首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A GTP:RNA guanylyltransferase or capping enzyme has been purified approximately 2000-fold from wheat germ. The enzyme catalyzes the transfer of the GMP residue from GTP to the 5' end of RNA or synthetic polyribonucleotides. Diphosphate-ended polymers were capped more efficiently than molecules with triphosphate ends, and molecules with monophosphate ends were not capped at all. There appears to be little specificity since RNAs with purine or pyrimidine ends served as acceptors. Other features of the wheat germ RNA guanylyltransferase include relatively low Km values for GTP (2.7 microM) and ppA (pA)n (14.2 nM), a divalent cation requirement satisfied by low (0.5 mM) concentrations of MnCl2 or higher (5 mM) concentrations of MgCl2, and a pH optimum around neutrality.  相似文献   

3.
Messenger RNA capping enzyme (GTP:mRNA guanylyltransferase) purified from yeast Saccharomyces cerevisiae consisted of two polypeptides (45 and 39 kDa) and possessed two enzymatic activities, i.e. mRNA guanylyltransferase and RNA 5'-triphosphatase (Itoh, N., Mizumoto, K., and Kaziro, Y. (1984) J. Biol. Chem. 259, 13923-13929). In this paper, we describe an improved procedure suitable for the large scale purification of the enzyme. The steps include glass beads disruption of the cells and several ion-exchange and affinity column chromatographies. The enzyme was purified from kilogram quantities of yeast cells to apparent homogeneity. The purified enzyme had an approximate Mr of 180,000 and consisted of two heterosubunits of 80 and 52 kDa and had the same two enzymatic activities as above. We consider that this is the more intact form of the enzyme. Using the in situ assays on sodium dodecyl sulfate-polyacrylamide gels, RNA 5'-triphosphatase, and mRNA guanylyltransferase activities were located on the 80- and 52-kDa chains, respectively. In agreement with this, the 52-kDa enzyme-[32P]GMP complex was formed on incubation of the enzyme with [alpha-32P]GTP. Guinea pig antisera against purified yeast capping enzyme recognized both 80- and 52-kDa chains in Western blot analysis. The antibody did not cross-react with the enzymes from rat liver. Artemia salina, or vaccinia virus. Nuclear localization of the enzyme was demonstrated by immunofluorescence microscopy.  相似文献   

4.
Flaviviruses are small, capped positive sense RNA viruses that replicate in the cytoplasm of infected cells. Dengue virus and other related flaviviruses have evolved RNA capping enzymes to form the viral RNA cap structure that protects the viral genome and directs efficient viral polyprotein translation. The N-terminal domain of NS5 possesses the methyltransferase and guanylyltransferase activities necessary for forming mature RNA cap structures. The mechanism for flavivirus guanylyltransferase activity is currently unknown, and how the capping enzyme binds its diphosphorylated RNA substrate is important for deciphering how the flavivirus guanylyltransferase functions. In this report we examine how flavivirus NS5 N-terminal capping enzymes bind to the 5' end of the viral RNA using a fluorescence polarization-based RNA binding assay. We observed that the K(D) for RNA binding is approximately 200 nM Dengue, Yellow Fever, and West Nile virus capping enzymes. Removal of one or both of the 5' phosphates reduces binding affinity, indicating that the terminal phosphates contribute significantly to binding. RNA binding affinity is negatively affected by the presence of GTP or ATP and positively affected by S-adensyl methoninine (SAM). Structural superpositioning of the dengue virus capping enzyme with the Vaccinia virus VP39 protein bound to RNA suggests how the flavivirus capping enzyme may bind RNA, and mutagenesis analysis of residues in the putative RNA binding site demonstrate that several basic residues are critical for RNA binding. Several mutants show differential binding to 5' di-, mono-, and un-phosphorylated RNAs. The mode of RNA binding appears similar to that found with other methyltransferase enzymes, and a discussion of diphosphorylated RNA binding is presented.  相似文献   

