首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemokines binding the CXCR3 receptor have been shown to inhibit angiogenesis via the CXCR3-B isoform, but the underlying molecular mechanisms are unknown. Aim of this study was to elucidate the effects of CXCR3-B on activation of members of the mitogen-activated protein kinase family, and to explore the relevance of defined signaling pathways to the angiostatic effects of CXCR3-B ligands. Human embryonic kidney (HEK) 293 cells were transfected with expression vectors encoding for CXCR3-A or CXCR3-B. In cells expressing CXCR3-A, CXCL10 (IP-10) at nanomolar concentrations induced activation of ERK, Akt, and Src, as previously described in human vascular pericytes. In HEK-293 cells expressing CXCR3-B, exposure to CXCL10 in the micromolar concentration range led to activation of the p38(MAPK) pathway, as indicated by phosphorylation of p38(MAPK) itself, and of MKK3/6 and MAPKAPK-2, that lie upstream and downstream of p38(MAPK), respectively. Similar results were obtained in cells stimulated with CXCL4 (PF4), a specific ligand of CXCR3-B. In contrast, CXCL4 was unable to activate p38(MAPK) in mock-transfected HEK-293 cells. Only a modest induction of ERK or JNK was observed upon CXCR3-B activation. In human microvascular endothelial cells, which selectively express CXCR3-B, in a cell cycle-dependent fashion, CXCL10 and CXCL4 increased the enzymatic activity of p38(MAPK). Pharmacologic inhibition of p38(MAPK) by SB302580 resulted in a significant increase in DNA synthesis and in reversal of the inhibitory action of CXCL10. In conclusion, the p38(MAPK) pathway is a downstream effector of CXCR3-B implicated in the angiostatic action of this chemokine receptor.  相似文献   

2.
The chemokine receptor CXCR4 and its cognate ligand, stromal cell-derived factor-1alpha (CXCL12), regulate lymphocyte trafficking and play an important role in host immune surveillance. However, the molecular mechanisms involved in CXCL12-induced and CXCR4-mediated chemotaxis of T-lymphocytes are not completely elucidated. In the present study, we examined the role of the membrane tyrosine phosphatase CD45, which regulates antigen receptor signaling in CXCR4-mediated chemotaxis and mitogen-activated protein kinase (MAPK) activation in T-cells. We observed a significant reduction in CXCL12-induced chemotaxis in the CD45-negative Jurkat cell line (J45.01) as compared with the CD45-positive control (JE6.1) cells. Expression of a chimeric protein containing the intracellular phosphatase domain of CD45 was able to partially restore CXCL12-induced chemotaxis in the J45.01 cells. However, reconstitution of CD45 into the J45.01 cells restored the CXCL12-induced chemotaxis to about 90%. CD45 had no significant effect on CXCL12 or human immunodeficiency virus gp120-induced internalization of the CXCR4 receptor. Furthermore, J45.01 cells showed a slight enhancement in CXCL12-induced MAP kinase activity as compared with the JE6.1 cells. We also observed that CXCL12 treatment enhanced the tyrosine phosphorylation of CD45 and induced its association with the CXCR4 receptor. Pretreatment of T-cells with the lipid raft inhibitor, methyl-beta-cyclodextrin, blocked the association between CXCR4 and CD45 and markedly abolished CXCL12-induced chemotaxis. Comparisons of signaling pathways induced by CXCL12 in JE6.1 and J45.01 cells revealed that CD45 might moderately regulate the tyrosine phosphorylation of the focal adhesion components the related adhesion focal tyrosine kinase/Pyk2, focal adhesion kinase, p130Cas, and paxillin. CD45 has also been shown to regulate CXCR4-mediated activation and phosphorylation of T-cell receptor downstream effectors Lck, ZAP-70, and SLP-76. Our results show that CD45 differentially regulates CXCR4-mediated chemotactic activity and MAPK activation by modulating the activities of focal adhesion components and the downstream effectors of the T-cell receptor.  相似文献   

