首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The embryonic stem cell differentiation system was used to define the roles of the Activin/Nodal, BMP, and canonical Wnt signaling pathways at three distinct developmental stages during hematopoietic ontogeny: induction of a primitive streak-like population, formation of Flk1(+) mesoderm, and induction of hematopoietic progenitors. Activin/Nodal and Wnt, but not BMP, signaling are required for the induction of the primitive streak. Although BMP is not required for primitive streak induction, it displays a strong posteriorizing effect on this population. All three signaling pathways regulate induction of Flk1(+) mesoderm. The specification of Flk1(+) mesoderm to the hematopoietic lineages requires VEGF and Wnt, but not BMP or Activin/Nodal signaling. Specifically, Wnt signaling is essential for commitment of the primitive erythroid, but not the definitive lineages. These findings highlight dynamic changes in signaling requirements during blood cell development and identify a role for Wnt signaling in the establishment of the primitive erythroid lineage.  相似文献   

2.
3.
4.
Induced pluripotent stem cells (iPSCs) are novel stem cells derived from adult mouse and human tissues by reprogramming. Elucidation of mechanisms and exploration of efficient methods for their differentiation to functional cardiomyocytes are essential for developing cardiac cell models and future regenerative therapies. We previously established a novel mouse embryonic stem cell (ESC) and iPSC differentiation system in which cardiovascular cells can be systematically induced from Flk1(+) common progenitor cells, and identified highly cardiogenic progenitors as Flk1(+)/CXCR4(+)/VE-cadherin(-) (FCV) cells. We have also reported that cyclosporin-A (CSA) drastically increases FCV progenitor and cardiomyocyte induction from mouse ESCs. Here, we combined these technologies and extended them to mouse and human iPSCs. Co-culture of purified mouse iPSC-derived Flk1(+) cells with OP9 stroma cells induced cardiomyocyte differentiation whilst addition of CSA to Flk1(+) cells dramatically increased both cardiomyocyte and FCV progenitor cell differentiation. Spontaneously beating colonies were obtained from human iPSCs by co-culture with END-2 visceral endoderm-like cells. Appearance of beating colonies from human iPSCs was increased approximately 4.3 times by addition of CSA at mesoderm stage. CSA-expanded human iPSC-derived cardiomyocytes showed various cardiac marker expressions, synchronized calcium transients, cardiomyocyte-like action potentials, pharmacological reactions, and ultra-structural features as cardiomyocytes. These results provide a technological basis to obtain functional cardiomyocytes from iPSCs.  相似文献   

5.
Abstract Embryonic stem (ES) cells have the potential to differentiate into all cell types of the adult body, and could allow regeneration of damaged tissues. The challenge is to alter differentiation toward functional cell types or tissues by directing ES cells to a specific fate. Efforts have been made to understand the molecular mechanisms that are required for the formation of the different germ layers and tissues from ES cells, and these mechanisms appear to be very similar in the mouse embryo. Differentiation toward mesoderm and mesoderm derivatives such as cardiac tissue or hemangioblasts has been demonstrated; however, the roles of Activin A/Nodal, bone morphogenetic protein (BMP), and fibroblast growth factor (FGF) signaling in the early patterning of ES cell-derived pan-mesoderm and anterior visceral endoderm (aVE) have not been reported yet. We therefore analyzed the roles of Activin A/Nodal, BMP, and FGF signaling in the patterning of ES cell-derived mesoderm as well as specification of the aVE by using a dual ES cell differentiation system combining a loss-of-function with a gain-of-function approach. We found that Activin A or Nodal directed the nascent mesoderm toward axial mesoderm and mesendoderm, while Bmp4 was inducing posterior and extraembryonic mesoderm at the expense of anterior primitive streak cells. FGF signaling appeared to have an important role in mesoderm differentiation by allowing an epithelial-to-mesenchymal transition of the newly formed mesoderm cells that would lead to their further patterning. Moreover, inhibition of FGF signaling resulted in increased expression of axial mesoderm markers. Additionally, we revealed that the formation of aVE cells from ES cells requires FGF-dependent Activin A/Nodal signaling and the attenuation of Bmp4 signaling.  相似文献   

