首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Jones G  Jones D  Teal P  Sapa A  Wozniak M 《The FEBS journal》2006,273(21):4983-4996
The in vivo ligand-binding function and ligand-binding activity of the Drosophila melanogaster retinoid-X receptor (RXR) ortholog, ultraspiracle, toward natural farnesoid products of the ring gland were assessed. Using an equilibrium fluorescence-binding assay, farnesoid products in the juvenile hormone (JH) biosynthesis pathway, and their epoxy derivatives, were measured for their affinity constant for ultraspiracle (USP). Farnesol, farnesal, farnesoic acid and juvenile hormone III exhibited high nanomolar to low micromolar affinity, which in each case decreased upon addition of an epoxide across a double bond of the basic farnesyl structure. Similar analysis of the substitution on C1 of methyl ether, alcohol, aldehyde, and carboxylic acid showed that each conferred weaker affinity than that provided by the methyl ester. Attention was thus focused for a ring-gland farnesoid product that possesses the features of methyl ester and lack of an epoxide. A secreted product of the ring gland, methyl farnesoate, was identified possessing these features and exhibited an affinity for ultraspiracle (K(d) = 40 nm) of similar strength to that of RXR for 9-cis retinoic acid. Mutational analysis of amino acid residues with side chains extending into the ligand-binding pocket cavity (and not interacting with secondary receptor structures or extending to the receptor surface to interact with coactivators, corepressors or receptor dimer partners) showed that the mutation C472A/H475L strongly reduced USP binding to this ring gland product and to JH III, with less effect on other ring-gland farnesoids and little effect on binding by (the unnatural to Drosophila) JH I. Along with the ecdysone receptor, USP is now the second arthropod nuclear hormone receptor for which a secreted product of an endocrine gland that binds the receptor with nanomolar affinity has been identified.  相似文献   

7.
8.
9.
Ecdysteroids and juvenile hormones (JH) regulate a variety of developmental, physiological, behavioral, and metabolic processes. Ecdysteroids function through a heterodimeric complex of two nuclear receptors, ecdysone receptor (EcR) and ultraspiracle (USP). An 85 kDa protein identified in Drosophila melanogaster methoprene-tolerant (Met) mutant binds to JH III with high affinity, and the mutant flies are resistant to juvenile hormone analog (JHA), methoprene. Reporter assays using the yeast two-hybrid system were performed in order to study the molecular interactions between EcR, USP and Met. As expected, EcR fused to the B42 activation domain and USP fused to the LexA DNA binding domain interacted with each other and supported induction of the reporter gene in the presence of stable ecdysteroid analog, RG-102240 or steroids, muristerone A and ponasterone A. The USP:USP homodimers supported expression of the reporter gene in the absence of ligand, and there was no significant increase in the reporter activity after addition of a JHA, methoprene. Similarly, Met:Met homodimers as well as Met:EcR and Met:USP heterodimers induced reporter activity in the absence of ligand and addition of ecdysteroid or JH analogs did not increase the reporter activity regulated by either homodimers or heterodimers of Met protein. Two-hybrid assays in insect cells and in vitro pull-down assays confirmed the interaction of Met with EcR and USP. These data suggest that the proteins that are involved in signal transduction of ecdysteroids (EcR and USP) and juvenile hormones (Met) interact to mediate cross-talk between these two important hormones. Arch. Insect Biochem. Physiol. 2008. (c) 2008 Wiley-Liss, Inc.  相似文献   

10.
11.
Methyl farnesoate (MF) and juvenile hormone (JH III), which bind with high affinity to the receptors USP and MET, respectively, and bisepoxy JH III (bisJH III) were assessed for several activities during Drosophila larval development, and during prepupal development to eclosed adults. Dietary MF and JH III were similarly active, and more active than bisJH III, in lengthening larval development prior to pupariation. However, the order of activity was changed (JH III > bisJH III > MF) with respect to preventing prepupae from eclosing as normal adults, whether administered in the larval diet or as topically applied at the white puparium stage. If endogenous production of all three larval methyl farnesoids was suppressed by a strongly driven RNAi against HMGCR in the corpora allata cells, most larvae did not attain pupariation. Farnesol (which has no demonstrated life-necessary function in larval life except in corpora allata cells as a precursor to methyl farnesoid biosynthesis) when incorporated into the diet rescued attainment of pupariation in a dose-dependent manner, presumably by rescuing endogenous production of all three hormones. A more mild suppression of endogenous methyl farnesoid production enabled larval attainment of pupariation. However, in this background dietary MF had increased activity in preventing puparia from attaining normal adult eclosion. The physiological relevance of using exogenous methyl farnesoids to block prepupal development to normally eclosed adults was tested by, instead, protecting in prepupae the endogenous titer of methyl farnesoids. JH esterase normally increases during the mid-late prepupal stage, presumably to clear endogenous methyl farnesoids. When JH esterase was inhibited with an RNAi, it prevented attainment of adult eclosion. Cultured adult corpora allata from male and female Aedes aegypti released both MF and JH III, and the A. aegypti nuclear receptor USP bound MF with nanomolar affinity. These A. aegypti data support the use of Drosophila as a model for mosquitoes of the binding of secreted MF to USP.  相似文献   