3.
Chemokines play crucial roles in combating microbial infection and initiating tissue repair by recruiting neutrophils in a timely and coordinated manner. In humans, no less than seven chemokines (CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7, and CXCL8) and two receptors (CXCR1 and CXCR2) mediate neutrophil functions but in a context dependent manner. Neutrophil-activating chemokines reversibly exist as monomers and dimers, and their receptor binding triggers conformational changes that are coupled to G-protein and β-arrestin signaling pathways. G-protein signaling activates a variety of effectors including Ca2+ channels and phospholipase C. β-arrestin serves as a multifunctional adaptor and is coupled to several signaling hubs including MAP kinase and tyrosine kinase pathways. Both G-protein and β-arrestin signaling pathways play important non-overlapping roles in neutrophil trafficking and activation. Functional studies have established many similarities but distinct differences for a given chemokine and between chemokines at the level of monomer vs. dimer, CXCR1 vs. CXCR2 activation, and G-protein vs. β-arrestin pathways. We propose that two forms of the ligand binding two receptors and activating two signaling pathways enables fine-tuned neutrophil function compared to a single form, a single receptor, or a single pathway. We summarize the current knowledge on the molecular mechanisms by which chemokine monomers/dimers activate CXCR1/CXCR2 and how these interactions trigger G-protein/β-arrestin-coupled signaling pathways. We also discuss current challenges and knowledge gaps, and likely advances in the near future that will lead to a better understanding of the relationship between the chemokine-CXCR1/CXCR2-G-protein/β-arrestin axis and neutrophil function.  相似文献   

4.
Chemokines and their receptors participate in the development of cancers by enhancing tumor cell proliferation, angiogenesis, invasion, metastasis and penetration of tumor immune cells. It remains unclear whether CXC chemokine ligand 4 (CXCL4)/CXC chemokine receptor 3-B (CXCR3-B) can be used as an independent molecular marker for establishing prognosis for breast cancer patients. We evaluated CXCL4 and CXCR3-B expression in 114 breast cancer tissues and 30 matched noncancerous tissues using immunohistochemistry and western blot, and determined the correlation between their expression and clinicopathologic findings. We observed that breast cancer tissues express CXCL4 strongly and CXCR3-B weakly compared to noncancerous tissues. Strong CXCL4 expression was detected in 94.7% and weak CXCR3-B expression was detected in 78.9% of the tissues. Therefore, CXCL4/CXCR3-B might play a crucial role in breast cancer progression. We found no significant correlation between CXCL4 and age, tumor stage, tumor grade or TNM stage. CXCR3-B was associated significantly with tumor grade. Moreover, the Chi-square test of association showed that the expression of CXCL4/CXCR3-B might be an independent prognostic marker for breast cancer. Therefore, we suggest that CXCR3-B is an indicator of poor prognosis and may also be a chemotherapeutic target.  相似文献   

5.
《FEBS letters》2014,588(24):4769-4775
C-X-C motif chemokine 12/C-X-C chemokine receptor type 4 (CXCL12/CXCR4) signaling is involved in ontogenesis, hematopoiesis, immune function and cancer. Recently, the orphan chemokine CXCL14 was reported to inhibit CXCL12-induced chemotaxis – probably by allosteric modulation of CXCR4. We thus examined the effects of CXCL14 on CXCR4 regulation and function using CXCR4-transfected human embryonic kidney (HEK293) cells and Jurkat T cells. CXCL14 did not affect dose–response profiles of CXCL12-induced CXCR4 phosphorylation, G protein-mediated calcium mobilization, dynamic mass redistribution, kinetics of extracellular signal-regulated kinase 1 (ERK1) and ERK2 phosphorylation or CXCR4 internalization. Hence, essential CXCL12-operated functions of CXCR4 are insensitive to CXCL14, suggesting that interactions of CXCL12 and CXCL14 pathways depend on a yet to be identified CXCL14 receptor.  相似文献   