6.
The canonical Wnt/beta-catenin signaling has remarkably diverse roles in embryonic development, stem cell self-renewal and cancer progression. Here, we show that stabilized expression of beta-catenin perturbed human embryonic stem (hES)-cell self-renewal, such that up to 80% of the hES cells developed into the primitive streak (PS)/mesoderm progenitors, reminiscent of early mammalian embryogenesis. The formation of the PS/mesoderm progenitors essentially depended on the cooperative action of beta-catenin together with Activin/Nodal and BMP signaling pathways. Intriguingly, blockade of BMP signaling completely abolished mesoderm generation, and induced a cell fate change towards the anterior PS progenitors. The PI3-kinase/Akt, but not MAPK, signaling pathway had a crucial role in the anterior PS specification, at least in part, by enhancing beta-catenin stability. In addition, Activin/Nodal and Wnt/beta-catenin signaling synergistically induced the generation and specification of the anterior PS/endoderm. Taken together, our findings clearly demonstrate that the orchestrated balance of Activin/Nodal and BMP signaling defines the cell fate of the nascent PS induced by canonical Wnt/beta-catenin signaling in hES cells.  相似文献   

7.
Heparan sulfate (HS) has been implicated in regulating cell fate decisions during differentiation of embryonic stem cells (ESCs) into advanced cell types. However, the necessity and the underlying molecular mechanisms of HS in early cell lineage differentiation are still largely unknown. In this study, we examined the potential of EXT1(-/-) mouse ESCs (mESCs), that are deficient in HS, to differentiate into primary germ layer cells. We observed that EXT1(-/-) mESCs lost their differentiation competence and failed to differentiate into Pax6(+)-neural precursor cells and mesodermal cells. More detailed analyses highlighted the importance of HS for the induction of Brachyury(+) pan-mesoderm as well as normal gene expression associated with the dorso-ventral patterning of mesoderm. Examination of developmental cell signaling revealed that EXT1 ablation diminished FGF and BMP but not Wnt signaling. Furthermore, restoration of FGF and BMP signaling each partially rescued mesoderm differentiation defects. We further show that BMP4 is more prone to degradation in EXT1(-/-) mESCs culture medium compared with that of wild type cells. Therefore, our data reveal that HS stabilizes BMP ligand and thereby maintains the BMP signaling output required for normal mesoderm differentiation. In summary, our study demonstrates that HS is required for ESC pluripotency, in particular lineage specification into mesoderm through facilitation of FGF and BMP signaling.  相似文献   

8.
9.
Induction of definitive endoderm (DE) cells is a prerequisite for the whole process of embryonic stem (ES) cells differentiating into hepatic or pancreatic progenitor cells. We have established an efficient method to induce mouse ES cell-derived DE cells in suspension embryonic body (EB) culture. Similar to previous studies, mouse ES cell-derived DE cells, which were defined as Cxcr4(+) c-Kit(+) , Cxcr4(+) E-cadherin(+) cells or Cxcr4(+) PDGFRa(-) cells, could be induced in the serum-free EBs at Day 4 of induction. The activations of Wnt, Nodal, and FGF signaling pathways in differentiating EBs promoted DE cell differentiation, while activation of BMP4 signaling inhibited the process. In the present study, we found that chemical activation of canonical Wnt signaling pathway by LiCl could synergize with Activin A-mediated Nodal signaling pathway to promote induction of DE cells, and inhibition of Bmp4 signaling by Noggin along with Activin A/LiCl further improved the efficiency of DE cell differentiation. The derived DE cells were proved for their capacities to become hepatic progenitor cells or pancreatic progenitor cells. In conclusion, we significantly improved the efficiency of generating mouse ES cell-derived DE cells by combined Activin A/LiCl/Noggin treatment. Our work will be greatly helpful to generate ES cell-derived hepatic cells and ES cell-derived pancreatic cells for future regenerative medicine.  相似文献   

