首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The adsorption of proteins from human whole saliva (HWS) onto silica and hydroxyapatite surfaces (HA) was followed by quartz crystal microbalance with dissipation (QCM-D) and ellipsometry. The influence of different surface properties and adsorption media (water and PBS) on the adsorption from saliva was studied. The viscoelastic properties of the salivary films formed on the solid surfaces were estimated by the use of the Voigt-based viscoelastic film model. Furthermore, the efficiency of SDS and delmopinol to elute the adsorbed salivary film from the surfaces was investigated at different surfactant concentrations. A biphasic kinetic regime for the adsorption from saliva on the silica and HA surfaces was observed, indicating the formation of a rigidly coupled first layer corresponding to an initial adsorption of small proteins and a more loosely bound second layer. The results further showed a higher adsorption from HWS onto the HA surfaces compared to the silica surfaces in both adsorption media (PBS and water). The adsorption in PBS led to higher adsorbed amounts on both surfaces as compared to water. SDS was found to be more efficient in removing the salivary film from both surfaces than delmopinol. The salivary film was found to be less tightly bound onto the silica surfaces since more of the salivary film could be removed with both SDS and delmopinol compared to that from the HA surface. When adsorption took place from PBS the salivary layer formed at both surfaces seemed to have a similar structure, with a high energy dissipation implying that a softer salivary layer is built up in PBS as opposed to that in water. Furthermore, the salivary layers adsorbed from water solutions onto the HA were found to be softer than those on silica.  相似文献   

2.
The adsorption of the protein avidin from hen egg white on patterns of silicon dioxide and platinum surfaces on a microchip and the use of fluorescent microscopy to detect binding of biotin are described. A silicon dioxide microchip was formed using plasma-enhanced chemical vapor deposition while platinum was deposited using radiofrequency sputtering. After cleaning using a plasma arc, the chips were placed into solutions containing avidin or bovine serum albumin. The avidin was adsorbed onto the microchips from phosphate-buffered saline (PBS) or from PBS to which ammonium sulfate had been added. Avidin was also adsorbed onto bovine serum albumin (BSA)-coated surfaces of oxide and platinum. Fluorescence microscopy was used to confirm adsorption of labeled protein, or the binding of fluorescently labeled biotin onto previously adsorbed, unlabeled avidin. When labeled biotin in PBS was presented to avidin adsorbed onto a BSA-coated microchip, the fluorescence signal was significantly higher than for avidin adsorbed onto the biochip alone. The results show that a simple, low-cost adsorption process can deposit active protein onto a chip in an approach that has potential application in the development of protein biochips for the detection of biological species.  相似文献   

3.
Polyaniline protected gold nanoparticles (PPAuNPs) were electrophoretically deposited onto a gold electrode, and utilized to fabricate an electrochemical cortisol biosensor. Cortisol specific monoclonal antibody (C-Mab) was covalently immobilized onto the surface of a PPAuNP/Au electrode using N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide (EDC/NHS) chemistry. BSA was employed for blocking nonspecific adsorption on the electrode surface. PPAuNP formation and BSA/C-Mab/PPAuNP/Au electrode fabrication were characterized using transmission electron microscopy, atomic force microscopy and electrochemical impedance techniques, respectively. Cyclic voltammetry and differential pulse voltammetric techniques were used to determine the cortisol concentration in a phosphate buffer saline (PBS) solution. Results confirmed that the PPAuNP based electrode was stable during repeated scans and exhibited repeatable redox peaks. Further, the BSA/C-Mab/PPAuNP/Au electrode in the PBS buffer accurately detected cortisol in the range of 1 pM-100 nM with a sensitivity of 1.63 μAM(-1). The biosensor was found to be selective against BSA and 17-α-hydroxy progesterone. This research establishes the feasibility of using a PPAuNP based matrix for a label and mediator free electrochemical biosensor for cortisol, a stress biomarker.  相似文献   