6.
The IL-8 (or CXCL8) chemokine receptors, CXCR1 and CXCR2, activate protein kinase C (PKC) to mediate leukocyte functions. To investigate the roles of different PKC isoforms in CXCL8 receptor activation and regulation, human mononuclear phagocytes were treated with CXCL8 or CXCL1 (melanoma growth-stimulating activity), which is specific for CXCR2. Plasma membrane association was used as a measure of PKC activation. Both receptors induced time-dependent association of PKCalpha, -beta1, and -beta2 to the membrane, but only CXCR1 activated PKCepsilon. CXCL8 also failed to activate PKCepsilon in RBL-2H3 cells stably expressing CXCR2. DeltaCXCR2, a cytoplasmic tail deletion mutant of CXCR2 that is resistant to internalization, activated PKCepsilon as well as CXCR1. Expression of the PKCepsilon inhibitor peptide epsilonV1 in RBL-2H3 cells blocked PKCepsilon translocation and inhibited receptor-mediated exocytosis, but not phosphoinositide hydrolysis or peak intracellular Ca(2+) mobilization. epsilonV1 also inhibited CXCR1-, CCR5-, and DeltaCXCR2-mediated cross-regulatory signals for GTPase activity, Ca(2+) mobilization, and internalization. Peritoneal macrophages from PKCepsilon-deficient mice (PKCepsilon(-/-)) also showed decreased CCR5-mediated cross-desensitization of G protein activation and Ca(2+) mobilization. Taken together, the results indicate that CXCR1 and CCR5 activate PKCepsilon to mediate cross-inhibitory signals. Inhibition or deletion of PKCepsilon decreases receptor-induced exocytosis and cross-regulatory signals, but not phosphoinositide hydrolysis or peak intracellular Ca(2+) mobilization, suggesting that cross-regulation is a Ca(2+)-independent process. Because DeltaCXCR2, but not CXCR2, activates PKCepsilon and cross-desensitizes CCR5, the data further suggest that signal duration leading to activation of novel PKC may modulate receptor-mediated cross-inhibitory signals.  相似文献   

7.
The chemokine SDF-1/CXCL12 induces and modulates major steps of ontogenesis, regeneration and tumorigenesis. Depending on the organ or tissue, CXCL12 serves as a proliferation or cell survival factor, influences differentiation, induces adhesion and/or regulates cell migration. These functions are mediated by the two chemokine receptors, CXCR4 and CXCR7. Whereas CXCR4 is still viewed as the sole G-protein-activating and, hence, signaling receptor for CXCL12, CXCR7 is regarded as a non-classic scavenging or decoy receptor that modulates the function of CXCR4. However, this view might be too limited, since evidence has accumulated favoring a cell-type-specific mode of CXCL12 signaling. In addition to the “classic” CXCL12 signaling mode via CXCR4, CXCR4 and CXCR7 have to form a receptor unit for successful CXCL12 signaling in some cells. Moreover, examples exist whereby CXCL12 receptors split functions or switch roles, such that CXCR7 (instead of CXCR4) mediates signal transduction. The obvious lack of a universal mode of CXCL12 signaling urges a re-evaluation of the role of this chemokine in development, health and disease. This review depicts the exceptional characteristics of CXCL12-induced signal transduction in various cells and organs, points out remaining controversies and mentions consequences for therapeutic interventions.  相似文献   