10.
Cell fate commitment of pre-implantation blastocysts, to either the inner cell mass or trophoblast, is the first step in cell lineage segregation of the developing human embryo. However, the intercellular signals that control fate determination of these cells remain obscure. Human embryonic stem cells (hESCs) provide a unique model for studying human early embryonic development. We have previously shown that Activin/Nodal signaling contributes to maintaining pluripotency of hESCs, which are derivatives of the inner cell mass. Here we further demonstrate that the inhibition of Activin/Nodal signaling results in the loss of hESC pluripotency and trophoblast differentiation, similar to BMP4-induced trophoblast differentiation from hESCs. We also show that the trophoblast induction effect of BMP4 correlates with and depends on the inhibition of Activin/Nodal signaling. However, the activation of BMP signaling is still required for trophoblast differentiation when Activin/Nodal signaling is inhibited. These data reveal that the early lineage segregation of hESCs is determined by the combinatorial signals of Activin/Nodal and BMP.  相似文献   

11.
TET family enzymes convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) in DNA. Here, we show that Tet1 and Tet2 are Oct4-regulated enzymes that together sustain 5hmC in mouse embryonic stem cells (ESCs) and are induced concomitantly with 5hmC during reprogramming of fibroblasts to induced pluripotent stem cells. ESCs depleted of Tet1 by RNAi show diminished expression of the Nodal antagonist Lefty1 and display hyperactive Nodal signaling and skewed differentiation into the endoderm-mesoderm lineage in embryoid bodies in?vitro. In Fgf4- and heparin-supplemented culture conditions, Tet1-depleted ESCs activate the trophoblast stem cell lineage determinant Elf5 and can colonize the placenta in midgestation embryo chimeras. Consistent with these findings, Tet1-depleted ESCs?form aggressive hemorrhagic teratomas with increased endoderm, reduced neuroectoderm, and ectopic appearance of trophoblastic giant cells. Thus, 5hmC is an epigenetic modification associated with the pluripotent state, and Tet1 functions to regulate the lineage differentiation potential of ESCs.  相似文献   

12.
13.
14.
Many emerging cell-based therapies are based on pluripotent stem cells, though complete understanding of the properties of these cells is lacking. In these cells, much is still unknown about the cytoskeletal network, which governs the mechanoresponse. The objective of this study was to determine the cytoskeletal state in undifferentiated pluripotent stem cells and remodeling with differentiation. Mouse embryonic stem cells (ESCs) and reprogrammed induced pluripotent stem cells (iPSCs), as well as the original un-reprogrammed embryonic fibroblasts (MEFs), were evaluated for expression of cytoskeletal markers. We found that pluripotent stem cells overall have a less developed cytoskeleton compared to fibroblasts. Gene and protein expression of smooth muscle cell actin, vimentin, lamin A, and nestin were markedly lower for ESCs than MEFs. Whereas, iPSC samples were heterogeneous with most cells expressing patterns of cytoskeletal proteins similar to ESCs with a small subpopulation similar to MEFs. This indicates that dedifferentiation during reprogramming is associated with cytoskeletal remodeling to a less developed state. In differentiation studies, it was found that shear stress-mediated differentiation resulted in an increase in expression of cytoskeletal intermediate filaments in ESCs, but not in iPSC samples. In the embryoid body model of spontaneous differentiation of pluripotent stem cells, however, both ESCs and iPSCs had similar gene expression for cytoskeletal proteins during early differentiation. With further differentiation, however, gene levels were significantly higher for iPSCs compared to ESCs. These results indicate that reprogrammed iPSCs more readily reacquire cytoskeletal proteins compared to the ESCs that need to form the network de novo. The strategic selection of the parental phenotype is thus critical not only in the context of reprogramming but also the ultimate functionality of the iPSC-differentiated cell population. Overall, this increased characterization of the cytoskeleton in pluripotent stem cells will allow for the better understanding and design of stem cell-based therapies.  相似文献   