5.
The D1 gene encoding the large subunit of vaccinia virus mRNA capping enzyme was expressed in Escherichia coli BL21(DE3) under the control of a bacteriophage T7 promoter. Guanylyltransferase activity (assayed as the formation of a covalent enzyme-guanylate complex) was detected in soluble lysates of these bacteria. Two major species of protein-GMP complex were formed, one of Mr 95,000 (corresponding in size to the D1 gene product) and one of Mr 60,000. Partial purification of the guanylyltransferase was effected by ammonium sulfate precipitation and ion-exchange chromatography. The expressed large subunit synthesized GpppA caps when provided with 5'-triphosphate-terminated poly(A) as a cap acceptor, but was unable to catalyze cap methylation in the presence of S-adenosylmethionine. Thus, the small capping enzyme subunit was shown to be dispensable for guanylylation, but required for cap methylation of RNA. The Mr 95,000 and Mr 60,000 protein-GMP forming activities were resolved during centrifugation in a glycerol gradient; the two forms sedimented at 5.5 S and 4.4 S, respectively, consistent with each enzyme form being a monomer. Either species catalyzed GMP transfer to an RNA acceptor. The isolated Mr 95,000 guanylyltransferase could be converted to an active Mr 60,000 form in vitro by limited proteolysis with trypsin. Expression of carboxyl-deleted forms of the D1 gene product in E. of carboxyl-deleted forms of the D1 gene product in E. coli further localized the guanylyltransferase domain to the amino two-thirds of the Mr 95,000 polypeptide.  相似文献   

6.
Autographa californica nuclear polyhedrosis virus late and very late mRNAs are transcribed by an RNA polymerase consisting of four virus-encoded polypeptides: LEF-8, LEF-9, LEF-4, and p47. The 464-amino-acid LEF-4 subunit contains the signature motifs of GTP:RNA guanylyltransferases (capping enzymes). Here, we show that the purified recombinant LEF-4 protein catalyzes two reactions involved in RNA cap formation. LEF-4 is an RNA 5′-triphosphatase that hydrolyzes the γ phosphate of triphosphate-terminated RNA and a guanylyltransferase that reacts with GTP to form a covalent protein-guanylate adduct. The RNA triphosphatase activity depends absolutely on a divalent cation; the cofactor requirement is satisfied by either magnesium or manganese. LEF-4 also hydrolyzes ATP to ADP and Pi (Km = 43 μM ATP; Vmax = 30 s−1) and GTP to GDP and Pi. The LEF-4 nucleoside triphosphatase (NTPase) is activated by manganese or cobalt but not by magnesium. The RNA triphosphatase and NTPase activities of baculovirus LEF-4 resemble those of the vaccinia virus and Saccharomyces cerevisiae mRNA capping enzymes. We suggest that these proteins comprise a novel family of metal-dependent triphosphatases.  相似文献   

7.
An RNA guanylyltransferase activity is involved in the synthesis of the cap structure found at the 5' end of eukaryotic mRNAs. The RNA guanylyltransferase activity is a two-step ping-pong reaction in which the enzyme first reacts with GTP to produce the enzyme-GMP covalent intermediate with the concomitant release of pyrophosphate. In the second step of the reaction, the GMP moiety is then transferred to a diphosphorylated RNA. Both reactions were previously shown to be reversible. In this study, we report a biochemical and thermodynamic characterization of both steps of the reaction of the RNA guanylyltransferase from Paramecium bursaria Chlorella virus 1, the prototype of a family of viruses infecting green algae. Using a combination of real-time fluorescence spectroscopy, radioactive kinetic assays, and inhibition assays, the complete kinetic parameters of the RNA guanylyltransferase were determined. We produced a thermodynamic scheme for the progress of the reaction as a function of the energies involved in each step. We were able to demonstrate that the second step comprises the limiting steps for both the direct and reverse overall reactions. In both cases, the binding to the RNA substrates is the step requiring the highest energy and generating unstable intermediates that will promote the catalytic activites of the enzyme. This study reports the first thorough kinetic and thermodynamic characterization of the reaction catalyzed by an RNA capping enzyme.  相似文献   