12.
13.
Abstract  By using charcocal binding assay, the juvenile hormone binding protein (JHBP) was determined in the ovaries of houseflies. This ovarian JHBP possesses high affinity with juvenile hormone III (JH III) and has a Kd of 2.1 III 10--8 M. The binding of 3H-juvenile hormone III (3H-JH III) to this protein was inhibited by unlablled JH III, but not by juvenile hormone analog ZR 512 or ZR 515. The level of this ovarian JHBP reached the highest in houseflies 48 h after emergence, and was 6. 5-fold and 15. 5-fold higher than that in housefIies 60 h and 72 h after emergence, respectively. No binding activity was detected in the ovaries of houseflies 24 h or 36 h after emergence. The absence of JHBP in the ovaries of houseflies 36 h after emergence could be reversed by applying JH III to newly emerged houseflies. The data suggest that the fluctuation of the JHBP concentration might associate with the action of juvenile hormone (JH) on housefly vitellogenesis.  相似文献   

14.
15.
The functional insect ecdysteroid receptor is comprised of the ecdysone receptor (EcR) and Ultraspiracle (USP). The ligand-binding domain (LBD) of USP was fused to the GAL4 DNA-binding domain (GAL4-DBD) and characterized by analyzing the effect of site-directed mutations in the LBD. Normal and mutant proteins were tested for ligand and DNA binding, dimerization, and their ability to induce gene expression. The presence of helix 12 proved to be essential for DNA binding and was necessary to confer efficient ecdysteroid binding to the heterodimer with the EcR (LBD), but did not influence dimerization. The antagonistic position of helix 12 is indispensible for interaction between the fusion protein and DNA, whereas hormone binding to the EcR (LBD) was only partially reduced if fixation of helix 12 was disturbed. The mutation of amino acids, which presumably bind to a fatty acid evoked a profound negative influence on transactivation ability, although enhanced transactivation potency and ligand binding to the ecdysteroid receptor was impaired to varying degrees by mutation of these residues. Mutations of one fatty acid-binding residue within the ligand-binding pocket, 1323, however, evoked enhanced transactivation. The results confirmed that the LBD of Ultraspiracle modifies ecdysteroid receptor function through intermolecular interactions and demonstrated that the ligand-binding pocket of USP modifies the DNA-binding and transactivation abilities of the fusion protein.  相似文献   

16.
Molecular similarity analysis of stereoelectronic properties between natural insect juvenile hormone (JH), -a synthetic insect juvenile hormone mimic (JH-mimic, undecen-2-yl carbamate), and N, N-diethyl-m-toluamide (DEET) and its analogs reveals similarities that may aid the design of more efficacious insect repellents and give a better insight into the mechanism of repellent action. The study involves quantum chemical calculations using the AM1 semi-empirical computational method enabling a conformational search for the lowest and most abundant energy conformers of JH, JH-mimic, and 15 DEET compounds, followed by complete geometry optimization of the conformers. Similarity analyses of stereoelectronic properties such as structural parameters, atomic charges, dipole moments, molecular electrostatic potentials, and highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies were performed on JH, JH-mimic and the DEET compounds. The similarity of stereoelectronic attributes of the amide/ester moiety, the negative electrostatic potential regions beyond the van der Waals surface, and the large distribution of hydrophobic regions in the compounds appear to be the three important factors leading to a similar interaction with the JH receptor. The similarity of electrostatic profiles beyond the van der Waals surface is likely to play a crucial role in molecular recognition interaction with the JH receptor from a distance. This also suggests electrostatic bioisosterism of the amide group of the DEET compounds and JH-mimic and, thus, a model for molecular recognition at the JH receptor. The insect repellent property of the DEET analogs may thus be attributed to a conflict of complementarity for the JH receptor binding sites.  相似文献   