15.
Zhang W  Yao H  Wang S  Shi S  Lv Y  He L  Nan X  Yue W  Li Y  Pei X 《Cell biology international》2012,36(3):267-271
The Wnt/β-catenin signalling pathway is important in regulating not only self-renewal of haemopoietic progenitors and stem cells but also haemopoietic differentiation of ESCs (embryonic stem cells). However, it is still not clear how it affects haemopoietic differentiation. We have used a co-culture system for haemopoietic differentiation of mouse ESCs and iPSCs (induced pluripotent stem cells) in which the Wnt3a gene-modified OP9 cell line is used as stromal cells. The number of both Flk1+ and CD41+ cells generated from both co-cultured mouse ESCs and mouse iPSCs increased significantly, which suggest that Wnt3a is involved in the early stages of haemopoietic differentiation of mouse ESCs and mouse iPSCs in vitro.  相似文献   

16.
Recent data demonstrates that stem cells can exist in two morphologically, molecularly and functionally distinct pluripotent states; a naïve LIF-dependent pluripotent state which is represented by murine embryonic stem cells (mESCs) and an FGF-dependent primed pluripotent state represented by murine and rat epiblast stem cells (EpiSCs). We find that derivation of induced pluripotent stem cells (iPSCs) under EpiSC culture conditions yields FGF-dependent iPSCs from hereon called FGF-iPSCs) which, unexpectedly, display naïve ES-like/ICM properties. FGF-iPSCs display X-chromosome activation, multi-lineage differentiation, teratoma competence and chimera contribution in vivo. Our findings suggest that in 129 and Bl6 mouse strains, iPSCs can dominantly adopt a naive pluripotent state regardless of culture growth factor conditions.Characterization of the key molecular signalling pathways revealed FGF-iPSCs to depend on the Activin/Nodal and FGF pathways, while signalling through the JAK-STAT pathway is not required for FGF-iPS cell maintenance. Our findings suggest that in 129 and Bl6 mouse strains, iPSCs can dominantly adopt a naive pluripotent state regardless of culture growth factor conditions.  相似文献   

17.
18.
Yu P  Pan G  Yu J  Thomson JA 《Cell Stem Cell》2011,8(3):326-334
Here, we show that as human embryonic stem cells (ESCs) exit the pluripotent state, NANOG can play a key role in determining lineage outcome. It has previously been reported that BMPs induce differentiation of human ESCs into extraembryonic lineages. Here, we find that FGF2, acting through the MEK-ERK pathway, switches BMP4-induced human ESC differentiation outcome to mesendoderm, characterized by the uniform expression of T (brachyury) and other primitive streak markers. We also find that MEK-ERK signaling prolongs NANOG expression during BMP-induced differentiation, that forced NANOG expression results in FGF-independent BMP4 induction of mesendoderm, and that knockdown of NANOG greatly reduces T induction. Together, our results demonstrate that FGF2 signaling switches the outcome of BMP4-induced differentiation of human ESCs by maintaining NANOG levels through the MEK-ERK pathway.  相似文献   

19.
20.
Self-renewal of human embryonic stem cells (ESCs) is promoted by FGF and TGFbeta/Activin signaling, and differentiation is promoted by BMP signaling, but how these signals regulate genes critical to the maintenance of pluripotency has been unclear. Using a defined medium, we show here that both TGFbeta and FGF signals synergize to inhibit BMP signaling; sustain expression of pluripotency-associated genes such as NANOG, OCT4, and SOX2; and promote long-term undifferentiated proliferation of human ESCs. We also show that both TGFbeta- and BMP-responsive SMADs can bind with the NANOG proximal promoter. NANOG promoter activity is enhanced by TGFbeta/Activin and FGF signaling and is decreased by BMP signaling. Mutation of putative SMAD binding elements reduces NANOG promoter activity to basal levels and makes NANOG unresponsive to BMP and TGFbeta signaling. These results suggest that direct binding of TGFbeta/Activin-responsive SMADs to the NANOG promoter plays an essential role in sustaining human ESC self-renewal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号