8.
9.
CXCL16 is a transmembrane non-ELR CXC chemokine that signals via CXCR6 to induce aortic smooth muscle cell (ASMC) proliferation. While bacterial lipopolysaccharide (LPS) has been shown to stimulate CXCL16 expression in SMC, its effects on CXCR6 are not known. Here, we demonstrate that LPS upregulates CXCR6 mRNA, protein, and surface expression in human ASMC. Inhibition of TLR4 with neutralizing antibodies or specific siRNA interference blocked LPS-mediated CXCR6 expression. LPS stimulated both AP-1 (c-Fos, c-Jun) and NF-kappaB (p50 and p65) activation, but only inhibition of AP-1 attenuated LPS-induced CXCR6 expression. Using dominant negative expression vectors and siRNA interference, we demonstrate that LPS induces AP-1 activation via MyD88, TRAF6, ERK1/2, and JNK signaling pathways. Furthermore, the flavoprotein inhibitor diphenyleniodonium chloride significantly attenuated LPS-mediated AP-1-dependent CXCR6 expression, as did inhibition of NOX4 NADPH oxidase by siRNA. Finally, CXCR6 knockdown inhibited CXCL16-induced ASMC proliferation. These results demonstrate that LPS-TLR4-NOX4-AP-1 signaling can induce CXCR6 expression in ASMC, and suggest that the CXCL16-CXCR6 axis may be an important proinflammatory pathway in the pathogenesis of atherosclerosis.  相似文献   

10.
11.
《Phytomedicine》2014,21(11):1310-1317
PurposeC-X-C chemokine receptor type 4 (CXCR4) signaling has been demonstrated to be involved in cancer invasion and migration; therefore, CXCR4 antagonist can serve as an anti-cancer drug by preventing tumor metastasis. This study aimed to identify the CXCR4 antagonists that could reduce and/or inhibit tumor metastasis from natural products.Methods and resultsAccording to the molecular docking screening, we reported here silibinin as a novel CXCR4 antagonist. Biochemical characterization showed that silibinin blocked chemokine ligand 12 (CXCL12)-induced CXCR4 internalization by competitive binding to CXCR4, therefore inhibiting downstream intracellular signaling. In human breast cancer cells MDA-MB-231, which expresses high levels of CXCR4, inhibition of CXCL12-induced chemomigration can be found under silibinin treatment. Overexpression of CXCL12 sensitized MDA-MB-231 cells to the inhibition of silibinin, which was abolished by CXCR4 knockdown. The inhibition of silibinin was also observed in MCF-7/CXCR4 cells rather than MCF-7 cells that express low level of CXCR4.ConclusionsOur work demonstrated that silibinin is a novel CXCR4 antagonist that may have potential therapeutic use for prevention of tumor metastasis.  相似文献   

12.
13.
G Müller  M Lipp 《Biological chemistry》2001,382(9):1387-1397
The human chemokine receptors CXCR5 and CXCR1 activate signaling pathways via pertussis toxin-sensitive as well as insensitive G proteins. CXCR5 induces Ca2+ signaling and chemotaxis independently of inhibitory G proteins, whereas the same signaling pathways are entirely dependent on inhibitory G proteins for CXCR1. In contrast, activation of the MAP kinase cascade via ERK1/2 is a pertussis toxin-sensitive signaling event for both receptors. Using chimeric CXCR1/CXCR5 receptors we investigated structural requirements for the activation of signal transduction pathways by CXCR5. Individual or multiple intracellular domains of CXCR1 were exchanged for the corresponding sequences of CXCR5, leading to receptors resembling CXCR5 at the cytoplasmic surface to a varying extent. Replacing the second intracellular domain of CXCR1 had a major influence on signaling mediated by inhibitory G proteins, whereas the exchange of the third or carboxy-terminal intracellular domain had only minor effects on signal transduction. Activation of the MAP kinase cascade via ERK1/2 and chemotaxis are largely reduced in chimeras comprising the second intracellular domain of CXCR5, although coupling to inhibitory G proteins is retained in all chimeric receptors. In summary, these data characterize the contribution of the intracellular domains of CXCR5 to receptor signaling, thereby disclosing unique structural requirements that modulate G protein coupling by the receptor.  相似文献   

14.
CXC趋化因子受体4(CXCR4)是最主要的趋化因子受体之一,在多种类型细胞中均有表达,包括淋巴细胞、造血干细胞、内皮细胞和肿瘤细胞。CXCR4与其配体——基质细胞衍生因子1(SDF-1)(也称CXCL12)结合,能介导多种与细胞趋化、细胞存活或增殖相关信号传导通路。CXCR4与SDF-1轴涉及肿瘤的恶性演进、血管生成、转移和存活。因此,阻断CXCR4与SDF-1轴及下游信号通路成为相关治疗的分子靶标。  相似文献   