8.
RNA triphosphatase, RNA guanylyltransferase, and RNA (guanine-7)-methyltransferase activities are associated with the vaccinia virus mRNA capping enzyme, a heterodimeric protein containing polypeptides of Mr 95,000 and Mr 31,000. The genes encoding the large and small subunits (corresponding to the D1 and the D12 ORFs, respectively, of the viral genome) were coexpressed in Escherichia coli BL21 (DE3) under the control of a bacteriophage T7 promoter. Guanylyltransferase activity (assayed as the formation of a covalent enzyme-guanylate complex) was detected in soluble lysates of these bacteria. A 1000-fold purification of the guanylyltransferase was achieved by ammonium sulfate precipitation and chromatography using phosphocellulose and SP5PW columns. Partially purified guanylytransferase synthesized GpppA caps when provided with 5'-triphosphate-terminated poly(A) as a cap acceptor. In the presence of AdoMet the enzyme catalyzed concomitant cap methylation with 99% efficiency. Inclusion of S-adenosyl methionine increased both the rate and extent of RNA capping, permitting quantitative modification of RNA 5' ends. Guanylyltransferase sedimented as a single component of 6.5 S during further purification in a glycerol gradient; this S value is identical with that of the heterodimeric capping enzyme from vaccinia virions. Electrophoretic analysis showed a major polypeptide of Mr 95,000 cosedimenting with the guanylyltransferase. RNA triphosphatase activity cosedimented exactly with guanylyltransferase. Methyltransferase activity was associated with guanylyltransferase and was also present in less rapidly sedimenting fractions. The methyltransferase activity profile correlated with the presence of a Mr 31,000 polypeptide. These results indicate that the D1 and D12 gene products are together sufficient to catalyze all three enzymatic steps in cap synthesis. A model for the domain structure of this enzyme is proposed.  相似文献   

9.
A core-associated enzyme, which catalyzes a nucleotide-pyrophosphate exchange with GTP, has been purified from vaccinia virions. The enzyme requires MgCl2 for activity, has an alkaline pH optimum, and specifically utilizes GTP as the exchanging nucleotide. The enzyme does not catalyze exchange of GMP with GTP. The GTP-PPi exchange enzyme co-purifies with vaccinia capping enzyme (RNA guanylyltransferase and RNA (guanine-7-)methyltransferase) through successive chromatography steps on DEAE-cellulose, DNA-cellulose, and phosphocellulose. GTP-PPi exchange and capping activities remain physically associated during sedimentation in a glycerol gradient. Under high salt conditions (1 M NaCl), GTP-PPi exchange, capping, and methylating activities co-sediment with an RNA triphosphatase activity and a nucleoside triphosphate phosphohydrolase activity as a 6.5 S multifunctional enzyme complex which contains two major polypeptides of 96,000 and 26,000 molecular weight. The characteristics of the various enzymatic reactions catalyzed by this complex are described. The GTP-PPi exchange reaction of vaccinia guanylyltransferase affords a simple, sensitive assay for capping enzyme function. The relevance of the GTP-PPi exchange reaction to the mechanism of transguanylylation is considered.  相似文献   

10.
Nonsegmented negative-sense (NNS) RNA viruses cap their mRNA by an unconventional mechanism. Specifically, 5′ monophosphate mRNA is transferred to GDP derived from GTP through a reaction that involves a covalent intermediate between the large polymerase protein L and mRNA. This polyribonucleotidyltransferase activity contrasts with all other capping reactions, which are catalyzed by an RNA triphosphatase and guanylyltransferase. In these reactions, a 5′ diphosphate mRNA is capped by transfer of GMP via a covalent enzyme-GMP intermediate. RNA guanylyltransferases typically have a KxDG motif in which the lysine forms this covalent intermediate. Consistent with the distinct mechanism of capping employed by NNS RNA viruses, such a motif is absent from L. To determine the residues of L protein required for capping, we reconstituted the capping reaction of the prototype NNS RNA virus, vesicular stomatitis virus, from highly purified components. Using a panel of L proteins with single-amino-acid substitutions to residues universally conserved among NNS RNA virus L proteins, we define a new motif, GxxT[n]HR, present within conserved region V of L protein that is essential for this unconventional mechanism of mRNA cap formation.  相似文献   

11.
12.
Lin HY  Yu CY  Hsu YH  Meng M 《FEBS letters》2012,586(16):2326-2331
The alphavirus-like mRNA capping enzyme of Bamboo mosaic virus (BaMV) exhibits an AdoMet-dependent guanylyltransferase activity by which the methyl group of AdoMet is transferred to GTP, leading to the formation of m(7)GTP, and the m(7)GMP moiety is next transferred to the 5' end of ppRNA via a covalent enzyme-m(7)GMP intermediate. The function of the conserved H68 of the BaMV capping enzyme in the intermediate formation was analyzed by mutagenesis in this study. The nature of the bond linking the enzyme and m(7)GMP was changed in the H68C mutant protein, strongly suggesting that H68 covalently binds to m(7)GMP in the intermediate.  相似文献   