4.
The adsorption of human immunoglobulin G (hIgG) and bovine serum albumin (BSA) on cellulose supports were investigated. The dynamics and extent of related adsorption processes were monitored by surface plasmon resonance (SPR) and quartz crystal microbalance with dissipation monitoring (QCM-D). Amine groups were installed on the cellulose substrate by adsorption of chitosan from aqueous solution, which allowed for hIgG to physisorb from acid media and produced a functionalized substrate with high surface density (10 mg/m(2)). hIgG adsorption from neutral and alkaline conditions was found to yield lower adsorbed amounts. The installation of the carboxyl groups on cellulose substrate via carboxymethylated cellulose (CMC) adsorption from aqueous solution enhanced the physisorption of hIgG at acidic (adsorbed amount of 5.6 mg/m(2)) and neutral conditions. hIgG adsorption from alkaline conditions reduced the surface density. BSA was used to examine protein attachment on cellulose after modification with chitosan or carboxymethyl cellulose. At the isoelectric point of BSA (pI 5), both of the surface modifications enhanced the adsorption of this protein when compared to that on unmodified cellulose (a 2-fold increase from 1.7 to 3.5 mg/m(2)). At pH 4, the electrostatic interactions favored the adsorption of BSA on the CMC-modified cellulose, revealing the affinity of the system and the possibility of tailoring biomolecule binding by choice of the surface modifier and pH of the medium.  相似文献   

5.
This paper describes a novel method for introducing the RGD cell adhesion peptide to enhance cell adhesion onto bacterial cellulose (BC). BC and cotton linters as reference were modified with xyloglucan (XG) and xyloglugan bearing a GRGDS pentapeptide. The adsorptions followed Langmuir adsorption behavior, where both XGs probably decorate the cellulose surfaces as a monolayer. The adsorption maximum of the XGs reached around 180 mg/g on BC and only about three times as much on cotton linters. The adsorption was verified with colorimetric methods. The specific surface area of BC measured with XG and XG-GRGDS was about 200 m (2)/g and was almost three times less for cotton linters, 60 m (2)/g. The difference in the amounts of XGs adsorbed might be explained by the swollen network of bacterial cellulose and a more exposed and accessible bulk as compared to cotton linters. The nanocellulose material was modified homogeneously throughout the material, as seen by the z-scan in confocal microscopy. Moreover, the modification in the water phase, in comparison with organic solvents, was clearly advantageous for preserving the morphology, as observed with SEM. The modification slightly increased the wettability, which might explain the decrease in or undetectable adsorption of adhesive protein shown by QCM-D. Initial cell studies showed that adhesion of human endothelial cells is enhanced when the BC hydrogel is modified with XG-GRGDS. QCM-D studies further revealed that the cell enhancement is due to the presence of the RGD epitope on XG and not to a nonspecific adsorption of fibronectin from cell culture medium. Optimization and proliferation studies of human endothelial cells onto bacterial cellulose modified with XG-GRGDS are currently being carried out at the Vascular Engineering Center, Sahlgrenska University Hospital, Gothenburg.  相似文献   

6.
This paper investigates the adsorption of bovine serum albumin (BSA) and bovine hemoglobin (BHb) model proteins onto novel thymine-functionalized polystyrene (PS-VBT) microspheres, in comparison with polystyrene (PS) microspheres. Maximum adsorption was obtained for both proteins near their corresponding isoelectric points (pI at pH = 4.7 for BSA and 7.1 for BHb). FTIR and adsorption isotherm analysis demonstrated that, although both proteins were physisorbed onto PS through nonspecific hydrophobic interactions, adsorption onto the functionalized copolymers occurred by both physisorption and chemisorption via hydrogen bonding. FTIR analysis also indicated conformational changes in the secondary structure of BSA and BHb adsorbed onto PS, whereas little or no conformation change was seen in the case of adsorption onto PS-VBT. Atomic force microscopy (AFM), consistent with the isotherm results, also demonstrated monolayer adsorption for both proteins. AFM images of BSA adsorbed onto copolymers with 20 mol % surface VBT loading showed exclusively end-on orientation. Adsorption onto copolymers with lower functionality showed mixed end-on and side-on orientation modes of BSA, and only the side-on orientation was observed on PS. The AFM results agreed well with theoretically calculated and experimentally obtained adsorption capacities. AFM together with calculated and observed adsorption capacity data for BHb indicated that this protein might be highly compressed on the copolymer surface. Adsorption from a binary mixture of BSA and BHb onto PS-VBT showed good separation at pH=7.0; approximately 90% of the adsorbed protein was BHb. The novel copolymers have potential applications in biotechnology.  相似文献   