15.
The CXC chemokine CXCL12 and its cognate receptor CXCR4 play an important role in inflammation, human immunodeficiency virus (HIV) infection and cancer metastasis. The signal transduction and intracellular trafficking of CXCR4 are involved in these functions, but the underlying mechanisms remain incompletely understood. In the present study, we demonstrated that the CXCR4 formed a complex with the cytolinker protein plectin in a ligand-dependent manner in HEK293 cells stably expressing CXCR4. The glutathione-S-transferase (GST)-CXCR4 C-terminal fusion proteins co-precipitated with the full-length and the N-terminal fragments of plectin isoform 1 but not with the N-terminal deletion mutants of plectin isoform 1, thereby suggesting an interaction between the N-terminus of plectin and the C-terminus of CXCR4. This interaction was confirmed by confocal microscopic reconstructions showing co-distribution of these two proteins in the internal vesicles after ligand-induced internalization of CXCR4 in HEK293 cells stably expressing CXCR4. Knockdown of plectin with RNA interference (RNAi) significantly inhibited ligand-dependent CXCR4 internalization and attenuated CXCR4-mediated intracellular calcium mobilization and activation of extracellular signal regulated kinase 1/2 (ERK1/2). CXCL12-induced chemotaxis of HEK293 cells stably expressing CXCR4 and of Jurkat T cells was inhibited by the plectin RNAi. Moreover, CXCR4 tropic HIV-1 infection in MAGI (HeLa-CD4-LTR-Gal) cells was inhibited by the RNAi of plectin. Thus, plectin appears to interact with CXCR4 and plays an important role in CXCR4 signaling and trafficking and HIV-1 infection.  相似文献   

16.
Human immunodeficiency virus type 1 (HIV-1) entry into CD4(+) cells requires the chemokine receptors CCR5 or CXCR4 as co-fusion receptors. We have previously demonstrated that chemokine receptors are capable of cross-regulating the functions of each other and, thus, affecting cellular responsiveness at the site of infection. To investigate the effects of chemokine receptor cross-regulation in HIV-1 infection, monocytes and MAGIC5 and rat basophilic leukemia (RBL-2H3) cell lines co-expressing the interleukin-8 (IL-8 or CXCL8) receptor CXCR1 and either CCR5 (ACCR5) or CXCR4 (ACXCR4) were generated. IL-8 activation of CXCR1, but not the IL-8 receptor CXCR2, cross-phosphorylated CCR5 and CXCR4 and cross-desensitized their responsiveness to RANTES (regulated on activation normal T cell expressed and secreted) (CCL5) and stromal derived factor (SDF-1 or CXCL12), respectively. CXCR1 activation internalized CCR5 but not CXCR4 despite cross-phosphorylation of both. IL-8 pretreatment also inhibited CCR5- but not CXCR4-mediated virus entry into MAGIC5 cells. A tail-deleted mutant of CXCR1, DeltaCXCR1, produced greater signals upon activation (Ca(2+) mobilization and phosphoinositide hydrolysis) and cross-internalized CXCR4, inhibiting HIV-1 entry. The protein kinase C inhibitor staurosporine prevented phosphorylation and internalization of the receptors by CXCR1 activation. Taken together, these results indicate that chemokine receptor-mediated HIV-1 cell infection is blocked by receptor internalization but not desensitization alone. Thus, activation of chemokine receptors unrelated to CCR5 and CXCR4 may play a cross-regulatory role in the infection and propagation of HIV-1. Since DeltaCXCR1, but not CXCR1, cross-internalized and cross-inhibited HIV-1 infection to CXCR4, the data indicate the importance of the signal strength of a receptor and, as a consequence, protein kinase C activation in the suppression of HIV-1 infection by cross-receptor-mediated internalization.  相似文献   