13.
14.
GTP:mRNA guanylyltransferase, an enzyme that catalyzes the transfer of the GMP moiety from GTP to the 5' end of the RNA to form a cap structure (G(5')pppN-), has been purified to an apparent homogeneity from Saccharomyces cerevisiae. The mRNA 5'-triphosphatase activity hydrolyzing the gamma-phosphoryl group from pppN-RNA was co-purified with mRNA guanylyltransferase activity through column chromatographies on CM-Sephadex and poly(U)-Sepharose, and centrifugation through glycerol gradients, suggesting that these two activities are physically associated. An 820,w value of 7.3, and Mr = 140,000 were estimated from the sedimentation behavior in glycerol gradients. Upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, two major polypeptides, Mr = 45,000 (alpha) and 39,000 (beta), were detected with the purified enzyme preparation. Their molar ratios were close to unity when estimated by the relative density of silver staining. These results suggest that the yeast mRNA-capping enzyme is an oligomeric protein which may consist of two alpha and two beta chains (alpha 2 beta 2).  相似文献   

15.
Open reading frame 1 of Bamboo mosaic virus (BaMV), a Potexvirus in the alphavirus-like superfamily, encodes a 155-kDa replicase responsible for the formation of the 5' cap structure and replication of the viral RNA genome. The N-terminal domain of the viral replicase functions as an mRNA capping enzyme, which exhibits both GTP methyltransferase and S-adenosylmethionine (AdoMet)-dependent guanylyltransferase activities. We mutated each of the four conserved amino acids among the capping enzymes of members within alphavirus-like superfamily and a dozen of other residues to gain insight into the structure-function relationship of the viral enzyme. The mutant enzymes were purified and subsequently characterized. H68A, the mutant enzyme bearing a substitution at the conserved histidine residue, has an approximately 10-fold increase in GTP methyltransferase activity but completely loses the ability to form the covalent m(7)GMP-enzyme intermediate. High-pressure liquid chromatography analysis confirmed the production of m(7)GTP by the GTP methyltransferase activity of H68A. Furthermore, the produced m(7)GTP sustained the formation of the m(7)GMP-enzyme intermediate for the wild-type enzyme in the presence of S-adenosylhomocysteine (AdoHcy), suggesting that the previously observed AdoMet-dependent guanylation of the enzyme using GTP results from reactions of GTP methylation and subsequently guanylation of the enzyme using m(7)GTP. Mutations occurred at the other three conserved residues (D122, R125, and Y213), and H66 resulted in abolition of activities for both GTP methylation and formation of the covalent m(7)GMP-enzyme intermediate. Mutations of amino acids such as K121, C234, D310, W312, R316, K344, W406, and K409 decreased both activities by various degrees, and the extents of mutational effects follow similar trends. The affinity to AdoMet of the various BaMV capping enzymes, except H68A, was found in good correlations with not only the magnitude of GTP methyltransferase activity but also the capability of forming the m(7)GMP-enzyme intermediate. Taken together with the AdoHcy dependence of guanylation of the enzyme using m(7)GTP, a basic working mechanism, with the contents of critical roles played by the binding of AdoMet/AdoHcy, of the BaMV capping enzyme is proposed and discussed.  相似文献   

16.
Virus-Specific mRNA Capping Enzyme Encoded by Hepatitis E Virus   总被引:4,自引:2,他引:2       下载免费PDF全文
Hepatitis E virus (HEV), a positive-strand RNA virus, is an important causative agent of waterborne hepatitis. Expression of cDNA (encoding amino acids 1 to 979 of HEV nonstructural open reading frame 1) in insect cells resulted in synthesis of a 110-kDa protein (P110), a fraction of which was proteolytically processed to an 80-kDa protein. P110 was tightly bound to cytoplasmic membranes, from which it could be released by detergents. Immunopurified P110 catalyzed transfer of a methyl group from S-adenosylmethionine (AdoMet) to GTP and GDP to yield m7GTP or m7GDP. GMP, GpppG, and GpppA were poor substrates for the P110 methyltransferase. There was no evidence for further methylation of m7GTP when it was used as a substrate for the methyltransferase. P110 was also a guanylyltransferase, which formed a covalent complex, P110-m7GMP, in the presence of AdoMet and GTP, because radioactivity from both [α-32P]GTP and [3H-methyl]AdoMet was found in the covalent guanylate complex. Since both methyltransferase and guanylyltransferase reactions are strictly virus specific, they should offer optimal targets for development of antiviral drugs. Cap analogs such as m7GTP, m7GDP, et2m7GMP, and m2et7GMP inhibited the methyltransferase reaction. HEV P110 capping enzyme has similar properties to the methyltransferase and guanylyltransferase of alphavirus nsP1, tobacco mosaic virus P126, brome mosaic virus replicase protein 1a, and bamboo mosaic virus (a potexvirus) nonstructural protein, indicating there is a common evolutionary origin of these distantly related plant and animal virus families.  相似文献   