7.
A quartz crystal microbalance with dissipation (QCM-D) is used to determine the adsorption rate of a supercoiled plasmid DNA onto a quartz surface and the structure of the resulting adsorbed DNA layer. To better understand the DNA adsorption mechanisms and the adsorbed layer physicochemical properties, the QCM-D data are complemented by dynamic light scattering measurements of diffusion coefficients of the DNA molecules as a function of solution ionic composition. The data from simultaneous monitoring of variations in frequency and dissipation energy with the QCM-D suggest that the adsorbed DNA layer is more rigid in the presence of divalent (calcium) cations compared to monovalent (sodium) cations. Adsorption rates are significantly higher in the presence of calcium, attaining a transport-limited rate at about 1 mM Ca2+. Results further suggest that in low ionic strength solutions containing 1 mM Ca2+ and in moderately high ionic strength solutions containing 300 mM NaCl, plasmid DNA adsorption to negatively charged mineral surfaces is irreversible.  相似文献   

8.
The adsorption of BSA and fibrinogen onto plasma-polymerized di-(ethylene glycol) vinyl ether, allylamine, and maleic anhydride films were investigated in detail by surface plasmon resonance spectroscopy (SPR). The chemical properties of the plasma polymers were initially determined by the plasma deposition conditions during the generation procedure. The analysis of the chemical structure of the films and the refractive index of plasma polymers in aqueous solution was carried out using Fourier transform infrared spectroscopy and waveguide mode spectroscopy, respectively. Using water contact angle measurement, the surface wettability of plasma polymers was also characterized. These properties have a critical influence on the behavior of protein adsorption on the surface of the plasma polymers. Protein adsorption was found to depend not only on the types of functionalized groups, but also on the plasma polymer thickness since the protein molecules penetrate into the plasma polymer network bulk. According to the size of protein molecules in aqueous solution and the amount of adsorbed proteins observed by SPR, the conformational changes of proteins could be deduced.  相似文献   

9.
Chitin is the second most abundant biopolymer and insight into its natural synthesis, enzymatic degradation, and chemical interactions with other biopolymers is important for bioengineering with this renewable resource. This work is the first report of smooth, homogeneous, ultrathin chitin films, opening the door to surface studies of binding interactions, adsorption kinetics, and enzymatic degradation. The chitin films were formed by spincoating trimethylsilyl chitin onto gold or silica substrates, followed by regeneration to a chitin film. Infrared and X-ray photoelectron spectroscopy, X-ray diffraction, ellipsometry, and atomic force microscopy were used to confirm the formation of smooth, homogeneous, and amorphous chitin thin films. Quartz crystal microbalance with dissipation monitoring (QCM-D) solvent exchange experiments showed these films swelled with 49% water by mass. The utility of these chitin films as biosensors was evident from QCM-D and surface plasmon resonance studies that revealed the adsorption of a bovine serum albumin monolayer.  相似文献   

10.
Nanosized hydrotalcite-like compounds (HTlc) with different chemical composition were prepared and used to study protein adsorption. Two soft proteins, myoglobin (Mb) and bovine serum albumin (BSA), were chosen to investigate the nature of the forces controlling the adsorption and how these depend on the chemical composition of the support. Both proteins strongly interact with HTlc exhibiting in most cases a Langmuir-type adsorption. Mb showed a higher affinity for Nickel Chromium (NiCr-HTlc) than for Nickel Aluminum (NiAl-HTlc), while for BSA no significant differences between supports were found. Adsorption experiments in the presence of additives showed that proteins exhibited different types of interactions onto the same HTlc surface and that the adsorption was strongly suppressed by the addition of disodium hydrogen phosphate (Na2HPO4). Atomic force microscopy images showed that the adsorption of both proteins onto nanoparticles was followed by the aggregation of biocomposites, with a more disordered structure for BSA. Fluorescence measurements for adsorbed Mb showed that the inorganic nanoparticles induced conformational changes in the biomolecules; in particular, the interactions with HTlc surface quenched the tryptophan fluorescence and this process was particularly efficient for NiCr-HTlc. The adsorption of BSA onto the HTlc nanoparticles induced a selective quenching of the exposed fluorescent residues, as indicated by the blue-shift of the emission spectra of tryptophan residues and by the shortening of the fluorescence decay times.  相似文献   

