenoceptor subtype. [(3)H]InsP responses to adrenaline were dependent on extracellular Ca(2+) concentration, from 0.1 microM to 2 mM, and were completely blocked by Ca(2+) removal. However, in cardiac myocytes preloaded with BAPTA, a highly selective calcium chelating agent, Ca(2+) concentrations higher than 1 microM had no effect on adrenaline-stimulated [(3)H]InsP formation. Taken together these results suggest that [(3)H]InsP formation induced by alpha(1)-adrenergic stimulation is in part mediated by increased Ca(2+) influx. Consistent with this, ionomycin, a calcium ionophore, stimulated [(3)H]InsP formation. This response was additive with the response to adrenaline stimulation implying that different signaling mechanisms may be involved. In cardiac myocytes treated with the alpha(1B)-adrenoceptor alkylating agent, CEC, [(3)H]InsP formation remained unaffected by increased Ca(2+) concentrations, a pattern similar to that observed when intracellular Ca(2+) was chelated with BAPTA. In contrast, addition of the alpha(1A)-subtype antagonist, 5'-methyl urapidil, did not affect the Ca(2+) dependence of [(3)H]InsP formation. Neither nifedipine, a voltage-dependent Ca(2+) channel blocker nor the inorganic Ca(2+) channel blockers, Ni(2+) and Co(2+), had any effect on adrenaline stimulated [(3)H]InsP, at concentrations that inhibit Ca(2+) channels. The results suggest that in adult rat cardiac myocytes, in addition to G protein-mediated response, alpha(1)-adrenergic-stimulated [(3)H]InsP formation is activated by increased Ca(2+) influx mediated by the alpha(1B)-subtype.  相似文献   

14.
A soluble F(1)-ATPase was isolated from the mitochondria of crayfish (Orconectes virilis) gill tissue. The maximal mitochondrial disruption rate (95%) was obtained by sonicating for 4 min at pH 8.6. A 15-fold purification was estimated. The properties for both soluble and membrane-bound enzyme were studied. Both enzyme forms were stable at 4 to -70 degrees C when kept in 20% glycerol. Soluble F(1)-ATPase was more stable at room temperature than membrane-bound enzyme. It displayed a narrower pH profile (pK(1) =6.58, pK(2)=7.68) and more acid pH optimum (7.13) than membrane-bound enzyme (pK(1)=6.42, pK(2)=8.55, optimum pH 7.49). The anion-stimulated activities were in the order HCO(3)(-)>SO(4)(2-)>Cl(-). The apparent K(a) values for soluble enzyme were 11.4, 11.2, and 10.9 mM, respectively, but the K(a) of HCO(3)(-) for membrane-bound enzyme (14.9 mM) was higher than for soluble enzyme. Oligomycin and DCCD inhibited membrane-bound F(1)-ATPase with I(50) of 18.6 ng/ml and 2.2 microM, respectively, but were ineffective in inhibiting soluble enzyme. Both enzyme forms shared identical sensitivity to DIDS (I(50)=12.5 microM) and vanadate (I(50)=9.0 mM). Soluble ATPase was significantly more sensitive to pCMB (I(50)=0.15 microM) and NO(3)(-) (I(50)=28.6 mM) than membrane-bound enzyme (I(50)=1.04 microM pCMB and 81.5 mM NO(3)(-)). In addition, soluble F(1)-ATPase was slightly more sensitive to azide (I(50)=91.8 microM) and NBD-Cl (I(50)=9.18 microM) than membrane-bound enzyme (I(50)=111.6 microM azide and 12.88 microM NBD-Cl). These data suggest a conformational change transmission between F(0) and F(1) sectors and slight conformational differences between soluble F(1) and membrane-bound F(1). In addition, an unmodified F(0) stabilizes F(1) and decreases F(1) sensitivities to inhibitors and modulators.  相似文献   