17.
Chemokines are critical in controlling lymphocyte traffic and migration. The CXC chemokine CXCL12/SDF-1alpha interacts with its receptor CXCR4 to induce the migration of a number of different cell types. Although an understanding of the physiological functions of this chemokine is emerging, the mechanism by which it regulates T cell migration is still unclear. We show here that the Tec family kinase ITK is activated rapidly following CXCL12/SDF-1alpha stimulation, and this requires Src and phosphatidylinositol 3-kinase activities. ITK regulates the ability of CXCL12/SDF-1alpha to induce T cell migration as overexpression of wild-type ITK-enhanced migration, and T cells lacking ITK exhibit reduced migration as well as adhesion in response to CXCL12/SDF-1alpha. Further analysis suggests that ITK may regulate CXCR4-mediated migration and adhesion by altering the actin cytoskeleton, as ITK null T cells were significantly defective in CXCL12/SDF-1a-mediated actin polymerization. Our data suggest that ITK may regulate the ability of CXCR4 to induce T cell migration.  相似文献   

18.
Human colonic epithelial cells express CXCR4, the sole cognate receptor for the chemokine stromal cell-derived factor (SDF)-1/CXC chemokine ligand (CXCL) 12. The aim of this study was to define the mechanism and functional consequences of signaling intestinal epithelial cells through the CXCR4 chemokine receptor. CXCR4, but not SDF-1/CXCL12, was constitutively expressed by T84, HT-29, HT-29/-18C1, and Caco-2 human colon epithelial cell lines. Studies using T84 cells showed that CXCR4 was G protein-coupled in intestinal epithelial cells. Moreover, stimulation of T84 cells with SDF-1/CXCL12 inhibited cAMP production in response to the adenylyl cyclase activator forskolin, and this inhibition was abrogated by either anti-CXCR4 antibody or receptor desensitization. Studies with pertussis toxin suggested that SDF-1/CXCL12 activated negative regulation of cAMP production through G(i)alpha subunits coupled to CXCR4. Consistent with the inhibition of forskolin-stimulated cAMP production, SDF-1/CXCL12 also inhibited forskolin-induced ion transport in voltage-clamped polarized T84 cells. Taken together, these data indicate that epithelial CXCR4 can transduce functional signals in human intestinal epithelial cells that modulate important cAMP-mediated cellular functions.  相似文献   

19.
20.
CXCL12 (SDF-1) is a chemokine that binds to and signals through the seven transmembrane receptor CXCR4. The CXCL12/CXCR4 signaling axis has been implicated in both cancer metastases and human immunodeficiency virus type 1 (HIV-1) infection and a more complete understanding of CXCL12/CXCR4 signaling pathways may support efforts to develop therapeutics for these diseases. Mass spectrometry-based phosphoproteomics has emerged as an important tool in studying signaling networks in an unbiased fashion. We employed stable isotope labeling with amino acids in cell culture (SILAC) quantitative phosphoproteomics to examine the CXCL12/CXCR4 signaling axis in the human lymphoblastic CEM cell line. We quantified 4,074 unique SILAC pairs from 1,673 proteins and 89 phosphopeptides were deemed CXCL12-responsive in biological replicates. Several well established CXCL12-responsive phosphosites such as AKT (pS473) and ERK2 (pY204) were confirmed in our study. We also validated two novel CXCL12-responsive phosphosites, stathmin (pS16) and AKT1S1 (pT246) by Western blot. Pathway analysis and comparisons with other phosphoproteomic datasets revealed that genes from CXCL12-responsive phosphosites are enriched for cellular pathways such as T cell activation, epidermal growth factor and mammalian target of rapamycin (mTOR) signaling, pathways which have previously been linked to CXCL12/CXCR4 signaling. Several of the novel CXCL12-responsive phosphoproteins from our study have also been implicated with cellular migration and HIV-1 infection, thus providing an attractive list of potential targets for the development of cancer metastasis and HIV-1 therapeutics and for furthering our understanding of chemokine signaling regulation by reversible phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号