11.
Adsorption of bovine serum albumin (BSA) and fibrinogen (Fg) was measured on six distinct bare and dextran- and hyaluronate-modified silicon surfaces created using two dextran grafting densities and three hyaluronic acid (HA) sodium salts derived from human umbilical cord, rooster comb and Streptococcus zooepidemicus. Film thickness and surface morphology depended on the HA molecular weight and concentration. BSA coverage was enhanced on surfaces in competitive adsorption of BSA:Fg mixtures. Dextranization differentially reduced protein adsorption onto surfaces based on oxidation state. Hyaluronization was demonstrated to provide the greatest resistance to protein coverage, equivalent to that of the most resistant dextranized surface. Resistance to protein adsorption was independent of the type of HA utilized. With changing bulk protein concentration from 20 to 40 μg ml(-1) for each species, Fg coverage on silicon increased by 4x, whereas both BSA and Fg adsorption on dextran and HA were far less dependent on protein bulk concentration.  相似文献   

12.
Adsorption of bovine serum albumin (BSA) and fibrinogen (Fg) was measured on six distinct bare and dextran- and hyaluronate-modified silicon surfaces created using two dextran grafting densities and three hyaluronic acid (HA) sodium salts derived from human umbilical cord, rooster comb and Streptococcus zooepidemicus. Film thickness and surface morphology depended on the HA molecular weight and concentration. BSA coverage was enhanced on surfaces in competitive adsorption of BSA:Fg mixtures. Dextranization differentially reduced protein adsorption onto surfaces based on oxidation state. Hyaluronization was demonstrated to provide the greatest resistance to protein coverage, equivalent to that of the most resistant dextranized surface. Resistance to protein adsorption was independent of the type of HA utilized. With changing bulk protein concentration from 20 to 40 μg ml?1 for each species, Fg coverage on silicon increased by 4x, whereas both BSA and Fg adsorption on dextran and HA were far less dependent on protein bulk concentration.  相似文献   

13.
Piezoelectric dispensing of proteins from borosilicate glass capillaries is a popular method of protein biochip fabrication that offers the advantages of sample recovery and noncontact with the printing substrate. However, little regard has been given to the quantitative aspects of dispensing minute volumes (1 nL or less) at the low protein concentrations (20 micrograms/mL or less) typically used in microprinting. Specifically, loss of protein sample due to nonspecific adsorption to the glass surface of the dispensing capillaries can limit the amount of protein delivered to the substrate. We demonstrate the benefits of a low ionic strength buffer containing the carrier protein BSA that effectively minimizes the ionic strength-dependent phenomenon of nonspecific protein adsorption to borosilicate glass. Over the concentration range of 20-2.5 micrograms/mL, the dispensing of a reference IgG in 10 mM PBS including 0.1% BSA resulted in the deposition of 3.6- to 44-fold more IgG compared to the deposition of IgG in standard 150 mM PBS in the absence of BSA. Furthermore, when the IgG was dispensed with carrier protein, the resulting spots exhibited a more uniform morphology. In a direct immunoassay for cholera toxin, capture antibody spots dispensed in 10 mM PBS containing 0.1% BSA produced fluorescent signals that were 2.8- to 4.3-fold more intense than antibody spots that were dispensed in 150 mM PBS without BSA. Interestingly, no differences were observed in the specific activities of the capture antibodies as a result of printing in the different buffers. The implications of these results on the future development of protein biochips are discussed.  相似文献   

14.
The adsorption of a recombinant cutinase from Fusarium solani pisi onto the surface of 100 nm diameter poly(methyl methacrylate) (PMMA) latex particles was evaluated. Adsorption of cutinase is a fast process since more than 70% of protein molecules are adsorbed onto PMMA at time zero of experiment, irrespective of the tested conditions. A Langmuir-type model fitted both protein and enzyme activity isotherms at 25 degrees C. Gamma(max) increased from 1.1 to 1.7 mg m(-2) and U(max) increased from 365 to 982 U m(-2) as the pH was raised from 4.5 to 9.2, respectively. A decrease (up to 50%) in specific activity retention was observed at acidic pH values (pH 4.5 and 5.2) while almost no inactivation (eta(act) congruent with 87-94%) was detected upon adsorption at pH 7.0 and 9.2. Concomitantly, far-UV circular dichroism (CD) spectra evidenced a reduction in the alpha-helical content of adsorbed protein at acidic pH values while at neutral and alkaline pH the secondary structure of adsorbed cutinase was similar to that of native protein. Fluorescence anisotropy decays showed the release of some constraints to the local motion of the Trp69 upon protein adsorption at pH 8.0, probably due to the disruption of the tryptophan-alanine hydrogen bond when the tryptophan interacts with the PMMA surface. Structural data associated with activity measurements at pH 7.0 and 9.2 showed that cutinase adsorbs onto PMMA particles in an end-on orientation with active site exposed to solvent and full integrity of cutinase secondary structure. Hydrophobic interactions are likely the major contribution to the adsorption mechanism at neutral and alkaline pH values, and a higher amount of protein is adsorbed to PMMA particles with increasing temperature at pH 9.2. The maximum adsorption increased from 88 to 140 mg cutinase per g PMMA with temperature raising from 25 to 50 degrees C, at pH 9.2.  相似文献   