15.
The new compound trimethylene-N(6),N(6')-bisadenine (L), in which two adenine molecules are linked together by a trimethylene bridge that connects the N(6) atoms, has been prepared. Reaction of L with HgCl(2) and ZnCl(2) in concentrated HCl solution leads to crystalline solids. The X-ray characterisation of the Hg(II) complex (H(2)L)[HgCl(4)].3H(2)O reveals that it is an outer-sphere complex in which the ligand is protonated at N(1) and N(1'). In contrast, the structure of the complex [H(2)L(ZnCl(3))(2)].2H(2)O shows the ligand co-ordinated to two different Zn(II) ions through the N(7) of both adenine fragments, the protons being located on the N(1) atoms. The latter compound constitutes the first crystallographic evidence of an inner sphere complex with bis-adenines and, for this reason, an equilibrium study was carried out on the Zn(II)-L-H(+) system. Potentiometric studies indicate that L is protonated in aqueous solution to form HL(+) and H(2)L(2+) with logK(H) values of 4.42 and 3.35 (25 degrees C, 0.10 M KNO(3)). The data from potentiometric titrations in the presence of Zn(2+) can be analysed considering the formation of the species LZn(2+), HLZn(3+), LZn(2)(4+) and HLZn(2)(5+), whose stability constants exceed the value expected for a monodentate interaction of the metal ion with adenine and suggest the possibility of a polydentate behaviour of L in the pH range 2.5-5.0. In contrast, spectrophotometric titrations carried out under conditions similar to those used in the synthetic work (1 M HCl) can be fitted with a model involving exclusively the H(2)LZn(4+) and H(2)LZn(2)(6+) species with logK(M) values reasonable for the interaction of Zn(II) with the N(7) of the protonated adenine fragments. Despite the H(2)LZn(2)(6+) species has a low stability, the spectrophotometric results are in agreement with its formation under the conditions in which the solid complex was prepared.  相似文献   

16.
The ubiquitous inositol 1,4,5-trisphosphate (InsP(3)) receptor (InsP(3)R) channel, localized primarily in the endoplasmic reticulum (ER) membrane, releases Ca(2+) into the cytoplasm upon binding InsP(3), generating and modulating intracellular Ca(2+) signals that regulate numerous physiological processes. Together with the number of channels activated and the open probability of the active channels, the size of the unitary Ca(2+) current (i(Ca)) passing through an open InsP(3)R channel determines the amount of Ca(2+) released from the ER store, and thus the amplitude and the spatial and temporal nature of Ca(2+) signals generated in response to extracellular stimuli. Despite its significance, i(Ca) for InsP(3)R channels in physiological ionic conditions has not been directly measured. Here, we report the first measurement of i(Ca) through an InsP(3)R channel in its native membrane environment under physiological ionic conditions. Nuclear patch clamp electrophysiology with rapid perfusion solution exchanges was used to study the conductance properties of recombinant homotetrameric rat type 3 InsP(3)R channels. Within physiological ranges of free Ca(2+) concentrations in the ER lumen ([Ca(2+)](ER)), free cytoplasmic [Ca(2+)] ([Ca(2+)](i)), and symmetric free [Mg(2+)] ([Mg(2+)](f)), the i(Ca)-[Ca(2+)](ER) relation was linear, with no detectable dependence on [Mg(2+)](f). i(Ca) was 0.15 +/- 0.01 pA for a filled ER store with 500 microM [Ca(2+)](ER). The i(Ca)-[Ca(2+)](ER) relation suggests that Ca(2+) released by an InsP(3)R channel raises [Ca(2+)](i) near the open channel to approximately 13-70 microM, depending on [Ca(2+)](ER). These measurements have implications for the activities of nearby InsP(3)-liganded InsP(3)R channels, and they confirm that Ca(2+) released by an open InsP(3)R channel is sufficient to activate neighboring channels at appropriate distances away, promoting Ca(2+)-induced Ca(2+) release.  相似文献   

17.
Modulation of the type 1 inositol (1,4,5)-trisphosphate receptors (InsP(3)R1) by cytosolic calcium (Ca(2+)) plays an essential role in their signaling function, but structural determinants and mechanisms responsible for the InsP(3)R1 regulation by Ca(2+) are poorly understood. Using DT40 cell expression system and Ca(2+) imaging assay, in our previous study we identified a critical role of E2100 residue in the InsP(3)R1 modulation by Ca(2+). By using intrinsic tryptophan fluorescence measurements in the present study we determined that the putative InsP(3)R1 Ca(2+)-sensor region (E1932-R2270) binds Ca(2+) with 0.16 micro M affinity. We further established that E2100D and E2100Q mutations decrease Ca(2+)-binding affinity of the putative InsP(3)R1 Ca(2+)-sensor region to 1 micro M. In planar lipid bilayer experiments with recombinant InsP(3)R1 expressed in Spodoptera frugiperda cells we discovered that E2100D and E2100Q mutations shifted the peak of the InsP(3)R1 bell-shaped Ca(2+) dependence from 0.2 micro M to 1.5 micro M Ca(2+). In agreement with the biochemical data, we found that the apparent affinities of Ca(2+) activating and inhibitory sites of the InsP(3)R1 were 0.2 micro M for the wild-type channels and 1-2 micro M Ca(2+) for the E2100D and E2100Q mutants. The results obtained in our study support the hypothesis that E2100 residue forms a part of the InsP(3)R1 Ca(2+) sensor.  相似文献   