17.
Yeast histidine tRNA guanylyltransferase (TGT) catalyzes in the presence of ATP the addition of GTP to the 5' end of eukaryotic cytoplasmic tRNAHis species. A study of the enzyme mechanism with purified protein showed that during the first step ATP is cleaved to AMP and PPi creating adenylylated TGT. In a second step the activated enzyme forms a stable complex with its cognate tRNA substrate. The 5'-phosphate of the tRNA is adenylylated by nucleotide transfer from the adenylylated guanylyltransferase to form A(5')pp(5')N at the 5'-end of the tRNA. Finally, the 3'-hydroxyl of GTP adds to the activated 5' terminus of the tRNA with the release of AMP. This mechanism of tRNAHis guanylyltransferase is very similar to that of RNA ligases. dATP can substitute for ATP in this reaction. Since among several guanosine compounds active in this reaction GTP is most efficiently added we believe that it is the natural substrate of TGT.  相似文献   

18.
The mechanism of action of purified wheat germ RNA ligase has been examined. ATP was absolutely required for the ligation of substrates containing 5'-OH or 5'-P and 2',3'-cyclic P or 2'-P termini. Ligation of 1 mol of 5'-P-2',3'-cyclic P-terminated poly(A) was accompanied by the hydrolysis of 1 mol of ATP to 1 mol each of AMP and PPi. Purified RNA ligase catalyzed an ATP-PPi exchange reaction, specific for ATP and dATP, and formed a covalent enzyme-adenylate complex that was detected by autoradiography following incubation with [alpha-32P]ATP and separation of the products by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A protein doublet with a molecular weight of approximately 110 kDa, the major product detected by silver staining, was labeled in these reactions. Isolated E-AMP complex was dissociated by the addition of ligatable poly(A), containing 5'-P-2',3'-cyclic P termini, to yield AMP and by the addition of PPi to yield ATP. The unique feature of the reactions leading to an exchange reaction between ATP and PPi and to the formation of an E-AMP complex was their marked stimulation (up to 400-fold) by the addition of RNA. This property distinguishes the wheat germ RNA ligase from other known RNA and DNA ligases which catalyze ATP-PPi exchange reactions and form E-AMP complexes in the absence of substrate. Thus, RNA appears to function in two capacities in the wheat germ system: as a cofactor, to stimulate the reaction of the enzyme with ATP, and as an authentic substrate for ligation.  相似文献   

19.
20.
L Yu  S Shuman 《Journal of virology》1996,70(9):6162-6168
Vaccinia virus mRNA capping enzyme is a multifunctional protein with RNA triphosphatase, RNA guanylyltransferase, and RNA (guanine-7-) methyltransferase activities. The enzyme is a heterodimer of 95- and 33-kDa subunits encoded by the vaccinia virus D1 and D12 genes, respectively. The N-terminal 60-kDa of the D1 subunit (from residues 1 to 545) is an autonomous domain which catalyzes the triphosphatase and guanylyltransferase reactions. Mutations in the D1 subunit that specifically inactivate the guanylyltransferase without affecting the triphosphatase component have been described (P. Cong and S. Shuman, Mol. Cell. Biol. 15:6222-6231, 1995). In the present study, we identified two alanine-cluster mutations of D1(1-545), R77A-K79A and E192A-E194A, that selectively inactivated the triphosphatase, but not the guanylyltransferase. Concordant mutational inactivation of RNA triphosphatase and nucleoside triphosphatase functions (to approximately 1% of wild-type specific activity) suggests that both gamma-phosphate cleavage reactions occur at a single active site. The R77A-K79A and E192A-E194A mutant enzymes were less active than wild-type D1(1-545) in the capping of triphosphate-terminated poly(A) but could be complemented in vitro by D1(1-545)-K260A, which is inert in nucleotidyl transfer but active in gamma-phosphate cleavage. Whereas wild-type D1(1-545) formed only the standard GpppA cap, the R77A-K79A and E192A-E194A enzymes synthesized an additional dinucleotide, GppppA. This finding illuminates a novel property of the vaccinia virus capping enzyme, the use of triphosphate RNA ends as an acceptor for nucleotidyl transfer when gamma-phosphate cleavage is rate limiting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号