15.
Lysozyme for capture of microorganisms on protein biochips   总被引:3,自引:0,他引:3  
Lysozyme placed on the SiO2 surfaces that have previously been derivatized with C18 coating will capture both Escherichia coli and Listeria monocytogenes cells from PBS buffer at pH 7.2. This phenomenon is of significance for the design and fabrication of protein biochips that are designed to capture bacteria from buffer or water so that these can be further interrogated with respect to possible pathogenicity. Fluorescent microscopy shows that two types of bacteria (gram-negative E. coli and gram-positive Listeria spp.) will be adsorbed by lysozyme placed on the surface of the biochip but that strong adsorption of the bacteria is reduced but not eliminated when Tween 20 is present (at 0.5%) in the PBS buffer in which the cells are suspended. In comparison, Tween 20 and Bovine Serum Albumin (BSA) almost completely block adsorption of these bacteria on C18 coated surfaces. The combination of a lysozyme surface with Tween 20 gives a greater degree of adsorption of L. monocytogenes than E. coli, and hence suggests selectivity for the more hydrophobic E. coli may be reduced by the Tween 20. This paper presents protocols for preparing protein-coated, SiO2 surfaces and the effect of buffer containing Tween 20 on adsorption of bacteria by SiO2 surfaces coated with C18 to which BSA, lysozyme or C11E9 antibody is immobilized at pH 7.2 and ambient temperature.  相似文献   

16.
We used a pin-on-disc tribometer to measure the friction coefficient of both pristine and mechanically damaged cartilage samples in the presence of different lubricant solutions. The experimental set up maximizes the lubrication mechanism due to interstitial fluid pressurization. In phosphate buffer solution (PBS), the measured friction coefficient increases with the level of damage. The main result is that when poly(ethylene oxide) (PEO) or hyaluronic acid (HA) are dissolved in PBS, or when synovial fluid (SF) is used as lubricant, the friction coefficients measured for damaged cartilage samples are only slightly larger than those obtained for pristine cartilage samples, indicating that the surface damage is in part alleviated by the presence of the various lubricants. Among the lubricants considered, 100 mg/mL of 100,000 Da MW PEO in PBS appears to be as effective as SF. We attempted to discriminate the lubrication mechanism enhanced by the various compounds. The lubricants viscosity was measured at shear rates comparable to those employed in the friction experiments, and a quartz crystal microbalance with dissipation monitoring was used to study the adsorption of PEO, HA, and SF components on collagen type II adlayers pre-formed on hydroxyapatite. Under the shear rates considered the viscosity of SF is slightly larger than that of PBS, but lower than that of lubricant formulations containing HA or PEO. Neither PEO nor HA showed strong adsorption on collagen adlayers, while evidence of adsorption was found for SF. Combined, these results suggest that synovial fluid is likely to enhance boundary lubrication. It is possible that all three formulations enhance lubrication via the interstitial fluid pressurization mechanism, maximized by the experimental set up adopted in our friction tests.  相似文献   

17.
Wang Y  Wang X  Luo G  Dai Y 《Bioresource technology》2008,99(9):3881-3884
The adsorption characteristics of BSA onto the magnetic chitosan nanoparticles have been investigated in this paper. The magnetic chitosan nanoparticles were prepared by adding the basic precipitant of NaOH solution into a W/O microemulsion system. The morphology of magnetic chitosan nanoparticles was observed by transmission electron microscope (TEM). It was found that the diameter of magnetic chitosan nanoparticles was from 10nm to 20 nm, and the nanoparticles suspending in the aqueous solution could easily aggregate by a magnet, which suggested that the nanoparticles had good magnetic characteristics. The BSA adsorption experiment indicated that when pH of BSA solution was equal to 4, the maximum adsorption loading reached 110 mg/g. Through measuring the zeta potential of BSA solution and the magnetic nanoparticles, it was found that under this situation the surface of BSA took the negative charge, but the magnetic nanoparticles took the positive charge. Due to the small diameter, the adsorption equilibrium of BSA onto the nanoparticles reached very quickly within 10 min. The adsorption equilibrium of BSA onto the magnetic chitosan nanoparticles fitted well with the Freundlich model. The experimental results showed that the magnetic chitosan nanoparticles have potential to be used for the quick pretreatment in the protein analysis process.  相似文献   