18.
Ca2+ efficiently inhibits binding of inositol 1,4,5-trisphosphate (InsP3) to the InsP3 receptor in cerebellar membranes but not to the purified receptor. We have now investigated the mechanism of action by which Ca2+ inhibits InsP3 binding. Our results suggest that Ca2+ does not cause the stable association of a Ca(2+)-binding protein with the receptor. Instead, Ca2+ leads to the production of a soluble, heat-stable, low molecular weight substance from cerebellar membranes that competes with InsP3 for binding. This inhibitory substance probably represents endogenously generated InsP3 as judged by the fact that it co-purifies with InsP3 on anion-exchange chromatography, competes with [3H]InsP3 binding in a pattern similar to unlabeled InsP3, and is in itself capable of releasing 45Ca2+ from permeabilized cells. A potent Ca(2+)-activated phospholipase C activity producing InsP3 was found in cerebellar microsomes that exhibited a Ca2+ dependence identical to the Ca(2+)-dependent inhibition of InsP3 binding. Together these results suggest that the Ca(2+)-dependent inhibition of InsP3 binding to the cerebellar receptor is due to activation of a Ca(2+)-sensitive phospholipase C enriched in cerebellum. Nevertheless, Ca2+ probably also modulates the InsP3 receptor function by a direct interaction with the receptor that does not affect InsP3 binding but regulates InsP3-dependent channel gating.  相似文献   

19.
In this paper we report the synthesis and characterization of Ca(II), Gd(III) and Ce(III) complexes with chlorophenoxyalkanoic acids, which are commonly used as herbicides. The Gd(III) and Ca(II) complexes were characterized by the typical formulas [Gd(III)(L)(3)(H(2)O)(2).2dmf](n) and [Ca(L)(2)(MeOH)(2)](n) [L=[2,4-D=2,4-dichlorophenoxyacetic acid, 2,4,5-T=2,4,5-trichlorophenoxyacetic acid, MCPA=2-methyl-4-chlorophenoxy acetic acid and 2,4-DP=2-(2,4-dichlorophenoxy)propanoic acid]]. The crystal structure of the Gd(III) complex with 2,4-D shows that the compound is a one-dimensional polymer with a [Gd(III)(2)(2,4-D)(6)(H(2)O)(4)] dimeric repeat unit and the gadolinium atoms are in a nine-coordination environment, while the crystal structure of the Ca analog shows that it also has a polymeric structure with a [Ca(2)(2,4-D)(4)(CH(3)OH)(4)] dimeric repeat unit and the calcium atoms are in an eight-coordination environment. The gadolinium compound displays three different coordination modes for the carboxylato moiety, bidentate chelate, bidentate double bound and bidentate triple bound, while the calcium compound displays only one, bidentate triple bound. Coordination spheres are completed with oxygens of H(2)O or MeOH molecules, respectively. The complexes were tested against a few common bacteria by minimum inhibitory concentration (MIC) experiments and did not exhibit any antimicrobial action at concentrations up to 1600 microg/ml.  相似文献   

20.
Two novel coumarin-based ligands, coumarin-6,7-dioxyacetic acid (1) (cdoaH(2)) and 4-methylcoumarin-6,7-dioxyacetic acid (2) (4-MecdoaH(2)), were reacted with copper(II) and manganese(II) salts to give [Cu(cdoa)(H(2)O)(2)].1.5H(2)O (3), [Cu(4-Mecdoa)(H(2)O)(2)] (4), [Mn(cdoa)(H(2)O)(2)] (5) and [Mn(4-Mecdoa)(H(2)O)(2)].0.5H(2)O (6). The metal complexes, 3-6, were characterised by elemental analysis, IR and UV-Vis spectroscopy, and magnetic susceptibility measurements and were assigned a polymeric structure. 1 and 2 react with Cu(II) in the presence of excess 1,10-phenanthroline (phen) giving [Cu(cdoa)(phen)(2)].8.8H(2)O (7) and [Cu(4-Mecdoa)(phen)(2)].13H(2)O (8), respectively. The X-ray crystal structures of 7 and 8 confirmed trigonal bipyramidal geometries, with the metals bonded to the four nitrogen atoms of the two chelating phen molecules and to a single carboxylate oxygen of the dicarboxylate ligand. The complexes were screened for their antimicrobial activity against a number of microbial species, including methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli and Candida albicans. The metal-free ligands 1 and 2 were active against all of the microbes. Complexes 3-6 demonstrated no significant activity whilst the phen adducts 7 and 8 were active against MRSA (MIC(80)=12.1microM), E. coli (MIC(80)=14.9microM) and Patonea agglumerans (MIC(80)=12.6microM). Complex 7 also demonstrated anti-Candida activity (MIC(80)=22microM) comparable to that of the commercially available antifungal agent ketoconazole (MIC(80)=25microM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号