17.
Liu PC  Wang JX  Song QS  Zhao XF 《PloS one》2011,6(5):e19776
20-hydroxyecdysone (20E) and juvenile hormone (JH) signaling pathways interact to mediate insect development, but the mechanism of this interaction is poorly understood. Here, a calponin homologue domain (Chd) containing protein (HaCal) is reported to play a key role in the cross talk between 20E and JH signaling by varying its phosphorylation. Chd is known as an actin binding domain present in many proteins including some signaling proteins. Using an epidermal cell line (HaEpi), HaCal was found to be up-regulated by either 20E or the JH analog methoprene (JHA). 20E induced rapid phosphorylation of HaCal whereas no phosphorylation occurred with JHA. HaCal could be quickly translocated into the nuclei through 20E or JH signaling but interacted with USP1 only under the mediation of JHA. Knockdown of HaCal by RNAi blocked the 20E inducibility of USP1, PKC and HR3, and also blocked the JHA inducibility of USP1, PKC and JHi. After gene silencing of HaCal by ingestion of dsHaCal expressed by Escherichia coli, the larval development was arrested and the gene expression of USP1, PKC, HR3 and JHi were blocked. These composite data suggest that HaCal plays roles in hormonal signaling by quickly transferring into nucleus to function as a phosphorylated form in the 20E pathway and as a non-phosphorylated form interacting with USP1 in the JH pathway to facilitate 20E or JH signaling cascade, in short, by switching its phosphorylation status to regulate insect development.  相似文献   

18.
The biosynthesis of the sesquiterpenoid juvenile hormone III (JH III) was studied using corpora allata of the cockroach Diploptera punctata incubated in vitro and a radiochemical assay for the hormone produced. The influence of several exogenous precursors such as glucose, trehalose, acetate, amino acids, and mevalonate on JH synthetic rates was studied. Glucose or trehalose were needed for an optimal rate of JH synthesis. Highest rates were achieved at trehalose concentrations below the normal hemolymph levels (35-40 mM). About one-third of the glucose utilized for the biosynthesis of JH III was metabolized through a pentose pathway, but acetyl-CoA derived from glucose was significantly diluted by acetyl-CoA from other sources. Amino acids provided both a source of carbon for JH III synthesis and a source of energy that allowed JH III synthesis from acetate and stimulated JH III synthesis from glucose. Acetate was a poor substrate, because it could not support JH III synthesis in long term incubations. The incorporation of exogenous mevalonate into JH III was dependent on the physiological state of the glands, but there was a significant dilution with endogenous mevalonate. This dilution reflected in part the poor penetration of mevalonate into the corpora allata cells, because JH synthesis in mevinolin-treated cells was not fully rescued by mevalonate.  相似文献   

19.
The receptor for the insect molting hormone, ecdysone, is a heterodimer consisting of the Ecdysone Receptor and Ultraspiracle (USP) proteins. The ligand binding domain sequences of arthropod USPs divide into two distinct groups. One group consists of sequences from members of the holometabolous Lepidoptera and Diptera, while the other arthropod sequences group with vertebrate retinoid-X-receptors (RXRs). We therefore wondered whether USP/RXR structure could be used to clarify the contentious phylogenetic position of the order Strepsiptera, which has proposed affinities with either Diptera or Coleoptera. We have cloned and sequenced the USP/RXR from the strepsipteran Xenos pecki. Phylogenetic analyses are not consistent with a close affinity between Strepsiptera and Diptera.Electronic Supplementary Material Supplementary material is available for this article at Edited by D. Tautz  相似文献   

20.
A partition assay was developed to measure insect juvenile hormone (JH) I and III metabolism in biological samples containing both JH esterase and JH epoxide hydrolase activity. The assay utilizes commercially available radiochain 3H-labeled JH as substrate and the selective JH esterase inhibitor 3-octylthio-1,1,1-trifluoro-2-propanone. JH partitions into an isooctane phase and the metabolites JH acid, JH diol, and JH diol-acid into aqueous methanol after incubation of JH substrate with inhibited and uninhibited sample. The assay provides a time- and cost-efficient alternative to the currently available thin-layer chromatography method for the measurement of JH esterase and epoxide hydrolase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号