18.
Noto M  Keng D  Teraoka I  Arnold S 《Biophysical journal》2007,92(12):4466-4472
The state of adsorbed protein molecules can be examined by comparing the shifts in a narrow line resonance wavelength of transverse electric (TE) and transverse magnetic (TM) whispering gallery modes (WGM) when the molecules adsorb onto a transparent microsphere that houses WGM. In adsorption of bovine serum albumin (BSA) onto an aminopropyl-modified silica microsphere, the TM/TE shift ratio indicated highly anisotropic polarizability of BSA in the direction normal to the surface, most likely ascribed to anchoring the heart-shaped protein molecule by one of its tips. The polarization-dependent resonance shift was confirmed when the surrounding refractive index was uniformly changed by adding salt, which would simulate adsorption of large objects.  相似文献   

19.
The rapid development of surface sensitive biosensor technologies, especially towards nanoscale devices, requires increasing control of surface chemistry to provide reliable and reproducible results, but also to take full advantage of the sensing opportunities. Here, we present a surface modification strategy to allow biotinylated biomolecules to be immobilized to gold coated sensor crystals for quartz crystal microbalance with dissipation monitoring (QCM-D) sensing. The unique feature of QCM-D is its sensitivity to nanomechanical (viscoelastic) properties at the sensing interface. The surface modification was based on mixed monolayers of oligo(ethylene glycol) (OEG) disulfides, with terminal -OH or biotin groups, on gold. Mixtures containing 1% of the biotin disulfide were concluded to be the most appropriate based on the performance when streptavidin was immobilized to biotinylated sensors and the subsequent biotinylated bovine serum albumin (BSA) interaction was studied. The OEG background kept the unspecific protein binding to a minimum, even when subjected to serum solutions with a high protein concentration. Based on characterization by contact angle goniometry, ellipsometry, and infrared spectroscopy, the monolayers were shown to be well-ordered, with the OEG chains predominantly adopting a helical conformation but also partly an amorphous structure. Storage stability was concluded to depend mainly on light exposure while almost all streptavidin binding activity was retained when storing the sensors cold and dark for 8 weeks. The surface modification was also tested for repeated antibody-antigen interactions between BSA and anti-BSA (immobilized to biotinylated protein A) in QCM-D measurements lasting for >10h with intermediate basic regeneration. This proved an excellent stability of the coating and good reproducibility was obtained for 5 interaction cycles. With this kind of generic surface modification QCM-D can be used in a variety of biosensing applications to provide not only mass but also relevant information of the structural properties of adlayers.  相似文献   

20.
The aim of the present work is to study the sequential adsorption of F(ab')(2) and bovine serum albumin (BSA) molecules adsorbed onto positively and negatively charged polystyrene latexes. Cationic and anionic latexes were prepared by emulsifier-free emulsion polymerization. Adsorptions of F(ab')(2) on both latexes at a low ionic strength and different pHs were performed. The cationic latex showed a higher adsorption of F (ab')(2) molecules over a range of pH, which could be due to the formation of multilayers. Sequential adsorption of anti-CRP F(ab')(2) and monomeric BSA were performed at two different pre-adsorbed F(ab')(2) amounts on both types of latex. Displacement of F(ab')(2) occurred only when the preadsorbed amounts were larger than a certain critical value, which depends on the adsorption pH. A greater displacement of larger preadsorbed amounts might be the result of a weaker contact between the protein molecules and the polystyrene surface. The displacement of F(ab')(2) previously adsorbed onto both latexes occurred due to pH changes, an increase of ionic strength and the presence of BSA molecules. The effect caused by these three factors was studied independently. The main factors in the desorption of F(ab')(2) on the anionic latex are the changes in pH and ionic strength, whereas on the cationic latex the desorption is mainly caused by the increase of the ionic strength and the presence of BSA. The colloidal stability of the immunotatex was improved by BSA adsorption, especially on cationic latex. (c) 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号